Advanced Topics in Parallel Molecular Dynamics

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations Department of Computer Science Department of Physics & Astronomy Department of Quantitative & Computational Biology University of Southern California

Email: anakano@usc.edu

cf. https://aiichironakano.github.io/cs653.html

Load Balancing

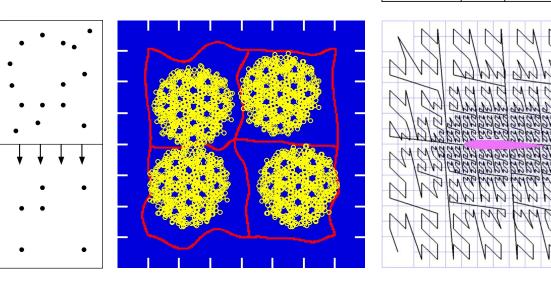
Aiichiro Nakano

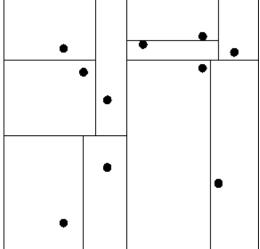
Collaboratory for Advanced Computing & Simulations Department of Computer Science Department of Physics & Astronomy Department of Quantitative & Computational Biology University of Southern California

Email: anakano@usc.edu

Load Balancing

- **Goal:** Keep all processors equally busy while minimizing interprocessor communication for irregular parallel computations
- Issues:
 - Spatial data vs. generic graph
 - Static vs. adaptive
 - Incremental vs. non-incremental
- Load-balancing schemes:
 - Recursive bisection
 - Spectral method
 - Spacefilling curve
 - Curved space
 - Load diffusion

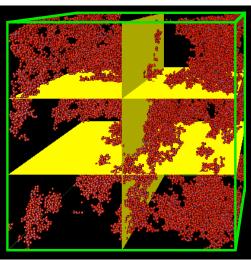




Data Locality in Parallelization

Challenge: Load balancing for irregular data structures

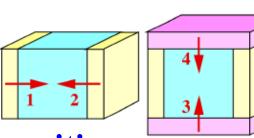
Irregular data-structures/ processor-speed

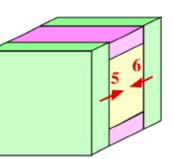


Parallel computer

Optimization problem:

- Minimize the load-imbalance cost
- Minimize the communication cost





- Topology-preserving spatial decomposition
 - → structured 6-step message passing minimizes latency

$$\begin{split} E &= t_{\text{comp}} \Big(\max_{p} |\{i \mid \mathbf{r}_{i} \in p\}| \Big) + t_{\text{comm}} \Big(\max_{p} |\{i \mid \|\mathbf{r}_{i} - \partial p\| < r_{c}\}| \Big) \\ &+ t_{\text{latency}} \Big(\max_{p} \Big[N_{\text{message}}(p) \Big] \Big) \end{split}$$

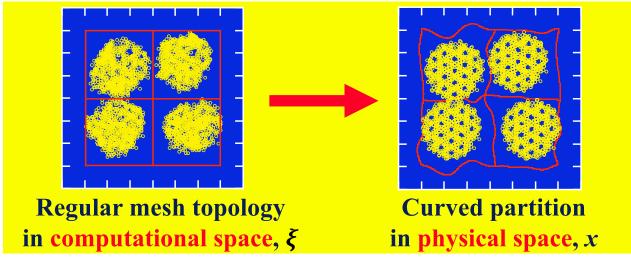
Computational-Space Decomposition

Topology-preserving "computational-space" decomposition in curved space (*cf.* **general relativity)**

