Advanced Topics in Parallel
Molecular Dynamics

Aldichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Department of Quantitative & Computational Biology
University of Southern California

Email: anakano@usc.edu

C% cf. https://aiichironakano.github.io/cs653.html

Load Balancing

Aliichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Department of Quantitative & Computational Biology
University of Southern California

Email: anakano@usc.edu

G255

Load Balancing

* Goal: Keep all processors equally busy while minimizing inter-
processor communication for irregular parallel computations

* Issues:
— Spatial data vs. generic graph o | ",

— Static vs. adaptive .
— Incremental vs. non-incremental

* Load-balancing schemes: .

— Recursive bisection
— Spectral method

— Spacefilling curve

— Curved space L
— Load diffusion RRR

Data Locality in Parallelization

Challenge: Load balancing for irregular data structures

frregular e Parallel
data-structures/ |§
computer
processor-speed
Optimization problem: | =
 Minimize the load-imbalance cost Wy
 Minimize the communication cost | |1 2 3h
|

* Topology-preserving spatial decomposition
— structured 6-step message passing minimizes latency

E = tomp(max p[{i 11; € p}) + foomm(max , i 1r; = p| < .3
+atency (max p [N message (P)])

Computational-Space Decomposition

Topology-preserving “computational-space”
decomposition in curved space (cf. general relativity)

Curvilinear coordinate transformation
& =x+u(x)

Particle-processor mapping: regular 3D mesh topology

{P(gi) = px(gix)Psz T Py (giy)Pz + Pz (giz)
pa(gia) = [giapa /LaJ (a = x’y’z)

Regular mesh topology Curved partition
in computational space, in physical space, x

A. Nakano & T. J. Campbell, Parallel Comput. 23, 1461 ('97)

Wavelet-based Adaptive Load Balancing

e Simulated annealing to minimize the load-imbalance
& communication costs, E[¢(x)]

* Wavelet representation speeds up the optimization
E(X)=x+ Y dpm(x)
[.m

= 2000

)

D)

E —Wavelet

=)

= 1000

103 10 1 101 10 °

CPU time (min)

A. Nakano, Concurrency: Practice and Experience 11, 343 ('99)

Load Balancing as Graph Partitioning

* Need: Decompose tasks without spatial indices

e Graph partitioning: Given a graph G = (N, E, Wy, W)
— N: node set = {j | tasks}
— Wy: node weights = {wy(j): task costs}
— E: edge set = {(j k) | messages from j to k}
— Wg: edge weights = {wg(j,k): message sizes}
choose a partition N=N; UN, U ... U Np to mlmmlze .
~ max,{Zcn, Wy ()} R
- maX(p,q){ZJeNp,kequE(i;k)}

58 cut edges

b"'h'-.‘l

\\A Y, SN
/‘\\ \"/‘hhdx

e Choosing optimal partitioning is known T e
g optimal partitioning s A\ﬁpmr

isti ’f 2\ RN
to be NP-complete — need heuristics ;r;f-——b X A!é..,itfi"v}‘dk
Wir2 AN n
>

Sl

Prof. James Demmel (UC Berkeley)

Spectral Bisection: Motivation

1. Graph as point masses connected via harmonic springs

2. The node of the eigenvector of the Hessian matrix, 8% /8x?, corresponding
to the 2nd smallest eigenvalue separates the graph into 2

1D example

: : : : ' : : : :

: ' ' ' + ' : : :
B T AT T B SO AU T PO -

i ' i i i i : i i

[isteigenvector
g 10 15 a0 a5 an a8 40 48 af

..

CrrrrZndeigenvectoy T

] 10 15 20 25 an a8 40 LH &0

...

B gigenvestor T

& 14 15 a0 25 an 38 40 48 &l

2D example

10t .
_ A
5 L]

e N o il
ol Fog 2 "i,a .
."_.?' .f :'-'.';:.'i'-.. o

o o ' .'.‘.

