CUDA Programming

Aliichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Department of Quantitative & Computational Biology
University of Southern California

Email: anakano@usc.edu

Goal: Multithreading on graphics processing units (GPUs);

C% heterogenous device concept




Graphics Processing Unit (GPU)

* GPU: A specialized processor that oftloads 3D graphics
rendering from the central processing unit (CPU).

* GPGPU: General-purpose computing on GPU, by using a GPU
to perform computation traditionally handled by the CPU;

GPU is considered as a multithreaded, massively data parallel
co-processor (accelerator).

e NVIDIA Quadro, Tesla & newer GPUs are capable of general-
purpose computing with the use of Compute Unified Device

Architecture (CUDA).

HOPPER H100 TENSOR CORE GPU

GB/s
sssssssssssss

NVIDIA H100 (18,432 CUDA cores & 640 tensor cores)



CUDA
How to program GPGPU?

 Compute Unified Device Architecture

* Integrated host (CPU) + device (GPU) application
programming interface based on C language,
developed at NVIDIA

e CUDA homepage

http://www.nvidia.com/object/cuda home.html

* Widely used in the deep-learning community

https://www.deeplearningbook.orqg/contents/applications.html

The Nobel Prize in Physics 2024 was awarded to The Nobel Prize in Chemistry 2024 was divided,

John J. Hopfield and Geoffrey E. Hinton "for one half awarded to David Baker "for
foundational discoveries and inventions that computational protein design", the other half
enable machine learning with artificial neural jointly to Demis Hassabis and John M. Jumper "for

networks" protein structure prediction"


http://www.nvidia.com/object/cuda_home.html
https://www.deeplearningbook.org/contents/applications.html

Nvidia and Competitors

e CUDA was developed by Nvidia

J R4 ol June 18, 2024

Nvidia Now World’s Most
Valuable Company—Topping NS
Microsoft And Apple e

Jensen Huang

* World’s fastest supercomputers are accelerated by AMD, Intel & Nvidia
GPUs [https://www.top500.0rg]

Rmax Rpeak Power
Rank System Cores (PFlop/s) (PFlop/s) (kW)
1 Frontier - HPE Cray EX235a, AMD Optimized 3rd 8,699,904 1,206.00 1,714.81 22,786
Generation EPYC 64C 2GHz, AMD Instinct MI250X,
Slingshot-11, HPE
DOE/SC/0ak Ridge National Laboratory
United States
2 Aurora - HPE Cray EX - Intel Exascale Compute Blade, 9,264,128 1,012.00 1,980.01 38,698
Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU
Max, Slingshot-11, Intel
DOE/SC/Argonne National Laboratory
United States
3 Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, 2,073,600 561.20 846.84

NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Azure
Microsoft Azure
United States



Using CUDA on Discovery

Add the following commands in .bashrc in your home directory

module purge
module load usc/8.3.0
module load cuda

Compilation
nvcc -o pi pi.cu

Submit a Slurm script
#!/bin/bash

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1
#SBATCH --gres=gpu:l
#SBATCH --time=00:00:59
#SBATCH --output=pi.out
#SBATCH -A anakano 429

./pi

https://aiichironakano.qgithub.io/cs596/src/cuda/pi.cu



https://aiichironakano.github.io/cs596/src/cuda/pi.cu

Example of NVIDIA GPU at CARC

 Host (CPU)
> Dual octacore (2 x 8 =16) Intel Xeon
> Clock rate: 2.4 GHz
> Memory: 64 GB

e Device (GPU): Dual NVIDIA Tesla K20m

> Number of streaming
multiprocessors (SMs) per GPU: 13

> Number of cores (or streaming
processors, SPs) per SM: 192

> Total number of cores: 13 X 192 = 2496
> Clock rate: 706 MHz

> Global memory: 5 GB

> Shared memory per SM: 48 KB




Grid, Blocks & Threads

(blockldx.x, blockldx.y)