> Curvilinear coordinate transformation $\xi = x + u(x)$

Particle-processor mapping: regular 3D mesh topology

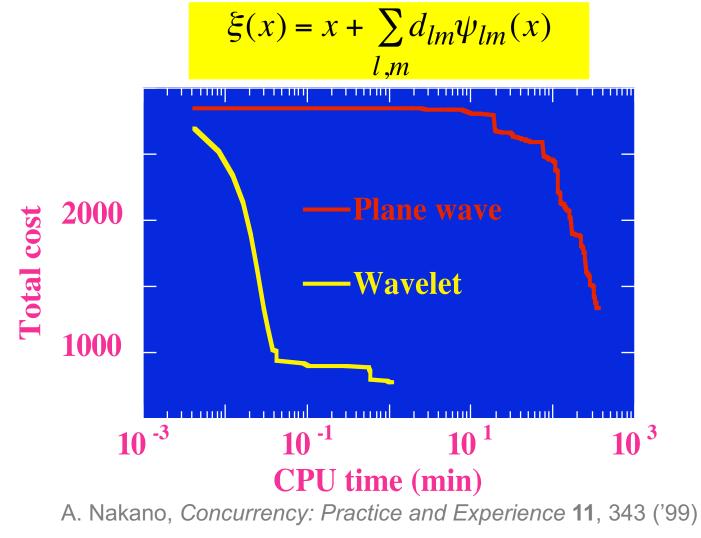
$$\begin{cases} p(\xi_i) = p_x(\xi_{ix})P_yP_z + p_y(\xi_{iy})P_z + p_z(\xi_{iz}) \\ p_\alpha(\xi_{i\alpha}) = \lfloor \xi_{i\alpha}P_\alpha/L_\alpha \rfloor & (\alpha = x, y, z) \end{cases}$$



A. Nakano & T. J. Campbell, Parallel Comput. 23, 1461 ('97)

Wavelet-based Adaptive Load Balancing

- Simulated annealing to minimize the load-imbalance & communication costs, *E*[ξ(x)]
- Wavelet representation speeds up the optimization

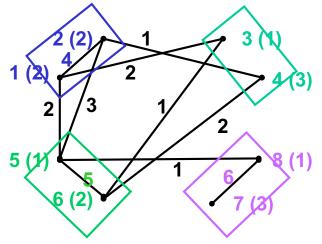


Load Balancing as Graph Partitioning

- Need: Decompose tasks without spatial indices
- Graph partitioning: Given a graph $G = (N, E, W_N, W_E)$
 - -N: node set = { $j \mid tasks$ }
 - W_N : node weights = { $w_N(j)$: task costs}
 - *E*: edge set = $\{(j,k) \mid \text{messages from } j \text{ to } k\}$
 - W_E : edge weights = { $w_E(j,k)$: message sizes}

choose a partition $N = N_1 \cup N_2 \cup \ldots \cup N_P$ to minimize

- $-\max_{p}\left\{\sum_{j\in Np}w_{N}(j)\right\}$
- $-\max_{(p,q)}\{\sum_{j\in Np,k\in Nq}w_E(j,k)\}$
- Graph bisection: Special case of $N = N_1 \cup N_2^{\varsigma}$
- Choosing optimal partitioning is known to be NP-complete → need heuristics