D B
-3 Partitioned
half
! circled
-10 0 10

Spectral Bisection

Laplacian matrix:
L(G) of a graph G(/V,E) is an |N| by |/N| symmetric matrix:
— L(G)(i,i) = degree of node i (number of incident edges)
— L(G)(@iyj) =—11ifi#j and there is an edge (i)
— L(G)(iy) = 0 otherwise

Theorems: Example
1. The eigenvalues of L(G) are nonnegative:
A= 0 <A, < € Ay 1 2 3 45
2.0,(L(G)) # 0 if and only if G is connected —
1 2 3 4
Spectral bisection algorithm: | _1 1
1. Compute eigenvector v corresponding to A2(L(G)) 1 2 _q
2.For each node i of G
a.if v2(i) <0, put node i in partition V_ 3 -1 2 -1
b.else put node i in partition /V, 4 -1 2
5 -1

O(V) A, Computation

Lanczos algorithm:

* Given an Nx/N symmetric matrix A (e.g., L(G)), compute a
KXK “approximation” T by performing K matrix-vector
products, where K < N

* Approximate A’s eigenvalues & eigenvectors using T’s

Choose an arbitrary starting vector r

b(0) = ||r]|]

j=0

repeat
j=j+1 [aq bl
a(j) = r/b(j-1) b, a, b,
r = A*q(J) T = .
r =r - b(j-1)*v(j-1)) a b
a(J) - V(j)T * r K-2 bK—l K-1
r =r - a(j)*v(j) : k-1 Ag -
b(j) = ||r]]

until convergence

Multilevel Partitioning

Recursively apply:
1. Replace G(/V,E) by a coarse approximation G.(N.E.), & partition G
2. Use partition of G, to obtain a rough partitioning of G, then uncoarsen &

iteratively improve it O @
(5)
Coarsening ’ Multilevel

23\ V-cycle / (4)
O s
(2,3)\ /(4)
) Do)
(N+,N-) = Multilevel Partition(N,E) \ /
// returns N+ and N- where N = N+ U N- (2,3) (4)
if |N| is small D)
1 Partition G = (N,E) directly to get N = N+ U N-
Return (N+,N-)
else
Coarsen G to get an approximation Gc = (Nc¢,Ec)

(Nct+,Nc-) = Multilevel Partition(Nc,Ec)

Expand (Nc+,Nc-) to a partition (N+,N-) of N

Improve the partition (N+,N-)

Return (N+,N-)
endif

cf. Multigrid method

Ul b W N

cf. Shang-Hua Teng, https://dl.acm.org/doi/10.1145/3627708

https://dl.acm.org/doi/10.1145/3627708

Hypergraph-based Load Balancing

1. Hypergraph = ({node}, {hyperedge = a group of nodes})
2. More expressive power for computation-communication relation
compared with graphs Communication

Computation

U. V. Catalyurek et al., “Hypergraph-based dynamic load balancing for adaptive scientific
computations,” in Proc. IPDPS (IEEE, '07)

M. Kunaseth et al., “A scalable parallel algorithm for dynamic range-limited n-tuple
computation in many-body molecular dynamics simulation,” in Proc. SC (ACM/IEEE, '13)

Hybrid Decomposition

Aliichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Quantitative & Computational Biology
University of Southern California

Email: anakano@usc.edu

C% Who does what?

Fine-Grained Parallel MD

Pathways to a Protein Folding
Intermediate Observed in a
1-Microsecond Simulation in

Aqueous Solution

Yong Duan and Peter A. Kollman*

An implementation of classical molecular dynamics on parallel computers of
increased efficiency has enabled a simulation of protein folding with explicit
representation of water for 1 microsecond, about two orders of magnitude
longer than the longest simulation of a protein in water reported to date.
Starting with an unfolded state of villin headpiece subdomain, hydrophobic
collapse and helix formation occur in an initial phase, followed by conforma-
tional readjustments. A marginally stable state, which has a lifetime of about

