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Message Passing Interface (MPI) Programming 
 
MPI (Message Passing Interface) is a standard message passing system that enables us to write and run 
applications on parallel computers.  In 1992, MPI Forum was formed to develop a portable message 
passing system.  The MPI standard was completed in 1994.1  Now many vendors are supporting the 
standard, and there are several public domain implementations of the MPI.  An example is the MPICH 
implementation from Argonne National Laboratory.2 
 
USEFUL URL 
• Argonne National Laboratory 
 http://www.mcs.anl.gov/mpi 
 
Message Passing Programming 
• Distributed memory processes have access only to local data. 
• The sender process issues a send call, and the receiver process issues a matching receive call. 

 
 
POINT-TO-POINT MESSAGE PASSING 

• Program mpi_simple.c 
#include "mpi.h" 
#include <stdio.h> 
main(int argc, char *argv[]) { 
  MPI_Status status; 
  int myid; 
  int n; 
  MPI_Init(&argc, &argv); 
  MPI_Comm_rank(MPI_COMM_WORLD, &myid); 
  if (myid == 0) { 
    n = 777; 
    MPI_Send(&n, 1, MPI_INT, 1, 10, MPI_COMM_WORLD); 
  } 
  else { 
    MPI_Recv(&n, 1, MPI_INT, 0, 10, MPI_COMM_WORLD, &status); 
    printf("n = %d\n", n); 
  } 
  MPI_Finalize(); 
} 

• Single Program Multiple Data (SPMD) Model: Identical copies of a program running in parallel.  
Each of processes begins execution at the same point in a common code image.  The processes may each 
follow distinct flow of control.  Processes are distinguished by their process ID’s which are used for flow 
control and communication. 

 
1 Subsequently MPI1.2 and MPI2 standards were defined, see http://www.mcs.anl.gov/mpi. 
2 Using MPI, 3rd Ed. by W. Gropp, E. Lusk, and A. Skjellum (MIT Press, Cambridge, 2014). 
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Process 0 

if (myid == 0) { 
  n = 777; 
  MPI_Send(&n,...); 
} 
else { 
  MPI_Recv(&n,...); 
  printf(...); 
} 

Process 1 

if (myid == 0) { 
  n = 777; 
  MPI_Send(&n,...); 
} 
else { 
  MPI_Recv(&n,...); 
  printf(...); 
} 

MPI LIBRARY CALLS 
• All C programs which call MPI library calls must include mpi.h. 
int MPI_Init(int *pargc, char ***pargv) 
 Establishes the MPI environment.  The call to MPI_Init() is required in every MPI program and must 
be the first MPI call.  The arguments MPI_Init() are the addresses of the usual main() arguments argc 
and argv.  The MPI system removes from the argv array any command-line arguments that should be 
processed by the MPI system before returning to the user program and to decrement argc accordingly.  
(pargv is a pointer to char *argv[]). 
 For example, executing myprogram as 
 > mpirun -np 4 myprogram -mpiversion x y z 

the -np 4 option is interpreted by the mpirun program.  The -mpiversion x y z arguments are then 
passed to myprogram.  The MPI_Init() call strips the -mpiversion argument so that after the call to 
MPI_Init() in the user program, the user program sees command arguments as if it has been called as 
 myprogram x y z 
MPI_Init() returns the error condition.  It returns MPI_SUCCESS (defined in mpi.h) if successful.  Error 
codes are MPI_ERR_xxx where xxx = TYPE (for invalid data type argument), etc. 

• Dynamic process group: If we start an MPI application as mpirun -np 4 myprogram, it will create 
4 processes.  MPI allows us to define a subset of these processes in run time using MPI library calls.  
Suppose a group consists of n processes.  Processes in the group are numbered sequentially from 0 to 
n-1.  This process ID in a group is called rank.  Dynamic groups are useful, for example, when we 
want to broadcast a message only to a subset of the total processes. 

• Context: In one application, we can create multiple groups with overlapping processes.  Messages in 
different groups are never mixed.  They are given by the MPI system unique IDs called context. 

