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Load Balancing
• Goal: Keep all processors equally busy while minimizing inter-

processor communication for irregular parallel computations 
• Issues:
 - Spatial data vs. generic graph
 - Static vs. adaptive
 - Incremental vs. non-incremental
• Load-balancing schemes:
 - Recursive bisection
 - Spectral method
 - Spacefilling curve
 - Curved space
 - Load diffusion



Data Locality in Parallelization
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Challenge: Load balancing for irregular data structures

Optimization problem:
• Minimize the load-imbalance cost
• Minimize the communication cost
• Topology-preserving spatial decomposition 
 → structured 6-step message passing minimizes latency



Computational-Space Decomposition
Topology-preserving “computational-space”

decomposition in curved space (cf. general relativity)
Curvilinear coordinate transformation

𝝃 = x + u(x)

Regular mesh topology 
in computational space, 𝝃

Curved partition 
in physical space, x

Particle-processor mapping: regular 3D mesh topology

A. Nakano & T. J. Campbell, Parallel Comput. 23, 1461 (’97)



Wavelet-based Adaptive Load Balancing
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• Simulated annealing to minimize the load-imbalance 
& communication costs, E[𝝃(x)]

• Wavelet representation speeds up the optimization 

A. Nakano, Concurrency: Practice and Experience 11, 343 (’99)



Load Balancing as Graph Partitioning

Prof. James Demmel (UC Berkeley)

• Need: Decompose tasks without spatial indices
• Graph partitioning: Given a graph G = (N, E, WN, WE)
 - N: node set = {j | tasks}
 - WN: node weights = {wN(j): task costs} 
 - E: edge set = {(j,k) | messages from j to k}
 - WE: edge weights = {wE(j,k): message sizes} 
 choose a partition N = N1 È N2 È … È NP to minimize
 - maxp{åjÎNpwN(j)}
 - max(p,q){åjÎNp,kÎNqwE(j,k)}
• Graph bisection: Special case of N = N1 È N2
•  Choosing optimal partitioning is known 
 to be NP-complete → need heuristics
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Spectral Bisection: Motivation
1. Graph as point masses connected via harmonic springs
2. The node of the eigenvector of the Hessian matrix, 𝝏𝟐/𝝏𝐱𝟐, corresponding 

to the 2nd smallest eigenvalue separates the graph into 2 
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Spectral Bisection
Laplacian matrix:
  L(G) of a graph G(N,E) is an |N| by |N| symmetric matrix:
 - L(G)(i,i) = degree of node i (number of incident edges)
 - L(G)(i,j) = -1 if i ¹ j and there is an edge (i,j)
 - L(G)(i,j) = 0 otherwise

Theorems:
1. The eigenvalues of L(G) are nonnegative:
   l1 = 0 £ l2 £ ⋯ £ lN
2. l2(L(G)) ¹ 0 if and only if G is connected

Spectral bisection algorithm:
1. Compute eigenvector v2 corresponding to l2(L(G))
2. For each node i of G
 a. if v2(i) < 0, put node i in partition N-

 b. else put node i in partition N+

Example
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O(N) l2 Computation
Lanczos algorithm:
• Given an N´N symmetric matrix A (e.g., L(G)), compute a 
K×K “approximation” T by performing K matrix-vector 
products, where K ≪ N

• Approximate A’s eigenvalues & eigenvectors using T’s

Choose an arbitrary starting vector r
b(0) = ||r||
j=0
repeat
  j=j+1
  q(j) = r/b(j-1) 
  r = A*q(j)
  r = r - b(j-1)*v(j-1)
  a(j) = v(j)T * r
  r = r - a(j)*v(j)
  b(j) = ||r||
until convergence
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Multilevel Partitioning
Recursively apply:
1. Replace G(N,E) by a coarse approximation Gc(Nc,Ec), & partition Gc
2. Use partition of Gc to obtain a rough partitioning of G, then uncoarsen & 

iteratively improve it 

(N+,N-) = Multilevel_Partition(N,E)
// returns N+ and N- where N = N+ È N-
  if |N| is small
1   Partition G = (N,E) directly to get N = N+ È N-
    Return (N+,N-)
  else
2   Coarsen G to get an approximation Gc = (Nc,Ec)
3   (Nc+,Nc-) = Multilevel_Partition(Nc,Ec)
4   Expand (Nc+,Nc-) to a partition (N+,N-) of N
5   Improve the partition (N+,N-)
    Return (N+,N-)
  endif
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cf. Multigrid method

cf. Shang-Hua Teng, https://dl.acm.org/doi/10.1145/3627708

https://dl.acm.org/doi/10.1145/3627708


Hypergraph-based Load Balancing
1. Hypergraph = ({node}, {hyperedge = a group of nodes})
2. More expressive power for computation-communication relation 

compared with graphs

U. V. Catalyurek et al., “Hypergraph-based dynamic load balancing for adaptive scientific 
computations,” in Proc. IPDPS (IEEE, ’07)
M. Kunaseth et al., “A scalable parallel algorithm for dynamic range-limited n-tuple 
computation in many-body molecular dynamics simulation,” in Proc. SC (ACM/IEEE, ’13) 

Computation
Communication



Hybrid Decomposition
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Fine-Grained Parallel MD

Science 282, 740 (’98)

J.C. Phillips, G. Zheng, S. Kumar, & L.V. Kale, 
in Proc. of IEEE/ACM SC2002
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Runtime on 1,024-processor Intel Paragon

Force Decomposition for Parallel MD

https://www.lammps.org/cite.html
S. Plimpton, J. Comput. Phys. 117, 1 (’95)

https://www.lammps.org/cite.html


Neutral Territory Decomposition 
D. E. Shaw, 

“A fast, scalable method for the parallel evaluation of 
distance-limited pairwise particle interactions,” 

J. Comput. Chem. 26, 1318 (’05) 

cf. Lecture note on “Shaw’s NT algorithm”



Hybrid Spatial+Force Decomposition

Kale et al., J. Comput. Phys. 151, 283 (’99); Phillips et al., SC02 (IEEE/ACM);
Acun et al., SC14 (IEEE/ACM), Phillips et al., J. Chem. Phys. 153, 044130 (’20)

• Spatial decomposition of patches (localized spatial regions & atoms 
within)

• Inter-patch force computation objects assigned to any processor
• Message-driven object execution: computation-communication overlap