Computatlonal Grid

y grllem.x = 3 RS

7 gridDimy=2 >

blockDim.x = 4
blockDim.y = 4

cf. vproc|3], vthrd|3], vid[3], vtd|3] in hmd.c

Computational grid = a 1 or 2D grid of thread
blocks (cf. SMs); each block = a 1, 2 or 3D array
of < 512 threads (cf. SPs); the application

specifies the grid & block dimensions
—gridDim provides dimension of grid;
1 or 2 element struct: “.x” & “.y”

—blockDim provides dimension of block;
1,2 or 3 element struct: “.x”,“.y” & “z

All threads within a block execute the same
kernel (SPMD) & cooperate via shared memory,
atomic operations & barrier synchronization

Each block has a unique block ID
—blockIdx is 1 or 2 element struct

Each thread has a unique ID within the block

—threadIdx is a struct with up to 3 elements:
“.x”,“y”(@{n2o0r3D) & “.z” (in 3D) for the
innermost intermediated & Outermost index

Each thread uses the block & thread IDs to
decide what data to work on (i.e., SPMD)



Hierarchical Device Memory

Grid
Each thread can:

Block (0, 0) Block (1, 0)

= ] o e

Thread (0, 0) Thread (1,0) | Thread (0, 0) | Thread (1, 0)

* Read/write per-thread registers

* Read/write per-thread local memory

* Read/write per-block shared memory

e Read/write per-grid global memory

* Read only per-grid constant memory

1 % % %

Host “—
Host code can:

.
e Read/write per-grid global memory

 Read/write per-grid constant memory

We will only use global device memory in assignment



Device Memory Allocation

cudaMalloc()

* Allocates object in the device global
memory

* Requires two parameters:

—Address of a pointer to the
allocated object

—Size of of allocated object

cudaMalloc((void **)&sumDev, size);

cudaFree()

* Frees object from device global

memory nEE P

Grid

Block (0, 0)

| =

Block (1, 0)

|

Thread (0, 0)

Thread (1, 0)

Thread (0, 0)

Thread (1, 0)

 Parameter: Pointer to freed object

cudaFree(sumbev) ;




Host-Device Data Transfer

cudaMemcpy(dest, src, size, cmd)

* Arguments
— dest = pointer to array to receive data
— src¢ = pointer to array to source data

— size = # of bytes to transfer Grid

— cmd = transfer direction
> cudaMemcpyHostToDevice

Block (0, 0) Block (1, 0)
> cudaMemcpyDeviceToHost
e Transfer specified # of bytes * * * *
from one memory to the other
in direction Speciﬁed Thread (0, 0) Thread (1,0) | Thread (0, 0)| Thread (1, 0)

N\,
Hfﬂ

=

o

N/

cudaMemcpy (sumHost, sumDev, size, cudaMemcpyDeviceToHost);



Kernel Program for Device

e Set of threads triggered by invocation of a single kernel
e Definition Two underscores
__global 7/ void kernel fun(argument list)

\ Kernel that can be called from a host function

* Invocation
kernel fun <<<execution configuration>>> (operands)
— Range specifies set of values for thread grid

host_fun() { 4x2 grid (374 dimension not used)

dim3 dimGrid(4,2,1)/2X2x2 block
dim3 dimBlock(2,2,2)t/'
kernel fun <<<dimGrid, dimBlock>>> (operands)

}

3-element struct accessed by dimGrid.x, dimGrid.y,dimGrid. z



Built-in Variables

® dim3 gridDim;
Dimensions of the grid in blocks (gridDim. z unused)

® dim3 blockDim;
Dimensions of the block in threads

cf. vproc|3] & vthrd|3] in hmd.c

® dim3 blockIdx;
Block index within the grid

® dim3 threadIdx;
Thread index within the block

cf. vid[3] & vtd[3] in hmd.c




Calculate Pi with CUDA: pi.cu (1)