• Communicator: When creating a new group, a user associates it with a communicator variable in 
order to refer to the group later.  A communicator is of type MPI_Comm (defined in mpi.h).  
MPI_COMM_WORLD is a predefined communicator referring to the entire processes. 

int MPI_Comm_rank(MPI_Comm comm, int *rank) 
 Obtain the node ID rank of the calling process in the range between 0 and n-1 where n is the total 
number of processes in the group referred to by communicator comm. 
int MPI_Finalize() 
 This call must be made by every process in an MPI computation.  It terminates the MPI environment; 
no MPI calls may be made by a process after its call to MPI_Finalize().  It returns the error condition. 
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int MPI_Send(void *buffer, int count, MPI_Datatype datatype,  
             int destination, int tag, MPI_Comm communicator) 
 Synchronous, (blocking) send of a message.  It is safe to reuse the buffer when MPI_Send() returns 
(synchronous) (see p. 6).  It may block until the message is received by the destination.  The MPI standard 
leaves the decision to each implementation.  However, correct programs are such that work even if 
MPI_Send() always blocks.  It returns the error condition, MPI_SUCCESS if successful. 

 buffer:    refers to the buffer that contains the message to be sent.  The buffer may be  
       any legal type. 
 count:     a positive integer that specifies the number of elements to be sent. 
 datatype:   standard datatypes are MPI_INT, MPI_FLOAT, MPI_DOUBLE, MPI_CHAR, etc. 
       User defined datatype is also supported. 
 destination:  a process ID (rank) where the message is to be sent. 
 tag:     an integer given by a user that identifies the label of the message. 
 communicator: communicator to specify the group and context where the massage is to be sent. 
int MPI_Recv(void *buffer, int count, MPI_Datatype datatype, int source,  
             int tag, MPI_Comm communicator, MPI_Status *status) 
 Synchronous, blocking receive of a message.  Receive a message and wait for the receive operation 
to complete before proceeding.  When the message is received, it is stored in buffer and the calling process 
resumes execution. 

 buffer:    refers to the buffer where the message is to be stored.  The buffer may be any  
       legal type. 
 count:     a positive integer that specifies the number of elements to be received. 
 datatype:   standard datatypes are MPI_INT, MPI_FLOAT, MPI_DOUBLE, MPI_CHAR, etc. 
       User defined datatype is also supported. 
 source:    a process ID (rank) where the message is to be received from. 
       MPI_ANY_SOURCE is a wildcard to accept a message from any source. 
 tag:     an integer given by a user that identifies the label of the message. 
       MPI_ANY_TAG is a wildcard to accept a message with any tag. 
 communicator:  communicator to specify the group and context where the massage is to be  
       received from. 
 status:    the status is filled in with information about the received message.  For  
       example, status.MPI_SOURCE is the  source process rank 
          status.MPI_TAG    tag of the received message. 
• Datatype Constructors: Define a user-defined datatype.  Examples are, 
 int MPI_Type_contiguous(int count, MPI_Datatype oldtype,  
                         MPI_Datatype *newtype) 
  Defines a new datatype that occupies contiguous memory cells consisting of count data elements 

of oldtype.   
 int MPI_Type_struct(int count, int *array_of_blocklengths, int  
                     *array_of_displacements, MPI_Datatype  
                     *array_of_types, MPI_Datatype *newtype) 
  Defines a new datatype that consists of blocks of memory cells occupied by different datatypes.  

The offset of each block is specified in bytes and stored in array_of_displacements[].   
 
COMMUNICATOR 
PROCESS GROUP 

 Sometimes we want to perform global operations in a selected subset of all the processes. 
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• Example: mail faculty 

 
 In MPI, user programs can define new process groups at run time.  In each group, member processes 
are sequentially numbered by rank from 0 to n-1 where n is the number of processes in the group. 

