On Assignment 5

. Part 1 (programming): Since we are starting with pmd_irecv.c
in assignment 4, do we only need to mark the OpenMP
changes or both MPI & OpenMP changes?

. Please only mark the OpenMP changes.

. Part 3 (strong scaling): Should we plot & submit the runtime,
speedup & parallel efficiency as a function of the number of
threads, as in slide 20 of “Hybrid MPI+OpenMP MD”
lecture, https://aiichironakano.qgithub.io/cs596/05HMD.pdf?

. No, please submit only the efficiency plot.

https://aiichironakano.github.io/cs596/05HMD.pdf

On Assignment 5, Part 3 (Scaling)

* Goal: Measure multithread parallel efficiency on multiple cores within a
single computing node

e CPU in standard output is total runtime (in seconds) including computing &
communication; use it as 7(/V, P) in the speedup formula, where NV is the
fixed problem size (proportional to the total # of atoms, nglob = 55296, but
doesn’t enter in efficiency calculation) & P is the # of cores (or threads,
remember one thread per core seen using ‘top’ command)

[liuhaora@discovery2 hw5]$ cat hmd-scale.out

8 threads

al = 4.103942e+01 4.103942e+01 4.103942e+01

lc
rc
nglob = 55294

16 16 16

CPU & COMT =

|8. 350226e+00

4 threads

2.564964e+00 2.564964e+00 2.564964e+00

2.620383e-02

al = 4.103942e+01 4.103942e+01 4.103942e+01

lc

16 16 16

rc = 2.564964e+00 2.564964e+00 2.564964e+00

nglob = 55296

CPU & COMT =

3.940460e+00

2 threads

2.325014e-02

al = 4.103942e+01 4.103942e+01 4.103942e+01

lc = 16 16 16

rc = 2.564964e+00 2.564964e+00 2.564964e+00

nglob = 55296

CPU & COMT =

9.614403e+00

1 thread

2.323241e-02

al = 4.103942e+01 4.103942e+01 4.103942e+01

lc = 16 16 16

rc = 2.564964e+00 2.564964e+00 2.564964e+00

nglob = 5529

CPU & COMT =

1.492553e+01

2.285458e-02

P=1 T(N,1)=14.92553 TN,

Sy =— =
P=2 T(N,2)=9.614403 T(N,2)

: P=4 T(N,4)=3.940460
P=8 T(N,8)=28.350226

Strong-scaling (fixed problem size):

T(N,1)
Speedup: Sp = T(N.P)
Efficiency: Ep = SPP ; only plot this!

Why Dip in Runtime for P =4?

e Each of the two processors (or sockets) with multiple cores has fast local
memory called cache (to be discussed in performance optimization lecture)

In prior architectures (such as the Intel® Xeon® E5 v4 Processor family): —_
) 7
::..

® The mid-level cache (MLC or also known as L2) was 256 KB per core.
e The last level cache (also known as L3) was a shared inclusive cache with 2.5 MB per
core.

In the architecture of the Intel® Xeon® Scalable Processor family, the cache hierarchy has
changed to provide a larger MLC of 1 MB per core and a smaller shared non-inclusive 1.375
MB LLC per core. A larger MLC increases the hit rate into the MLC resulting in lower effective
memory latency and also lowers demand on the mesh interconnect and LLC. The shift to a
non-inclusive cache for the LLC allows for more effective utilization of the overall cache on
the chip versus an inclusive cache. https://www.intel.com

* In addition to more arithmetic-logic operations,
P=1 T(N,1)=14.92553 multiple cores provide larger caches to improve
memory-access speed

P=2 T(N,2)=9.614403 -« If threads are placed on different sockets,
however, memory performance degrades

P=4 T(N,4)=3.940460 ° Non-uniform memory access (NUMA): Memory
design, where memory access time depends on

memory location relative to the processor
P=8 T(N,8)=8.350226 i .. i
e Again, there also is interference with other users

in the same computing node

Affinity

* Processor (task) affinity: Controls binding (i.e., pinning) of a process to a
core or socket (mpirun -bind-to none unbinds a rank from single core or
socket, while mpirun -bind-to socket pins all threads within one socket)
https://en.wikipedia.org/wiki/Processor_affinity

* Binding can improve cache performance but degrade load balancing

1.40E+01 o o
* “There still is not an easy way

1.20€401 for pinning MPI processes &
OpenMP threads to CPU sockets
& cores.” How to gain hybrid
— MPI-OpenMP code performance
without changing a line of code
a.k.a. dealing with task affinity:

4.00E+00 -@-bind-to none -@-bind-to socket https://aciref.org/how-to-gain-
hybrid-mpi-openmp-code-
e performance-without-changing-a-
line-of-code-a-k-a-dealing-with-
0 1 2 3 4 5 6 7 8 9 task-affinity/

Number of threads

1.00E+01

Runtime (s)

6.00E+00

0.00E+00

 Don’t worry about nonmonotonic behavior & submit what your got (again
not runtime but efficiency)

* Will revisit false sharing & affinity in performance-optimization lecture

https://en.wikipedia.org/wiki/Processor_affinity
https://aciref.org/how-to-gain-hybrid-mpi-openmp-code-performance-without-changing-a-line-of-code-a-k-a-dealing-with-task-affinity/

About srun

e srun is a Slurm command to execute a program in foreground (as opposed
to background by sbatch)

e Slurm system will allocate a backend node (e.g., d18-01) & remotely login to
the allocated node to execute the program

[anakano@discovery2 ~]$ srun ./pi

srun: job 6161378 queued and waiting for resources
srun: job 6161378 has been allocated resources

PI = 3.141593

This could take some time like
salloc to start an interactive Slurm
session

Launch a Parallel Program with srun

 While mpirun is a command in MPI system to execute a parallel program,
some versions of Slurm job-scheduling system & OpenMPI implementation
of MPI support srun to execute an MPI program.

2. Does Open MPI support "srun -n X my_mpi_application"?

Yes, if you have configured OMPI ——with-pmi=foo, where foo is the path to the directory where pmi.h/pmi2.h is located. Slurm
(> 2.6, > 14.03) installs PMI-2 support by default.

https://www.open-mpi.org/faq/?category=slurm#slurm-direct-srun-mpi-apps

e Consult a system administrator about specific settings after each upgrade
(following descriptions are from the current discovery user’s guide)
srun Launch parallel tasks (i.e., job steps) (typically for MPI jobs)
https://carc.usc.edu/user-information/user-guides/hpc-basics/running-jobs

module purge

module load gcc/8.3.0
module load openmpi/4.0.2
module load pmix/3.1.3

ulimit -s unlimited
Automatically bind tasks to

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK NUMA locality domains

srun ——mpi=pmix_v2 —-cpu-bind=1doms —-n $SLURM_NTASKS ./mpi_plus_openmp_program.X

https://carc.usc.edu/user-information/user-guides/hpc-basics/slurm-templates

https://www.open-mpi.org/faq/?category=slurm
https://carc.usc.edu/user-information/user-guides/hpc-basics/running-jobs
https://carc.usc.edu/user-information/user-guides/hpc-basics/slurm-templates

Wall-clock time (s)

Recap: Slide 20 in Hybrid MPI+MD Lecture

1 MPI process; 1-8 threads pmd.in
In hmd.h: 24 24 24 InitUcell[3]
0.8 Density
vproc = {1,1,1}, nproc = 1; 1.0 InitTemp
vthrd = {1,1,1}, nthrd = 1; 0.005 DeltaT
2 11 2 100 StepLimit
2 21 4 101 StepAvg
2 2 2 8
35 E | S e | I Ki=lf ' = i I | B B | I | F=1 KA =) 3 R 1 I LI I I = B I | = A | _ 1-2 E |] = l =il I |] P I S==ku=sl I | =] Bl
[E| - Dual quadcore - i
s @ Dual quadcore 5 25 :_ AMD Opteron 2.3 GHz _: 1 =
L\ AMD Opteron 2.3 GHz 4 - > L R
i - E N Dual quadcore d
Ty 2 - 08 5 AMDOpteron23GHz —
o " . IR :
O 1 8 1sfF [5 e °© J|& 06 [b“ -
20 k> I'-I J1 & [o= o~ i - : \“\ i
L “8. __________ 1 1E Dual quadcore = 04 - \\E‘ ~~~~~~~~ A
: “-éﬁ‘\.-_,__ ; E Intel Xeon 2.3 GHz E i R - 1
15 - Dual d AROEL, = B - - Dual dcore Ttteeo. -
L InLtjt-:a“I)(zlngnc;geGHz “‘:g g 0 :_ — Lol InltJ:I)C(];sn%o.geGHz © A
10 E 1 L 1 I 1 1 1 l 1 1 1 I 1 1 1 I 1 1 L 1 0 L 1 1 I 1 1 1 I 1 1 1 l 1 1 1 I 1 1 1 : 0 i 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 L
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Number of threads Number of threads Number of threads
InitUcell[] = {24,24,24} g T (N,1) g Sp
P= o o p=—"
N = 4x243 T'(N.P) P
= 55296 atoms P: Number of cores Justone curve (no need to

compare different nodes)