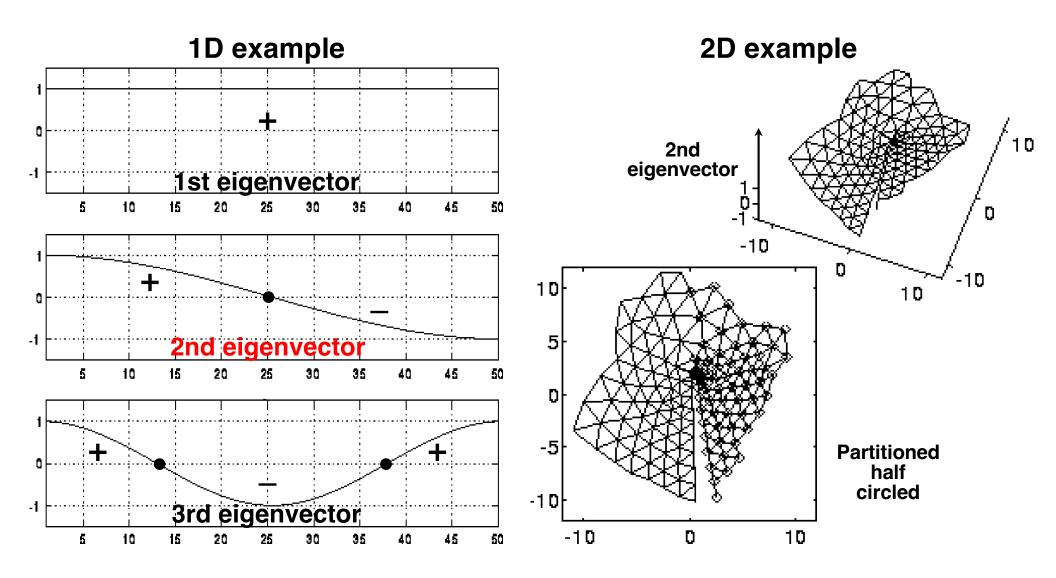


Prof. James Demmel (UC Berkeley)

58 cut edges

Spectral Bisection: Motivation

- 1. Graph as point masses connected via harmonic springs
- 2. The node of the eigenvector of the Hessian matrix, $\partial^2/\partial x^2$, corresponding to the 2nd smallest eigenvalue separates the graph into 2



Spectral Bisection

Laplacian matrix:

L(G) of a graph G(N,E) is an |N| by |N| symmetric matrix:

- L(G)(i,i) = degree of node i (number of incident edges)
- L(G)(i,j) = -1 if $i \neq j$ and there is an edge (i,j)
- L(G)(i,j) = 0 otherwise

Theorems:

1. The eigenvalues of L(G) are nonnegative: $\lambda_1 = 0 \le \lambda_2 \le \cdots \le \lambda_N$

2. $\lambda_2(L(G)) \neq 0$ if and only if G is connected

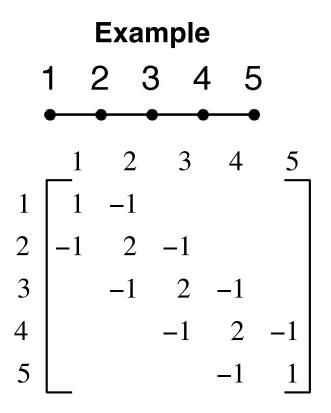
Spectral bisection algorithm:

1. Compute eigenvector v_2 corresponding to $\lambda_2(L(G))$

2. For each node *i* of *G*

a. if $v_2(i) < 0$, put node *i* in partition N_-

b. else put node *i* in partition N_+



$O(N) \lambda_2$ Computation

Lanczos algorithm:

- Given an *N*×*N* symmetric matrix A (*e.g.*, L(*G*)), compute a *K*×*K* "approximation" T by performing *K* matrix-vector products, where *K* ≪ *N*
- Approximate A's eigenvalues & eigenvectors using T's

```
Choose an arbitrary starting vector r

b(0) = ||r||

j=0

repeat

j=j+1

q(j) = r/b(j-1)

r = A*q(j)

r = r - b(j-1)*v(j-1)

a(j) = v(j)^{T} * r

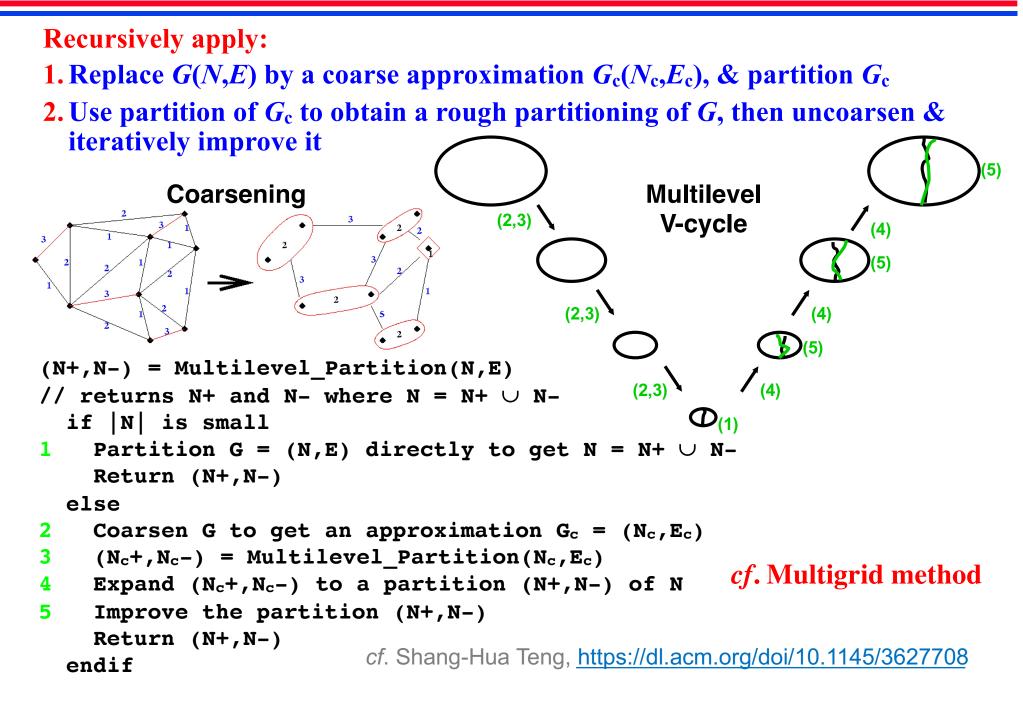
r = r - a(j)*v(j)

b(j) = ||r||

until convergence

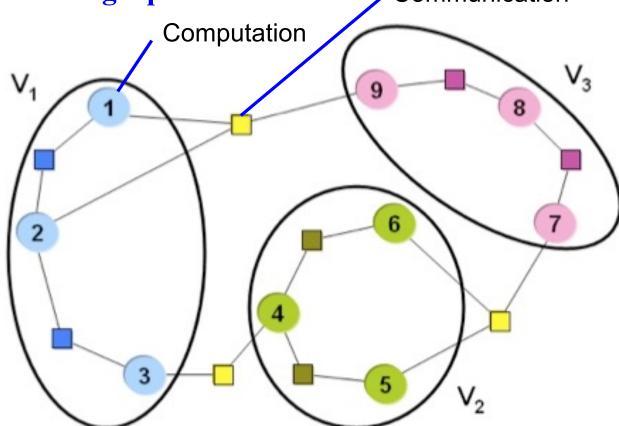
T = \begin{bmatrix} a_1 & b_1 & & & \\ b_1 & a_2 & b_2 & & \\ & \ddots & \ddots & \ddots & \\ & & b_{K-2} & a_{K-1} & b_{K-1} \\ & & & & b_{K-1} & a_K \end{bmatrix}
```

Multilevel Partitioning



Hypergraph-based Load Balancing

- **1.** Hypergraph = ({node}, {hyperedge = a group of nodes})
- 2. More expressive power for computation-communication relation compared with graphs
 Communication



U. V. Catalyurek *et al.*, "Hypergraph-based dynamic load balancing for adaptive scientific computations," in *Proc. IPDPS* (IEEE, '07)

M. Kunaseth *et al.*, "A scalable parallel algorithm for dynamic range-limited *n*-tuple computation in many-body molecular dynamics simulation," in *Proc. SC* (ACM/IEEE, '13)

Hybrid Decomposition

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations Department of Computer Science Department of Physics & Astronomy Quantitative & Computational Biology University of Southern California

Email: anakano@usc.edu

Who does what?