// Using CUDA device to calculate pi
#include <stdio.h>
#include <cuda.h>

#define NBIN 10000000

// Number of bins

#define NUM BLOCK 13 // Number of thread blocks

#define NUM THREAD 192

int tid;
float pi = 0;

// Kernel that executes on the CUDA device
__global__ void cal pi(float *sum, int nbin, float step, int nthreads, int nblocks) {

int i;
float x;

Offlset: how many threads before this block

int idx = blockIdx.x*blockDim.x+threadIdx.x;
for (i=idx; i< nbin; it+=nthreads*nblocks) {

X = (1i+0.5)*step;
4.0/(1.0+x*x); // Data privatization

sum[idx] +=
}
}

blockIdx.x:
threadIdx.x:
idx:

1D grid & bloc

1

«.. 191|192

0
012 ... 191 0
0|1 2

Kk gridDim.x|y = 13|1

blockDim.x|y|z = 1921|1

NBIN

// Number of threads per block

NUM_THREAD

NUM_BLOCK

// Sequential thread index across blocks

// Interleaved bin assignment to threads

191
383

0

384

Total number of threads = 13x192 = 2,496

idx =0
idx =1
v

step &

01010
012 34=NBIN-1




Calculate Pi with CUDA: pi.cu (2)

// Main routine that executes on the host
int main(void) { ‘/13

dim3 dimGrid(NUM BLOCK,1,1y; // Grid dimensions

dim3 dimBlock (NUM THREAD?1,1); // Block dimensions

float *sumHost, *sumDev; // Pointer to host & device arrays

float step = 1.0/NBIN; // Step size

size t size = NUM BLOCK*NUM THREAD*sizeof(float); //Array memo

sumHost (float *)malloc(size); // Allocate array on host

cudaMalloc((void **) &sumDev, size); // Allocate array on devi

// Initialize array in device to 0

cudaMemset (sumDev, 0, size);

// Do calculation on device by calling CUDA kernel

cal pi <<<dimGrid, dimBlock>>> (sumDev, NBIN, step, NUM_THREAD,

// Retrieve result from device and store it in host array

cudaMemcpy (sumHost, sumDev, size, cudaMemcpyDeviceToHost);

for(tid=0; tid<NUM THREAD*NUM BLOCK; tid++) // Thread reduction
pi += sumHost[tid];

pi *= step;

Grid

Block (0, 0) Block (1, 0)

// Print results
printf ("PI $f\n",pi);

=R
e ] e e

Thread (0,0) Thread (1,0) Thread (0,0) Thread (1, 0)

! ! !
Host o

sumHo] I
.

// Cleanup
free(sumHost);
cudaFree (sumDev) ;

return 0;

ry size

ce

NUM_BLOCK) ;

Computational Grid




Summary: CUDA Computing

cudaMemcpy(, , ,cudaMemcpyHostToDevice)

copy: host nput > device
Multithreading
(SPMD¥):
big loop

copy: host <« output device

cudaMemcpy(, , ,cudaMemcpyDeviceToHost)

* Single program multiple data we have learned is called single instruction
multiple threads (SIMT) in GPU terminology



New Generations of GPUs

* Running time per molecular dynamics (MD) step on Kepler
(K20), Pascal (P100) & Volta (V100) GPUs

2

3 million-atom SiO, system

1.5}

05}

Wall time per MD step (s)

K20 P100 V100

GPU architecture




New Generations of GPUs (2)

e Use A100 at CARC
UNIFIED Al ACCELERATION

BERT-LARGE TRAINING BERT-LARGE INFERENCE

2,400 (FP32) (FP16) 7,000
2,100 3X 6,000
7X
1,800
5,000
ﬂ 1,500 ﬂ
3 8 4,000
c c
g 120 6X 3
o g 3,000
wv 9200 wv
600 1X 2,000
300 1,000
x
., o =
V100 A100 V100 A100 T4 V100  1/7" A100 A100
Al results are measured (7 MlG)

