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Introduction 
 
Computer Experiment 
• Computational science:  An area of scientific investigation, where computers play a central role. 
• Scientific computing:  An area in computer science to support computational sciences by innovative 

use of computer systems; it involves the development of numerical algorithms, software tools, 
scientific visualization, etc. 

• Computational-science approach1,2 

 

 1. Mathematical model is developed for the physical phenomenon of interest. 
Example:  Newton’s second law of motion for interacting particles.  Three laws of motion were 
published by Isaac Newton in Mathematical Principles of Natural Philosophy (1686). 

  (1) 

2. The equations of the mathematical model are cast into a discrete algebraic form, which is 
amenable to numerical solution. 

  Example:  Time discretization of the Newton’s second law of motion. 

 

3. Numerical algorithms are used to convert the algebraic equation system into a simulation 
program. 

   Example 1: Verlet algorithm. 
    compute Fi(t) as a function of xi(t) 
    xi(t+Dt) = 2xi(t) - xi(t-Dt) + Fi(t)Dt2/m 
    vi(t) = (xi(t+Dt) - xi(t-Dt))/2Dt 

   Example 2: velocity-Verlet algorithm. 
    compute Fi(t) as a function of xi(t) 
    vi(t+Dt/2) = vi(t) + Fi(t)Dt/2m 
    xi(t+Dt) = xi(t) + vi(t+Dt/2)Dt 
    compute Fi(t+Dt) as a function of xi(t+Dt) 
    vi(t+Dt) = vi(t+Dt/2) + Fi(t+Dt)Dt/2m 

m d 2!ri (t)
dt2

=
!
Fi (t) (i =1,...,N )

m
!ri (t +Δt)− 2

!ri (t)+
!ri (t −Δt)

Δt2
=
!
Fi (t) (i =1,...,N;t = 0,Δt, 2Δt,...)
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4. Computer experiments are performed to follow the time evolution of the model physical system. 

 

 
Figure.  First few pages of Newton’s Mathematical Principles of Natural Philosophy (1686). 
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• Type of mathematical models 
 

 Particle model (ordinary 
differential equations) 

Continuum model (partial 
differential equations) 

Deterministic molecular dynamics computational fluid dynamics, 
continuum mechanics 

Stochastic Monte Carlo particle simulation quantum Monte Carlo 
 

• Particle vs. continuum models: Mathematical models are either the particle type or the continuum 
type.  Particle models trace the motion of many interacting particles, an example being Newton’s 
second law of motion.  Particle-type laws are typically formulated as coupled ordinary differential 
equations. 
Continuum models deal with functions extending over the space.  For example, the dynamics of a 
quantum particle is described by a parabolic partial differential equation called the Schrödinger 
equation, 

 , (2) 

where i = ,  = 1.05´10-34 J•s is the Planck constant, and  is a complex-valued wave 
function.  The square, , of the wave function is the probability to find the particle at position 

 at time t. 

  
Figure.  (Left) A molecular-dynamics simulation consists of a collection of atoms, which exert forces to each other, depending 
on their mutual interactions and relative positions.  (Right) An example of continuum data—uniaxial stress field in a cracked 
thin plate made of gallium-arsenide material. 

• Molecular dynamics (MD): Follows Newton’s second law of motion for interacting particles. 
• Deterministic vs. stochastic simulations: Computer simulations are either deterministic or stochastic.  

Deterministic simulations usually deal with mathematical initial value problems, i.e., differential 
equations such as Eqs. (1) and (2) are integrated forward in time starting with some initial 
configuration. 
Stochastic simulations use random numbers to: 1) provide approximate solutions to large-scale 
problems where deterministic solutions are intractable (e.g., statistical mechanics in physics); or 2) 
simulate stochastic natural phenomena (e.g., stock price). 

• Monte Carlo (MC) method: A computational method that utilizes random numbers. 
  Example: Stock price. 
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Figure.  (Top) Typical fluctuation in stock price.  (Bottom) Stock portfolio trading at Quantlab Financial LLC (courtesy of Dr. 
Andrey Omeltchenko, CACS graduate). 

Application of Molecular Dynamics 
• Drug design 
• Materials design 
• Robotics 
• Computer graphics1 
• Games 

 
1One example of the use of particle systems for computer animation is found in Twister (1996), in which particle systems are 
used to simulate a tornado. 
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Figure.  (Top) A scene from movie Twister.  (Bottom) Particle-based dust visualization by Prof. Jim Chen at George Mason 
University (http://cs.gmu.edu/~jchen). 
 