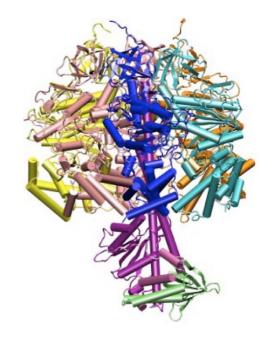
Fine-Grained Parallel MD

Pathways to a Protein Folding Intermediate Observed in a 1-Microsecond Simulation in Aqueous Solution

Yong Duan and Peter A. Kollman*

An implementation of classical molecular dynamics on parallel computers of increased efficiency has enabled a simulation of protein folding with explicit representation of water for 1 microsecond, about two orders of magnitude longer than the longest simulation of a protein in water reported to date. Starting with an unfolded state of villin headpiece subdomain, hydrophobic collapse and helix formation occur in an initial phase, followed by conformational readjustments. A marginally stable state, which has a lifetime of about 150 nanoseconds, a favorable solvation free energy, and shows significant resemblance to the native structure, is observed; two pathways to this state have been found.

Science 282, 740 ('98)



Processors		Time/step		Speedup		GFLOPS	
Total	Per Node	MPI	Elan	MPI	Elan	MPI	Elan
1	1	$28.08\mathrm{s}$	$28.08\mathrm{s}$	1	1	0.480	0.480
128	4	$248.3\mathrm{ms}$	$234.6\mathrm{ms}$	113	119	54	57
256	4	$135.2\mathrm{ms}$	$121.9\mathrm{ms}$	207	230	99	110
512	4	$65.8\mathrm{ms}$	$63.8\mathrm{ms}$	426	440	204	211
510	3	$65.7\mathrm{ms}$	$63.0\mathrm{ms}$	427	445	205	213
1024	4	$41.9\mathrm{ms}$	$36.1\mathrm{ms}$	670	778	322	373
1023	3	$35.1\mathrm{ms}$	$33.9\mathrm{ms}$	799	829	383	397
1536	4	$35.4\mathrm{ms}$	$32.9\mathrm{ms}$	792	854	380	410
1536	3	$26.7\mathrm{ms}$	$24.7\mathrm{ms}$	1050	1137	504	545
2048	4	$31.8\mathrm{ms}$	$25.9\mathrm{ms}$	883	1083	423	520
1800	3	$25.8\mathrm{ms}$	$22.3\mathrm{ms}$	1087	1261	521	605
2250	3	$19.7\mathrm{ms}$	$18.4\mathrm{ms}$	1425	1527	684	733
2400	4	$32.4\mathrm{ms}$	$27.2\mathrm{ms}$	866	1032	416	495
2800	4	$32.3\mathrm{ms}$	$32.1\mathrm{ms}$	869	873	417	419
3000	4	$32.5\mathrm{ms}$	$28.8\mathrm{ms}$	862	973	414	467

J.C. Phillips, G. Zheng, S. Kumar, & L.V. Kale, in *Proc. of IEEE/ACM SC2002*

Table 1: NAMD performance on 327K atom ATPase benchmark system with and multiple timestepping with PME every four steps for Charm++ based on MPI and Elan.

