
Assignment 3
Frequently Asked Questions

Big picture: Coding for scalability tests
global_pi.c ← global_avg.c + pi.c (fixed problem-size scaling)

global_pi_iso.c
𝐚	𝐟𝐞𝐰	𝐥𝐢𝐧𝐞𝐬	𝐜𝐡𝐚𝐧𝐠𝐞

 global_pi.c (isogranular scaling)

Why does the measured runtime vary across different Slurm jobs?

Discovery cluster is composed of a heterogeneous mixture of computing nodes with
varying CPUs and GPUs, hence different performance. This causes runtime variation
across different Slurm jobs, depending on which nodes were allocated to the job. You
can find the CPU information for one of the allocated nodes (on which your script is
being executed) by including the following line in your Slurm script:
cat /proc/cpuinfo > cpuinfo.txt

cpuinfo.txt
model name : AMD EPYC 7513 32-Core Processor
... Discovery Compute Nodes

https://www.carc.usc.edu/user-guides/hpc-systems/discovery/resource-overview-discovery

$ nodeinfo // The Slurm output reported SLURM_JOB_NODELIST = a01-[02-05]

Also, optimization flag for compiler matters: mpicc –O –o global_pi global_pi.c -lm

https://www.carc.usc.edu/user-guides/hpc-systems/discovery/resource-overview-discovery

Why is the measured runtime nonmonotonic as a function of the
number of processors in some isogranular-scaling tests?

Even if you have dedicated access to the allocated computing nodes, you are still
sharing network with other users. The communication time that MPI_Send() and
MPI_Recv() take is thus affected by network interference. (Like your Internet speed
slows down when someone at your home is downloading a big file.) Don’t worry about
small fluctuation in your plot. Or, submit multiple plots, with explanations.

discovery

hpc-transfer

[anakano@discovery ~]$ ping hpc-transfer
time=0.130 ms
time=0.090 ms
time=0.090 ms
time=0.113 ms

“See” network interference
cf. LA traffic

And you are sharing the
nodes with other users.

How to debug MPI programs?
Different MPI ranks are different processes running on different computers, thus not
executing in lockstep. This makes debugging MPI programs rather difficult. People
usually insert MPI_Barrier() and printf() statements to locate the specific line where
one or more ranks are crashing. Some systems allow MPI to work with debuggers like
GDB, but I have not used them personally.

GNU C compiler-based MPI implementation (not on Discovery)

Finally: Please do not use “mpirun” on discovery
The login node, discovery.usc.edu, is shared by hundreds of users, and you are
not supposed to run any serious programs on it. Please always use sbatch (in
batch mode) or salloc (interactively) to run any MPI program, so that your
program will run on dedicated computing nodes instead.

[anakano@discovery ~]$ ps -al
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
0 S 600118 133743 133453 3 80 0 - 524624 futex_ pts/6 00:14:32 viddy
0 S 354380 135459 135081 0 80 0 - 32268 poll_s pts/37 00:00:00 tmux: clie
1 S 354380 139661 3585060 0 80 0 - 28800 do_wai pts/57 00:00:00 bash
0 S 600493 626548 626491 0 80 0 - 83498 ep_pol pts/23 00:00:42 jupyter-no
0 S 323474 1154053 1133677 0 80 0 - 25299 do_wai pts/0 00:00:00 salloc
0 S 323474 1154202 1154053 0 80 0 - 83412 futex_ pts/0 00:00:00 srun
0 S 600773 1540702 1539154 0 80 0 - 28357 do_wai pts/25 00:00:00 bash
0 S 350473 1625067 1533720 0 80 0 - 39577 hrtime pts/13 00:00:05 watch
0 S 331977 1676488 1665045 0 80 0 - 32245 sys_pa pts/32 00:00:00 screen
0 S 352098 1680441 1661650 0 80 0 - 2082 n_tty_ pts/24 00:00:00 less
0 R 55322 1728179 1727860 0 80 0 - 38341 - pts/46 00:00:00 ps
0 S 299827 2729297 2729150 0 80 0 - 37700 poll_s pts/19 00:00:00 vim
0 T 326739 2852294 60416 0 80 0 - 32348 do_sig pts/4 00:00:00 vim
1 S 354380 2885468 62782 0 80 0 - 28798 do_wai pts/14 00:00:00 bash
0 S 354380 2885544 2885468 0 80 0 - 395384 futex_ pts/14 00:00:00 srun
...

Also, don’t wait till the last night to submit jobs!