History of Particle Simulations 
1944 John von Neumann was attracted to the ENIAC project (the world’s first operational electronic, 

general-purpose computer); he wrote a memo proposing a stored-program computer.  He believed: 
“Our present analytical methods seem unsuitable for the solution of the important problems arising 
in connection with nonlinear partial differential equations.  The really efficient high-speed 
computing devices may provide us with those heuristic hints which are needed in all parts of 
mathematics for genuine progress.” 

1953 The first MC simulation of a liquid by Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller 
performed on the MANIAC computer at Los Alamos National Laboratory. 

1955 Enrico Fermi, John Pasta, and Stanislaw Ulam studied the dynamics of a one-dimensional array 
of particles coupled by anharmonic springs on the MANIAC. 

1956 Dynamics of hard spheres (billiards) studied by Alder and Wainwright at the Lawrence Livermore 
National Laboratory. 

1960 Radiation damage in crystalline Cu studied with short-range repulsion and uniform attraction 
toward the center by George Vineyard’s group at the Brookhaven National Laboratory. 

1964 The first MD simulation of a liquid (864 argon atoms) using interatomic potentials by Aneesur 
Rahman at the Argonne National Laboratory using a CDC 3600 computer. 

 

 Current state-of-the-art MD simulations consist of over trillion atoms.3,4  For example, an MD program 
developed at the Collaboratory for Advanced Computing and Simulations (CACS) at the University of 
Southern California (USC) has simulated material consisting of 4.95 trillion atoms using 786,432 IBM 
BlueGene/Q processors.  For a harder problem—atomistic simulation in which interatomic forces are 
computed quantum mechanically, CACS scientists have performed 39.8 trillion electronic degrees-of-
freedom calculation. 
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History of Supercomputers 

The world’s first general-purpose electronic computer was 
ENIAC (see the figure in the right) built by Presper Eckert and 
John Mauchly at the University of Pennsylvania during World 
War II.  The computer was intended to be used for calculating 
ballistic trajectories—a kind of particle dynamics.  (Eckert was 
only 22 years old when he and Mauchly started the project with 
$half-million support from Army.)  However, rewiring this 
computer to solve a new problem required days of work by a 
number of operators. 

 The era of vector 
supercomputers started in 1976 
when Seymour Cray built Cray-1 (see the figure in the left).  Vector 
processing is a type of parallelism, which speeds up computation. 

 In late 80’s, massively parallel computers such 
as the Thinking Machines CM-2 (right) became the 
central technology for supercomputing.  The Cray 
T3E computer, for example, is a collection of 
450MHz Digital Alpha processors connected to 
form three-dimensional grids. 
 Another important development 
is the invention of the 
microprocessor—a computer on a 
single semiconductor chip.  The 

first microprocessor, Intel 4004 introduced in 1971, contained 
2300 transistors and was 0.3 by 0.4 cm in size.  In comparison, 
Pentium 4 contains 125 million transistors.  Intel had a 16-bit 
processor two years before its competitors’ more elegant 
architectures, such as Motorola 68000, and this head start led to 
the selection of 8086 as the CPU for the IBM PC in 1981.  (Andy 
Grove, the CEO of Intel, was the ’97 TIME Man of the Year.) 
 Merge of PC and supercomputer technologies:  The 
later trend in computer technology was that the PC and 
supercomputer technologies are merging.  For example, we 
acquired a Linux cluster consisting of 512 dual Intel Xeon 1.8 
GHz nodes (i.e., 1,024 processors) connected by Myricom’s 
Myrinet interconnect at Louisiana State University (LSU) in 
2002.  The performance of the $2.6 million cluster, SuperMike, 
was rated as 2.21 teraflops (1012 floating-point operations per 
second), according to the standard High Performance Linpack 
(HPL) benchmark (http://www.netlib.org/benchmark/ 

hpl), and SuperMike was ranked as the 11th fastest 
supercomputer in the world in August 2002 
(http://www.top500.org). 

 
Figure.  The 1,024-processor Xeon cluster, 
SuperMike, at LSU. 

 
Figure.  Dramatic increase of the number of 
transistors in a microprocessor. 