150 nanoseconds, a favorable solvation free energy, and shows significant Processors | Time/step Speedup GFLOPS
resemblance to the native structure, is observed; two pathways to this state | Total | Per Node | MPI Elan | MPI | Elan | MPI | Elan
have been found. 1 1 28.08s 28.08s 1 1 0.480 | 0.480
. 128 4 248.3ms | 234.6ms | 113 | 119 | 54 | 57
Science 282, 740 (’98) 256 4 135.2ms | 121.9ms | 207 | 230 | 99 | 110
512 4 65.8ms | 63.8ms | 426 | 440 | 204 | 211
510 3 65.7ms | 63.0ms | 427 | 445 | 205 | 213
1024 4 419ms | 36.1ms 670 | 778 322 373
1023 3 35.1ms | 33.9ms | 799 | 829 | 383 | 397
1536 4 354ms | 32.9ms 792 | 854 380 410
1536 3 26.7ms | 24.7ms | 1050 | 1137 | 504 | 545
2048 4 31.8ms | 25.9ms 883 | 1083 | 423 520
1800 3 25.8ms | 22.3ms | 1087 | 1261 | 521 | 605
2250 3 19.7ms | 18.4ms | 1425 | 1527 | 684 733
2400 4 32.4ms | 27.2ms | 866 | 1032 | 416 | 495
2800 4 32.3ms | 32.1ms | 869 | 873 | 417 | 419
3000 4 32.5ms | 288ms | 862 | 973 | 414 | 467

J.C. Phillips, G. Zheng, S. Kumar, & L.V. Kale,

N P roc. Of I E E E/ A CM SCZ 002 Table 1: NAMD performance on 327K atom ATPase benchmark system with and multiple timestep-
ping with PME every four steps for Charm++ based on MPI and Elan.

Force Decomposition for Parallel MD

1

10
-

8 Am Desomposton

E & Forca-Dacomparicn
A4 Spayal-Decompositon
10°F G Cray Y-MPN

/ /FP
F O—D Cray CHMN

3
o
Iﬂ :g
2
— “fé" o //' e
— ‘ ’ i
o | 1] 2]3 ‘é : s /)///4
] O 0% {. SD
*a 4 | 5 |Fg| 7 E
g8 | ol 10!l 11 10° s 10° 10
1 N (# of atoms)
12 |13 | 14| IS5 Runtime on 1,024-processor Intel Paragon

FIG.5. The division of the permuted force matrix F' among 16 processors
in the force-decomposition algorithm. Processor P, is assigned a sub-block £
of size NIVP by N/ VP. To compute its matrix elements it must know the
corresponding N/ ﬁ-length pieces x, and xg of the position vector x and

rmut it t '.
permuted position vector x'. Plimpton, J. Comput. Phys. 117, 1 ('95)

https://www.lammps.org/cite.html

https://www.lammps.org/cite.html

Neutral Territory Decomposition

D. E. Shaw,
“A fast, scalable method for the parallel evaluation of
distance-limited pairwise particle interactions,”
J. Comput. Chem. 26, 1318 ('05)

g i
\ i
\\‘_‘ - B
Ll |
HS Method NT Method

cf. Lecture note on “Shaw’s NT algorithm”

Hybrid Spatial+Force Decomposition

e Spatial decomposition of patches (localized spatial regions & atoms
within)

e Inter-patch force computation objects assigned to any processor

 Message-driven object execution: computation-communication overlap

Bonded Force Objects
| Patch Patch
A B
A [
~ Proxy Proxy
C D "\’ D
| - LIc
Non-bonded Non-bonded Non-bonded Non-bonded — | Message
Pair Compute Self Compute Self Compute Pair Compute Queues
Ol Objects Objects Objects
//
A|B cC|D
PROCESSOR 1

Kale et al., J. Comput. Phys. 151, 283 (’99); Phillips et al., SC02 (IEEE/ACM);
Acun et al., SC14 (IEEE/ACM), Phillips et al., J. Chem. Phys. 153, 044130 (’20)