Force Decomposition for Parallel MD

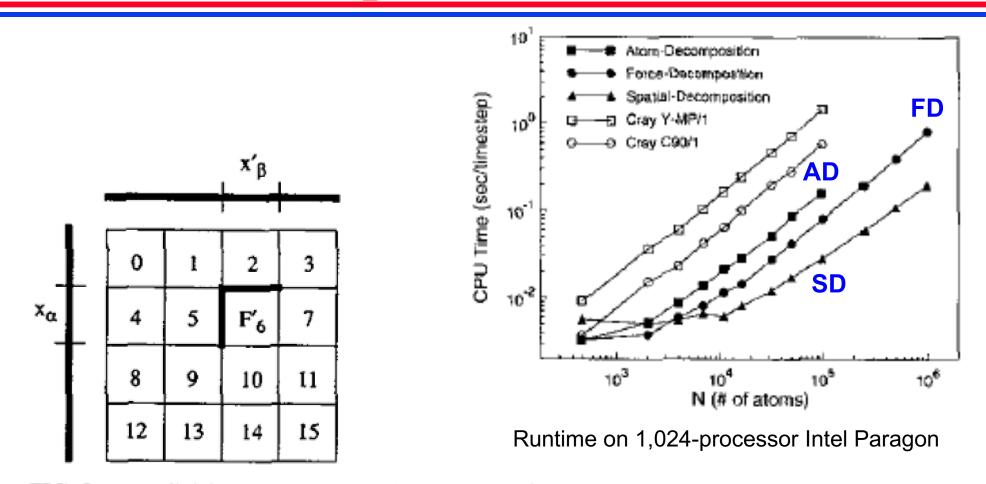
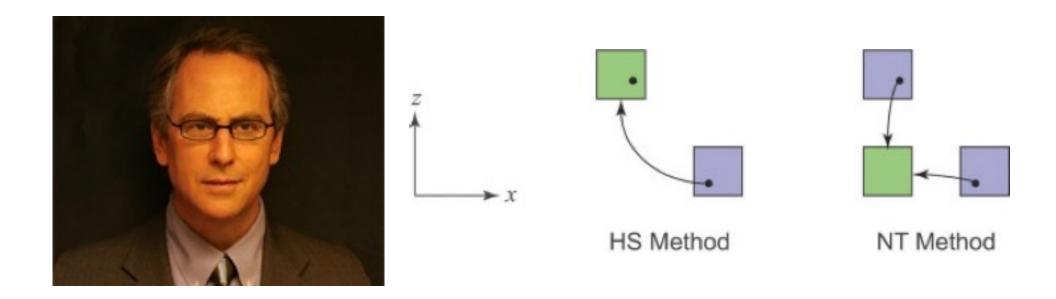


FIG. 5. The division of the permuted force matrix F' among 16 processors in the force-decomposition algorithm. Processor P_b is assigned a sub-block F'_b of size N/\sqrt{P} by N/\sqrt{P} . To compute its matrix elements it must know the corresponding N/\sqrt{P} -length pieces x_{α} and x'_{β} of the position vector x and permuted position vector x'. S. Plimpton, J. Comput. Phys. 117, 1 ('95)

https://www.lammps.org/cite.html

Neutral Territory Decomposition

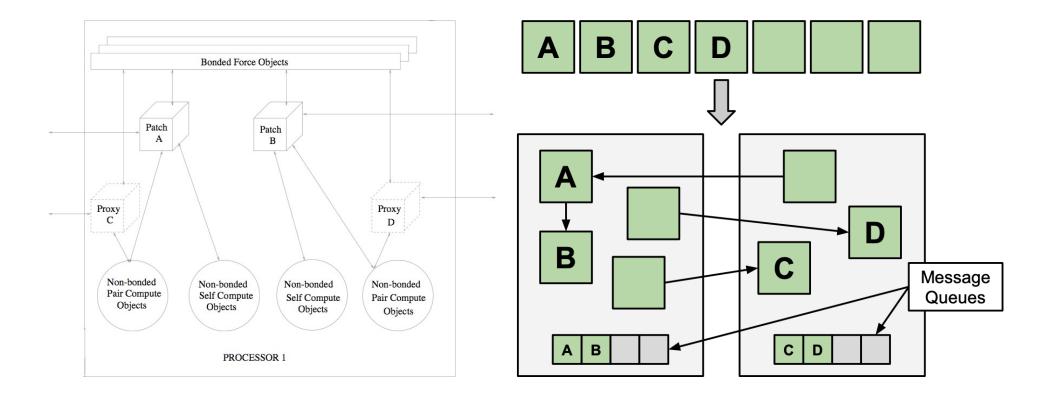
D. E. Shaw, "A fast, scalable method for the parallel evaluation of distance-limited pairwise particle interactions," *J. Comput. Chem.* **26**, 1318 ('05)



cf. Lecture note on "Shaw's NT algorithm"

Hybrid Spatial+Force Decomposition

- Spatial decomposition of patches (localized spatial regions & atoms within)
- Inter-patch force computation objects assigned to any processor
- Message-driven object execution: computation-communication overlap



Kale *et al.*, *J. Comput. Phys.* **151**, 283 ('99); Phillips *et al.*, *SC02* (IEEE/ACM); Acun *et al.*, *SC14* (IEEE/ACM), Phillips *et al.*, *J. Chem. Phys.* 153, 044130 ('20)