CONTEXT 
 Sometimes we do not want to mix two kinds of messages even in the same process group.  This is true 
especially when we develop a library function.  Messages sent in a library function must not be received 
outside that function. 
 main() { 
   ... 
   library_function(); 
   ... 
   crecv(10,...); 
   ... 
 } 

 library_function() { 
   ... 
   csend(10,...); 
   ... 
 } 

 In MPI, context is implemented as a message ID allocated by the system.  Context is a kind of message 
tag allocated by the system at run time in response to a user request.  Message exchange occurs only when 
both user-defined tags as well as system-defined contexts match. 

COMMUNICATOR 
 The notions of group and context are combined in a single object called a communicator.  Most 
communications are specified in terms of rank of the process in the group identified with the given 
communicator. 

• Example:  mpi_comm.c 
#include "mpi.h" 
#include <stdio.h> 
#define N 64 
main(int argc, char *argv[]) { 
  MPI_Comm world, workers; 
  MPI_Group world_group, worker_group; 
  int myid, nprocs; 
  int server, n = -1, ranks[1]; 
  MPI_Init(&argc, &argv); 
  world = MPI_COMM_WORLD; 
  MPI_Comm_rank(world, &myid); 
  MPI_Comm_size(world, &nprocs); 
  server = nprocs-1; 
  MPI_Comm_group(world, &world_group); 
  ranks[0] = server; 
  MPI_Group_excl(world_group, 1, ranks, &worker_group); 
  MPI_Comm_create(world, worker_group, &workers); 
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  MPI_Group_free(&worker_group); 
  if (myid != server) { 
    MPI_Allreduce(&myid, &n, 1, MPI_INT, MPI_SUM, workers); 
    MPI_Comm_free(&workers); 
  } 
  printf("process %2d: n = %6d\n", myid, n); 
  MPI_Finalize(); 
} 

(For MPI_Allreduce(), see p. 9.) 
> mpirun -np 4 mpi_comm 
process  0: n =      3 
process  1: n =      3 
process  2: n =      3 
process  3: n =     -1 

MPI LIBRARY CALLS FOR MANAGING COMMUNICATORS 
MPI_Comm is a data type to specify communicators. 

MPI_Group is a data type to specify groups. 
MPI_Comm_size(MPI_Comm communicator, int *nprocs) 
 Returns the number of processes nprocs in the group identified with communicator. 
MPI_Comm_group(MPI_Comm communicator, MPI_Group *group) 
 Extracts the group information for the given communicator.  The return value is the handle to the 
group of the communicator.   
MPI_Group_excl(MPI_Group old_group, int n_excl, int *ranks,  
               MPI_Group *sub_group) 
 Excludes n_excl members specified by ranks stored in ranks[] array from the group old_group, and 
then create sub_group with the smaller number of member processes.  Excluded are a set of ranks, 
{ranks[0], ..., ranks[n_excl-1]}.  This is one of the group constructors. 
MPI_Comm_create(MPI_Comm old_comm, MPI_Group sub_group,  
                MPI_Comm *new_comm) 
 Creates a new communicator new_comm consisting of sub_group of the parent communicator 
old_comm.  This is a communicator constructor.   
MPI_Group_free(MPI_Group *group) 
 Group destructor for deallocation; frees MPI system resources for group. 
MPI_Comm_free(MPI_Comm *communicator) 
 Communicator destructor; frees MPI system resources associated with communicator. 
Group Constructors 
int MPI_Group_incl(MPI_Group old_group, int n, int *ranks,  
                   MPI_Group *sub_group) 
 Includes n members specified by ranks stored in ranks[] array from the group old_group, and then 
create sub_group with the smaller number of member processes. 
int MPI_Group_union(MPI_Group group1, MPI_Group group2,  
                    MPI_Group *new_group) 
int MPI_Group_intersection(MPI_Group group1, MPI_Group group2,  
                           MPI_Group *new_group) 
int MPI_Group_difference(MPI_Group group1, MPI_Group group2,  
                         MPI_Group *new_group) 
 These functions apply set operations (union, intersection, and difference) to group1 and group2 to 
create a new_group.  For example difference consists of all elements in group1 not in group2. 
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 (Example) 
 group1 = {a, b, c, d}, group2 = {d, a, e} 
 group1 È group2 = {a, b, c, d, e}    (union) 
 group1 Ç group2 = {a, d}       (intersection) 
 group1 \ group2 = {b, c}       (difference) 
 
Message Passing Modes 
(BY DR. WILLIAM SAPHIR OF NASA AMES RESEARCH CENTER) 
• Non-blocking: A routine is non-blocking if it is guaranteed to complete regardless of external events 

(e.g., the other processors). 