7 

 The current world’s fastest supercomputer is the Fugaku 
computer at RIKEN in Japan. Fugaku consists of 7.3 million 
A64FX ARM cores, and its theoretical peak performance is 514 
petaflops (1 petaflops = 1015 floating-point operations per second;5 
see the figure).  The actual measured performance of Fugaku for 
the Linpack benchmark program is 416 petaflops. 
 You can also build PC clusters by yourself.6,7  The CACS at 
the USC has a 4,096-processor PC cluster.  The Center for 
Advanced Research Computing (CARC) at the USC has a 13,440-
processor Linux cluster with 0.62 petaflops Linpack performance, which you will use in this class. 
 Beginning of the many-core parallel computing era:  Computer industry is facing a historical shift, 
in which Moore’s law due to ever increasing clock speeds has been subsumed by increasing numbers of 
“cores” per microchip.  Intel has earlier demonstrated an 80-core microchip that executed trillion 
operations per second with mere 62 W of power (http://en.wikipedia.org/wiki/ 

Teraflops_Research_Chip), and the number of cores per microchip is expected to double at each 
generation, reaching thousands in 10 years.  In addition to such many-core central processing units 
(CPUs), advanced graphics processing units (GPUs) in desktop computers will add extra multi-trillion 
operations with minimal (~ $ hundred) cost.  The many-core revolution will mark the end of the free-ride 
era (i.e., legacy software will run faster on newer chips), 
resulting in a dichotomy—subsiding speed-up of 
conventional software and exponential speed-up of 
scalable parallel-computing applications.  To develop a 
many-core CPU/GPU computing framework applied to 
broad applications, we have constructed a test bed 
consisting of a cluster of 9 Playstation3 consoles (each 
Playstation3 box containing one power processing and 8 
streaming processing units as well as a GPU) at CACS (see 
the figure). 
 

Enabling Technologies 
  Parallel Computing 
 Parallel computing technology has extended the scope of computer simulations in terms of simulated 
system size.  In order to perform parallel computer simulations efficiently, however, algorithms developed 
for serial computers must often be modified.  We will learn parallel MD algorithms in this lecture.8,9 
 Parallel computing requires decomposing the computation into subtasks and mapping them to multiple 
processors.  For MD simulations, the divide-and-conquer strategy based on spatial decomposition is 
commonly used.  The total volume of the system is divided into P subsystems of equal volume, and each 
subsystem is assigned to a node in an array of P processors (see the figure below).10  In this lecture, you 
will learn message passing interface (MPI) programming on multiple computers and thread (OpenMP) 
programming on multicore processors.  In addition, a brief overview will be given on the programming 
on Cell Broadband Engine on PlayStation3 consoles,11 GPUs using compute unified device architecture 
(CUDA),12 and prototype multicore processors such as 64-core Godson-T.13 

  
Figure.  416 petaflops Fugaku. 

 
Figure. Playstation3 cluster at CACS. 
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  Visualization 
 Impact of these grand-challenge simulations on 
parallel computers cannot be fully realized without major 
breakthroughs in scientific visualization.  The current 
practice of sequentially processing visualization data is 
highly ineffective for large-scale applications that produce 
terabytes of data.  The only viable solution is to integrate 
visualization into simulation so that they are both 
performed concurrently on multiple parallel machines and 
then to examine the results in real time in three-
dimensional immersive and interactive virtual 
environments. 

 Virtual environment such ImmersaDesk (see the figure 
below) enables direct interaction with large datasets in 
three dimensions.  Visual feedback allows us to zoom in 
on part of a simulation, change parameters, and thus guide 
the progress of a simulation in real time.  Furthermore, 
with virtual environment the observer is inside the 
simulation instead of getting a glimpse of the data from the 
outside.  These immersive and interactive features provide 
invaluable insight into the simulations.  In this lecture, we 
will learn OpenGL programming as a foundation of 
scientific visualization, as well as virtual-reality 
programming using CAVE Library.  In addition to an ImmersaDesk, the CACS has an 8' ́  14' tiled display, 
which is driven by a 26-processor Linux cluster (see the figure below). 

