
1

Asymptotic Analysis of Functions

In order to analyze the efficiency of an algorithm, we consider its running time t(n) as a
function of the input size n. We look at large enough n such that only the order of growth of t(n)
is relevant. In such asymptotic analysis, we are interested in whether the function scales as
exponential (e.g., 10n), polynomial (e.g., n3) or logarithmic (e.g., log2n), for example. We use the
following asymptotic notations.

𝜣 notation: Given a function g(n), 𝛩(𝑔(𝑛)) = {f(n): there exist positive constants c1, c2 and
n0 such that 𝑐!𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐"𝑔(𝑛) for all 𝑛 ≥ 𝑛#}. We say 𝛩(𝑔(𝑛)) is an asymptotically tight
bound for f(n).
(Example) In the molecular dynamics (MD) program, md.c, the computational bottleneck is the
sum over all distinct atom pairs (i, j) to compute interatomic forces, implemented in a doubly-
nested loop (see function ComputeAccel()):

for (i=0; i<n-1; i++) {
for (j=i+1; j<n; j++) {

...
}

}

The running time of this loop is proportional to the total number of iterations,

𝑓(𝑛) = 1 + 2 +⋯(𝑛 − 1) =
(𝑛 − 1)(1 + 𝑛 − 1)

2 =
𝑛" − 𝑛
2 	,

which is 𝛩(𝑛").
(Proof)
Let us consider inequalities

𝑐!𝑛" ≤ 𝑓(𝑛) =
𝑛" − 𝑛
2 ≤ 𝑐"𝑛"	.																																																	(1)

Dividing both sides by n2 yields

𝑐! ≤ 𝑓(𝑛) =
1
2 −

1
2𝑛 ≤ 𝑐"	.

The right-hand inequality is satisfied for any positive n by choosing 𝑐" ≥ 1/2. On the other hand,
the left-hand inequality holds for all n ≥ 2 if 𝑐! ≤ 1/4 (see the figure below). By choosing 𝑐! = 1/4,
𝑐" = 1/2 and 𝑛# = 2, Eq. (2) thus holds for all n ≥ 𝑛#. By definition, then f(n) is 𝛩(𝑛"). //

2

𝑶 (or “big-oh”) notation: Given a function g(n), 𝑂(𝑔(𝑛)) = {f(n): there exist positive
constants c and 𝑛# such that 𝑓(𝑛) ≤ 𝑐𝑔(𝑛) for all 𝑛 ≥ 𝑛#}. We say 𝑂(𝑔(𝑛)) is an asymptotically
upper bound for f(n). Note that 𝑂(𝑔(𝑛)) is a superset of 𝛩(𝑔(𝑛)). Outside computer science, the
big-oh notation is most commonly used. While most bounds discussed in this class are tight bounds,
we will loosely use the big-oh notation unless specific distinction is required.

References
1. A. Grama et al., Introduction to Parallel Computing, Second Edition (Addison Wesley, 2003),

Appendix A.2—Order analysis of functions.
2. T. H. Cormen et al., Introduction to Algorithms, Third Edition (MIT Press, 2009), Chap. 3—

Growth of functions.