 Example: A send is non-blocking if it is guaranteed to return whether or not there is a matching receive. 
• Blocking: A routine is blocking if its completion (return of control to the calling routine) may depend 

on an external event (an event that is outside the control of the routine itself). 
 Example: A send is blocking if it does not return until there is a matching receive. 
• Asynchronous: A routine is asynchronous if it initiates an operation that happens logically outside 

the flow of control of the calling process.  The important practical distinction is whether the program 
may be required to check for completion of the operation before proceeding. 

• Synchronous: A routine is synchronous if its operation happens within the flow of control of the 
calling process. 

 Note that there is no agreement on terminology. 
 Example: pvm_send() in PVM and csend() in NX have almost exactly the same semantics but the 

documentation says differently. 
 pvm_send() 
 “The pvm_send routine is asynchronous.  Computation on the sending processor resumes as soon as 

the message is safely on its way to the receiving processor.  This is in contrast to synchronous 
communication, during which computation on the sending processor halts until the matching receive 
is executed by the receiving processor.” 

 csend() 
 “This is a synchronous system call.  The calling process waits (blocks) until the send completes.  

Completion of the send does not mean that the message was received, only that the message was sent 
and that the send buffer can be reused.” 

 We will call both calls nonblocking, synchronous. 

 Why Use Asynchronous Message Passing? 
 Answer: To overlap communication with computation. 

SYNCHRONOUS MESSAGE PASSING 
MPI_Send() 
Semantics: (blocking), synchronous 
 • Safe to modify original data immediately after the MPI_Send() call. 

• Depending on implementation, it may return whether or not a matching receive has been posted, 
or it may block (especially if no buffer space available).  Programmer should assume that it is 
blocking. 
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Implementation 

• May or may not buffer messages at source and/or destination.  (cf. The following is the Intel NX 
implementation to demonstrate the concept of buffering.) 

 • If a receive has been posted, it delivers the message directly to the user buffer. 
 • If not, it buffers the message in system space on destination node. 
 • Does not return until message has been transferred out of the sending user buffer. 
MPI_Recv() 
Semantics: blocking, synchronous 
 • Blocks for message to arrive. 
 • Safe to use data on return. 
Implementation 
 • If a matching message has been buffered, copies messages into user space and returns. 
 • Posts receive for data. 
 • Waits for data to arrive. 
 • Does not return until message has been transferred into the receiving user buffer. 

ASYNCHRONOUS MESSAGE PASSING 
MPI_Isend() 
Semantics: non-blocking, asynchronous 
 • Returns whether or not a matching receive has been posted. 
 • Not safe to modify original data immediately (use MPI_Wait() system call). 

 
Implementation 

• May or may not buffer.  (cf. The following is the Intel NX implementation to demonstrate the 
concept of buffering.) 

 • If a receive has been posted, it delivers the message directly to the user buffer. 
 • If not, it buffers the message in system space on destination node. 
 • Returns “immediately” before message has been transferred out of the sending user buffer. 
MPI_Irecv() 
Semantics: non-blocking, asynchronous 
 • Does not block for message to arrive. 
 • Cannot use data before checking for completion with MPI_Wait(). 

