
On Assignment 5

Q. Part 1 (programming): Since we are starting with pmd_irecv.c
in assignment 4, do we only need to mark the OpenMP
changes or both MPI & OpenMP changes?

A. Please only mark the OpenMP changes.

Q. Part 3 (strong scaling): Should we plot & submit the runtime,
speedup & parallel efficiency as a function of the number of
threads, as in slide 20 of “Hybrid MPI+OpenMP MD”
lecture, https://aiichironakano.github.io/cs596/05HMD.pdf?

A. No, please submit only the efficiency plot.

https://aiichironakano.github.io/cs596/05HMD.pdf

On Assignment 5, Part 3 (Scaling)
• Goal: Measure multithread parallel efficiency on multiple cores within a

single computing node
• CPU in standard output is total runtime (in seconds) including computing &

communication; use it as T(N, P) in the speedup formula, where N is the
fixed problem size (proportional to the total # of atoms, nglob = 55296, but
doesn’t enter in efficiency calculation) & P is the # of cores (or threads,
remember one thread per core seen using ‘top’ command)

P = 1 T(N, 1) = 14.92553

P = 2 T(N, 2) = 9.614403

P = 4 T(N, 4) = 3.940460

P = 8 T(N, 8) = 8.350226

Strong-scaling (fixed problem size):
Speedup: 𝑆! =

" #,%
" #,!

Efficiency: 𝐸! =
&!
!

; only plot this!

𝑆! =
𝑇 𝑁, 1
𝑇 𝑁, 2

Why Dip in Runtime for P = 4?
• Each of the two processors (or sockets) with multiple cores has fast local

memory called cache (to be discussed in performance optimization lecture)

P = 1 T(N, 1) = 14.92553

P = 2 T(N, 2) = 9.614403

P = 4 T(N, 4) = 3.940460

P = 8 T(N, 8) = 8.350226

https://www.intel.com

• In addition to more arithmetic-logic operations,
multiple cores provide larger caches to improve
memory-access speed

• If threads are placed on different sockets,
however, memory performance degrades

• Non-uniform memory access (NUMA): Memory
design, where memory access time depends on
memory location relative to the processor

• Again, there also is interference with other users
in the same computing node

Socket 0

Socket 1

Affinity
• Processor (task) affinity: Controls binding (i.e., pinning) of a process to a

core or socket (mpirun -bind-to none unbinds a rank from single core or
socket, while mpirun -bind-to socket pins all threads within one socket)
https://en.wikipedia.org/wiki/Processor_affinity

• Binding can improve cache performance but degrade load balancing

• “There still is not an easy way
for pinning MPI processes &
OpenMP threads to CPU sockets
& cores.” How to gain hybrid
MPI-OpenMP code performance
without changing a line of code
a.k.a. dealing with task affinity:
https://aciref.org/how-to-gain-
hybrid-mpi-openmp-code-
performance-without-changing-a-
line-of-code-a-k-a-dealing-with-
task-affinity/

• Don’t worry about nonmonotonic behavior & submit what your got (again
not runtime but efficiency)

• Will revisit false sharing & affinity in performance-optimization lecture

https://en.wikipedia.org/wiki/Processor_affinity
https://aciref.org/how-to-gain-hybrid-mpi-openmp-code-performance-without-changing-a-line-of-code-a-k-a-dealing-with-task-affinity/

About srun

• srun is a Slurm command to execute a program in foreground (as opposed
to background by sbatch)

• Slurm system will allocate a backend node (e.g., d18-01) & remotely login to
the allocated node to execute the program

[anakano@discovery2 ~]$ srun ./pi
srun: job 6161378 queued and waiting for resources
srun: job 6161378 has been allocated resources
PI = 3.141593

This could take some time like
salloc to start an interactive Slurm
session

Launch a Parallel Program with srun
• While mpirun is a command in MPI system to execute a parallel program,

some versions of Slurm job-scheduling system & OpenMPI implementation
of MPI support srun to execute an MPI program.

https://www.open-mpi.org/faq/?category=slurm#slurm-direct-srun-mpi-apps

• Consult a system administrator about specific settings after each upgrade
(following descriptions are from the current discovery user’s guide)

https://carc.usc.edu/user-information/user-guides/hpc-basics/running-jobs

https://carc.usc.edu/user-information/user-guides/hpc-basics/slurm-templates

Automatically bind tasks to
NUMA locality domains

https://www.open-mpi.org/faq/?category=slurm
https://carc.usc.edu/user-information/user-guides/hpc-basics/running-jobs
https://carc.usc.edu/user-information/user-guides/hpc-basics/slurm-templates

Recap: Slide 20 in Hybrid MPI+MD Lecture
1 MPI process; 1-8 threads

In hmd.h:
vproc = {1,1,1}, nproc = 1;
vthrd = {1,1,1}, nthrd = 1;

2 1 1 2
2 2 1 4
2 2 2 8

InitUcell[] = {24,24,24}

N = 4´243
= 55296 atoms P: Number of cores

pmd.in
24 24 24 InitUcell[3]
0.8 Density
1.0 InitTemp
0.005 DeltaT
100 StepLimit
101 StepAvg

Just one curve (no need to
compare different nodes)