   
Figure.  (Left) ImmersaDesk virtual environment at the CACS showing oxidation of an Al surface.  (Center) Rendering of a 
molecular dynamics simulation on our tiled display to study hypervelocity impact damage.  (Right) A scientist immersed in an 
atomistic model of a fractured ceramic nanocomposite material, featured on the cover of journal Presence (MIT Press). 

 CACS scientists have demonstrated real-time, interactive visualization of a billion-particle dataset in 
an immersive virtual reality environment, using advanced computer-science techniques such as: 1) 
multilevel view-frustum culling; 2) probabilistic occlusion culling; and 3) parallel/distributed 
preprocessing of visualization data on a remote PC cluster.14,15 

  

 
Figure.  Spatial decomposition (2 ´ 3 ´ 1) of a porous 
silica material into 6 systems, which are mapped onto 
6 processors (P0 - P5).  Blue and red spheres represent 
silicon and oxygen atoms, respectively.  Logical 
partition boundaries between subsystems are 
represented by yellow planes.  Blue arrows represent 
flow of data by message passing between processors. 
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  Data Management 
 A serious technological gap exists between the growth in processor power and that of input/output 
(I/O) speed.  Typically, a billion-atom MD simulation produces 0.1 terabytes (TB) of data (to store atom 
types, coordinates, velocities, and stresses) per frame, which amounts to 10 TB per day if the simulation 
runs for 1,000 steps and data are saved after every 10 steps.  The I/O (including data transfer to remote 
archival storage devices) has thus become the bottleneck in large-scale simulations.  Efficient schemes to 
manage these massive data are crucial.  In this lecture, we will learn data compression approaches for the 
I/O problem.16 

 Visualization of collective motion of many atoms is a difficult task because of the high dimensionality 
(3N dimensions for N atoms) of the space in which the collective motion occurs.  A challenge is to extract 
topological defects, such as dislocations, and their activities from massive data with large thermal noises, 
especially at high temperatures.  This will require nontrivial knowledge discovery or data-mining 
processes from very large noisy data sets.17  We will learn the use of data-mining algorithms using graph 
data structures,18,19 which is at the heart of recent federal and industrial initiatives on “Big Data”.20 
  Distributed Computing 
 Often a single parallel supercomputer does not provide sufficient computing power for grand challenge 
problems.  In such a case, “metacomputing” uses multiple supercomputers connected by wide-area, high-
speed networks.  The “Grid” of geographically distributed petaflops computers and immersive/interactive 
virtual reality environments connected via high-speed networks can revolutionize/democratize science, 
by enabling hybrid simulations that integrate multiple expertise distributed globally.21  Such collaborative 
Grid computing will form the core of the new initiative on “Revolutionizing Science and Engineering 
through Cyberinfrastructure”.22 

   
Figure. (Left panel) Multiscale MD/QM simulation of the reaction of water at a crack tip in silicon (top), on a Grid of distributed 
PC clusters in Japan and the US (bottom).  (Right panel) Time chart (bottom) of an adaptive QM/MD simulation performed on 
globally distributed parallel supercomputers in the US (USC, PSC, NCSA) and Japan (AIST, Univ. of Tokyo, TITech).  The 
blue line denotes the execution of QM simulation, the red line shows the failure in the initialization phase, and the light blue 
line the failure in the simulation phase. 

 Such a multidisciplinary application is emerging at the forefront of computational sciences.  The 
multiscale simulation embeds accurate quantum mechanical (QM) calculations to handle chemical 
reactions within a molecular dynamics (MD) simulation to describe large-scale atomistic processes.  
CACS scientists have performed a preliminary MD/QM simulation on a Grid of distributed PC clusters in 
Japan and the US (see the figure below), in collaboration with Japanese scientists.23  More recently, we 
have performed a larger Grid MD/QM simulation on a Grid consisting of 6 supercomputing centers in the 
US (USC and two NSF TeraGrid nodes at the Pittsburgh Supercomputing Center and the National Center 
for Supercomputing Applications) and Japan (National Institute of Advanced Industrial Science and 
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Technology, University of Tokyo, and Tokyo Institute of Technology).  The simulation was sustained 
autonomously on ~700 processors for 2 weeks, involving in total of 150,000 CPU-hours, where the 
number of processors changed dynamically on demand and computations were migrated automatically 
according to both reservations and unexpected faults.24  A recent trend in distributed computing is 
“cloud”,25 which has gained popularity in commerce and will be covered briefly in the class. 
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