Implementation (Intel NX) 
 • If a matching message has arrived (and is buffered), copies messages into user space and returns. 
 • Posts receive and returns. 
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 Asynchronous communication enables the overlap of computation & communication.  (cf. An 
alternative approach is multi-threading integrated with the communication subsystem.) 
int MPI_Irecv(void *buffer, int count, MPI_Datatype datatype,  
              int source, int tag, MPI_Comm comm, MPI_Request *request) 
 Posts an asynchronous receive that initiates a receipt of a message.  It immediately returns a handle 
(an ID given by the system) which will be used by MPI_Wait(). 
 buffer:  refers to the buffer where the received message will be stored. 
 count:  the number of elements in the message buffer. 
 datatype: datatype of each receive buffer entry. 
 source:  rank of source. 
 tag:   an integer given by a user that identifies the label of the message. 
 comm:   communicator. 
 request:  request handle. 
int MPI_Wait(MPI_Request *request, MPI_Status *status) 
 Waits for completion of an asynchronous send or receive operation.  When the message is complete, 
it returns and the associated message buffer is available for reuse, in the case of a send operation, or the 
buffer contains valid data, in the case of receive.   
 request:  request handle. 
 status:  received message status object. 

• Program irecv_mpi.c 
#include "mpi.h" 
#include <stdio.h> 
#define N 1000 
main(int argc, char *argv[]) { 
  MPI_Status status; 
  MPI_Request request; 
  int send_buf[N], recv_buf[N]; 
  int send_sum = 0, recv_sum = 0; 
  long myid, left, Nnode, msg_id, i; 
  MPI_Init(&argc, &argv); 
  MPI_Comm_rank(MPI_COMM_WORLD, &myid); 
  MPI_Comm_size(MPI_COMM_WORLD, &Nnode); 
  left  = (myid + Nnode - 1) % Nnode; 
  for (i=0; i<N; i++) send_buf[i] = myid*N + i; 
  /* Post a receive */ 
  MPI_Irecv(recv_buf, N, MPI_INT, MPI_ANY_SOURCE, 777, MPI_COMM_WORLD,  
            &request); 
  /* Perform tasks that don't use recv_buf */ 
  MPI_Send(send_buf, N, MPI_INT, left, 777, MPI_COMM_WORLD); 
  for (i=0; i<N; i++) send_sum += send_buf[i]; 
  /* Complete the receive */ 
  MPI_Wait(&request, &status); 
  /* Now it's safe to use recv_buf */ 
  for (i=0; i<N; i++) recv_sum += recv_buf[i]; 
  printf("Node %d: Send %d Recv %d\n", myid, send_sum, recv_sum); 
  MPI_Finalize(); 
} 

> mpirun -np 3 irecv_mpi 
Node 0: Send  499500 Recv 1499500 
Node 1: Send 1499500 Recv 2499500 
Node 2: Send 2499500 Recv  499500 

Note that 0+1+…+999 = (0+999)´1000/2 = 499500; 1000+1001+…1999 = (1000+1999)´1000/2 = 
1499500; 2000+2001+…2999 = (2000+2999)´1000/2 = 2499500. 
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Global Operations 
BARRIER SYNCHRONIZATION 
• Barrier: A point in the program where parallel processes wait for each other.  After all the processes 

have reached the barrier statement, they are all released to continue execution. 
  <A>; 
  barrier(); 
  <B>; 

MPI_Barrier(MPI_Comm communicator) 
 Waits until all other nodes in the group have called MPI_Barrier() before continuing to execute the 
next line. 

 
ALL-TO-ALL REDUCTION 
• All-to-all reduction: Each process contributes a partial value to obtain the global summation.  In the 

end, all the processes will receive the calculated summation.  It is also called multiple aggregation. 
• Hypercube algorithm: Communication requirements of a reduction operation can be structured as a 

series of pairwise exchanges, one with each neighbor in a hypercube (buttefly) structure.  This 
structure allows a computation requiring all-to-all communication among p processes to be performed 
in log2p steps. 

 
     a000 + a001 + a010 + a011 + a100 + a101 + a110 + a111 
  =  ((a000 + a001) + (a010 + a011)) 
  +  ((a100 + a101) + (a110 + a111)) 

 At each level l, a process exchanges messages with a partner whose node ID differs only at the l-th bit 
position. 