BERT Large Training (FP32 & FP16) measures Pre-Training phase, uses PyTorch including (2/3) Phase1 with Seq Len 128 and (1/3) Phase 2 with Seq Len 512,
V100 is DGX1 Server with 8xV100, A100is DGX A100 Server with 8xA100, A100 uses TF32 Tensor Core for FP32 training

BERT Large Inference uses TRT 7.1 for T4/V100, with INT8/FP16 at batch size 256. Pre-production TRT for A100, uses batch size 94 and INT8 with sparsity
ACCELERATING HPC
BERT: Bidirectional Encoder

Representations from Transformers used ,
in natural language processing (NLP) X 100

. .
ULM-FiT L5
THE
< TRANSFORMER -
1.0 V100
p - C— BERT
~, 0.5

0.0x
AMBER GROMACS LAMMPS NAMD Chroma BerkeleyGW FUN3D SPECFEM3D

Molecular Dynamlcs Physrcs Engmeermg Geo Science

x

x

Speedup

x

All results are measured
Except BerkeleyGW, V100 used is single V100 SXM2. A100 used is single A100 SXM4

.
Cf P ‘to rC h G P l l e n I n e More apps detail: AMBER based on PME-Cellulose, GROMACS with STMV (h-bond), LAMMPS with Atomic Fluid LJ-2.5, NAMD with v3.0a1 STMV_NVE
N Chroma with szscl21_24_128, FUN3D with dpw, RTM with Isotropic Radius 4 10243, SPECFEM3D with Cartesian four material model

BerkeleyGW based on Chi Sum and uses 8xV100 in DGX-1, vs 8xA100in DGX A100



https://github.com/pytorch/pytorch/tree/fbf274f5a7c55f58ee1f7eb9b515f23f29bff443/aten/src/ATen/native/cuda

New Generations of GPUs (3)

e H100 is here: 18,432 CUDA cores & 640 tensor cores

Up to 30X higher Al inference performance on the
largest models

Megatron chatbot inference (530 billion parameters)
4x

W
(=]
>

©
[
o

3X
2X

®
E
| I
2
0Xx

Speedup over A100
Th ghput per GPU
‘I

S
>

w
>

=]

2 seconds 1.5 seconds 1 second
GPT-3 175B Params

aaaaa
H100 to A100 Comparison Relati eeeeeeeeeee

NVIDIA A100 Tensor Core GPU  m NVIDIA H100 Tensor Core GPU H100 FP16

e Unlike general-purpose CUDA
cores, tensor cores are specialized
processing units designed for
(mixed-precision) matrix operations
in deep learning




Warp & Control Divergence

* Threads in a block are subdivided into warps (e.g.
consisting of 32 threads)

* Warps are executed in SIMD (single-instruction multiple-
data) fashion, i.e., multiple threads concurrently perform
the same operation

e CUDA provides warp-level primitives for efficient warp-
level programming

e Single instruction multiple thread (SIMT) execution model
penalizes control divergence, where ditfferent threads
execute different instructions

 Warp voting: All threads (e.g. particles) within a warp vote
on which computation to perform, with an overhead of
unnecessary computations, for example:

if (any thread in a warp wants to compute) all threads do



Massive SIMD Data-Parallel Accelerator

L PE = PE Je—l PE = PE <
F F
¥

7y 7y

¥ 1Y |

{PE *7:({%3;_—5; PE je—=1 PE |«

A7 T Fa | 3

¥ — 1Y — 1Y — 1Y
| PE #==; PE =5 PE #—2; PE |[*_

3 3 7y 3

¥ ¥ — 1Y — ¥
| PE #==) PE*=57] PE*—3] PE |¢

SIMD: single-instruction multiple data i N
Quantum dynamics on 8,192-processor . | ACU \“%U'PE ey
(128 X 64) MasPar 1208B A « Bl+C
Nakano, i N
Comput. Phys. Commun. Global router
83, 181 ('94) Frogt : System bus l

ena ( .