MPI_Allreduce(void *sendbuf, void *recvbuf, int count,  
              MPI_Datatype datatype, MPI_Op op, MPI_Comm communicator) 
 All-to-all reduction operation applied to data pointed to by sendbuf.  The result is returned to the 
address recvbuf in all the processes in the group specified by the communicator.  Valid operations for 
op are: MPI_SUM, MPI_MIN, MPI_MAX, etc. 
Other MPI Library Calls 
double MPI_Wtime() 
 Returns the elapsed wall-clock time in seconds since some time in the past.  The “time in the past” is 
guaranteed not to change during the lifetime of the process. 
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How to Run an MPI Application on the CARC Cluster at USC 
(This part of the lecture is machine specific and may be supplemented by an appropriate documentation 
on the computer to be used.) 
Center for Advanced Research Computing (CARC) at the University of Southern California (USC) hosts 
several computing platforms.  One of the computing clusters, named Discovery, is a distributed memory 
system.  The login nodes, discovery1.usc.edu and discovery2.usc.edu (a generic name for both is 
discovery.usc.edu), are available for user logins in order to edit, compile and submit batch jobs to the 
compute nodes.  Submitted jobs will be scheduled to run on ~500 compute nodes by Slurm (Simple Linux 
Utility for Resource Management) job scheduling software; see the figure below. 

 
URL 
• USC CARC Computing Resource 
 https://www.carc.usc.edu/user-guides/hpc-systems/discovery/resource-overview-discovery 

Compilation 
1. Log in to discovery.usc.edu using the secure shell. 
 > ssh <login_id>@discovery.usc.edu 

2. To use the MPI library for message passing, append the following lines in the .bahshrc file in your 
home directory (if you are using the Bash shell interface). 

 module purge 
 module load usc 

3. Put your MPI source code, e.g., mpi_simple.c, in your directory. 
4. Create a file named makefile, the content of which is the following, to compile mpi_simple.c: 
 mpi_simple: mpi_simple.c 
 [TAB]mpicc -O -o mpi_simple mpi_simple.c 

5. Compile the application program: The following will create an executable, mpi_simple. 
 discovery1: make mpi_simple 

Execution 
1. Create a script file (named, e.g., mpi_simple.sl) to submit an MPI job using the Slurm (Simple Linux 

Utility for Resource Management), the content of which is (note the executable, mpi_simple, needs 
be placed in the same directory where you submit the script file): 
#!/bin/bash          // Interpret the following with the bash command interpreter 
#SBATCH --nodes=1        // Request 1 node 
#SBATCH --ntasks-per-node=2    // Request 2 processors per node 
#SBATCH --time=00:00:10      // Maximum wall-clock time for the job is 10 seconds 
#SBATCH --output=mpi_simple.out   // Standard output will be returned in file mpi_simple.out 
#SBATCH -A anakano_429      // Charge the computation to CSCI 596 class account 
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mpirun -n $SLURM_NTASKS ./mpi_simple // Run the job on 2 (= 1 ´ 2) processors allocated by Slurm 

2. Submit a Slurm job: 
discovery1: sbatch mpi_simple.sl 

Submitted batch job 63695     // Slurm has given the job ID 63695 

• You can check the status of your Slurm job using the squeue command. 
discovery1: squeue -u <login_id> 
JOBID PARTITION        NAME     USER ST       TIME  NODES  NODELIST(REASON) 
63695      main  mpi_simple  anakano PD       0:00      1  (Resources) 

 After the job is completed, you can see the result (standard output and error if any) in the file, 
mpi_simple.out, in the working directory specified in your script file. 
discovery1: more mpi_simple.out 
n = 777 

• You can kill a Slurm job using the scancel command, specifying its Slurm job ID. 
discovery1: scancel 63695 

Further Information 
For further information about running jobs on Discovery, please see: 
https://www.carc.usc.edu/user-guides/hpc-systems/discovery/getting-started-discovery 

 