See lecture on pre-Beowulf parallel computing



https://aiichironakano.github.io/cs596/PreBeowulf.pdf

CSCI 596 Final Projects on GPU

* L. Peng et al., “Parallel lattice Boltzmann flow simulation
on emerging multi-core platforms,” Proc. Euro-Par, 763
(C0R)

* P. E. Small et al., “Acceleration of dynamic n-tuple

computations in many-body molecular dynamics,” Proc.
IEEE HPC Asia (C18)

* S. Tavakkol’s final project became a poster in GPU
Technology Conference (see nice videos 1 & 2)

e C. Rizzo et al., “PAR2: parallel random walk particle
tracking method for solute transport in porous media,”
Comput. Phys. Commun. 239, 265 (°19)



https://aiichironakano.github.io/cs596/Peng-pLBM-LNCS08.pdf
https://aiichironakano.github.io/cs596/Peng-pLBM-LNCS08.pdf
https://aiichironakano.github.io/cs596/Small-TupleDecompGPU-HPCAsia18.pdf
https://aiichironakano.github.io/cs596/Small-TupleDecompGPU-HPCAsia18.pdf
https://aiichironakano.github.io/cs596/Sasan-WaterWave-GTC16.pdf
https://www.nvidia.com/en-us/gtc
https://www.nvidia.com/en-us/gtc
https://www.youtube.com/watch?v=1ncB_Euuu_k&feature=youtu.be
https://www.youtube.com/watch?v=tJeGviPzwEs&feature=youtu.be
https://aiichironakano.github.io/cs596/Rizzo-PAR2-CPC19.pdf

Final Project on GPU-MD?

e J. C. Phillips et al., “Quantum-based molecular dynamics simulations
using tensor cores,” J. Chem. Phys 153, 044130 (C20)

NAMD standard GPU-offloading scheme

CPU Activity e
GPU Activity ~ force| force force] force|
Memory Activity

Persistent

NAMD single-node GPU-resident scheme

CPU Activi

GPU Ké&% forcelint/forcelintjforcejint|forcejint|forcejint|forcejint|forcejint|
Memory Activity

GPU kernel

FIG. 5. Standard GPU offload approach compared against new GPU-resident execution scheme for a single-node NAMD simulation of apolipoprotein 1 (ApoA1) in water,
consisting of 92 224 atoms. The light blue line tracks GPU activity, while the black strip tracks CPU activity. GPU force calculations are labeled “force,” and GPU integration
calculations are labeled “int.”

Domain Pair
cPy -t {immn e |

* S. Pall et al., “Heterogeneous parallelization and acceleration of
molecular dynamics simulations in GROMACS,” J. Chem. Phys. 153,

134110 (C20)

i DD
y: co

H Pair-search & ‘
MPI comm: 1 domain-decomposition MPI comm:
ive non- ¥ 1 send non-
................................. localx b .. every10:250steps  lecalf ...
'
H MD step '
= 1
i iiiidAMAsDFFT H £ A constraint
Yyyyiiiicomm H ¥ comm
\ / ]
""""" PME mesh F =
loca
B IR w w
a2 z z 2 o
8: |z |5 z =
s |ls |38 '~... 8 =
a S A uug, < 5
] = 0, I
] Balance PME - s P
T non-bonded ' a
List

Local

ocal
m N
a

* Non-local
) Bonded FH non-bonded F [~
-l ----“‘"-

pruning|

a

Local non-bonded F

cluster only interacts with 1-3 i-cluster(s), e.g., jm only with is.

+ search with inner list pruning cost 70-90% per step

Average CPU-GPU overlap:

FIG. 4. Cluster pair setups with four particles (N = 4 and M = 4). Left panel: CPU/SIMD-centric setup. All clusters with solid lines are included in the pair list of cluster iy
(green). Clusters with filled circles have interactions within the buffered cutoff (green dashed line) of at least one particle in i1, while particles in clusters intersected by the
buffered cutoff that fall outside of it represent an extra implicit buffer. Right panel: hierarchical super-clusters on GPUs. Clusters i1—is (green, magenta, red, and blue) are
grouped into a super-cluster. Dashed lines represent buffered cutoffs of each i-cluster. Clusters with any particle in any region will be included in the common pairr list. Particles
of j-clusters in the joint list are illustrated by discs filled in black to gray; black indicates clusters that interact with all four i-clusters, while lighter gray shading indicates that a

Thread blocking


https://aiichironakano.github.io/cs596/Phillips-NAMD-GPU-JCP20.pdf
https://aiichironakano.github.io/cs596/Pall-GROMACS-GPU-JCP20.pdf
https://aiichironakano.github.io/cs596/Pall-GROMACS-GPU-JCP20.pdf

Final Project on GPU-MD? (2)

e Machine learning (ML) interatomic potentials take full advantage of tensor
cores & other ML accelerators

> W. Jia et al., “Pushing the limit of molecular dynamics with ab initio

accuracy to 100 million atoms with machine learning,” Gordon Bell prize,
SC (20

> K. Nguyen-Cong et al., “Billion atom molecular dynamics simulations of

carbon at extreme conditions and experimental time and length scales,”
Gordon Bell finalist, SC ("21)

> A. Musaelian et al., “Scaling the leading accuracy of deep equivariant

models to biomolecular simulations of realistic size (Allegro model),”
Gordon Bell finalist, SC (°23)

> H. Ibayashi et al., “Allegro-Legato: scalable, fast, and robust neural-
network quantum molecular dynamics via sharpness-aware
minimization,” /SC (’23)

THE JOURNAL OF THE JOURNAL OF

PHYSICAL CHEMISTRY PHYSICAL CHEMISTRY

3 -(/ \ . )
l,egr A o Allegro L\eg_@

https://github.com/mir-group/allegro



https://aiichironakano.github.io/cs596/Jia-DeePMD-SC20.pdf
https://aiichironakano.github.io/cs596/NguyenCong-SNAPMD-Summit-SC21.pdf
https://aiichironakano.github.io/cs596/Musaelian-Allegro-v2-SC23.pdf
https://aiichironakano.github.io/cs596/Ibayashi-AllegroLegato-ISC23.pdf

Final Project on GPU-MD? (3)

e J. Finkelstein ef al., “Quantum-based molecular dynamics simulations
using tensor cores,” J. Chem. Theo. Comput. 17, 6180 ("21); Python code

for an associated paper is available at
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1¢00057/suppl file/ct1c00057 si 001.zip

“computational structure naturally takes
, Tensor' Pr'oceSSI "9 advantage of the exceptional processing
3 d?R/d+2 power of the tensor cores (utilizing
d?n/dt?2 FP16) and allows for high performance
in excess of 100 Tflops on a single Nvidia
A100 GPU.”

Deep-NN Electronic Structure Solver

v e i @
- ',g ; _.O.’
-0 3

Input Layer Activation Function Deep Layers Output Layer

Hlnm'_ R(T)

Map scientific computation to mixed-
precision tensor processing!



https://aiichironakano.github.io/cs596/Finkelstein-TensorCoreQMD-JCTC21.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c00057/suppl_file/ct1c00057_si_001.zip

Scientific Tensor Computing?

NVIDIA tensor cores to Google tensor processing unit (TPU) & beyond

e Joshua Finkelstein et al., “Quantum perturbation theory using tensor cores and
a deep neural network,” J. Chem. Theo. Comput. 18, 4255 (’22)

 Ryan Pederson et al., “Large scale quantum chemistry with tensor processing units,”
J. Chem. Theo. Comput. 19, 25 (°23)

Tensor processing unit (TPU) is an Al
accelerator developed by Google for
neural-network machine learning, using
Google’s own TensorFlow software

Google Cloud Says TPU-Powered Machine Learning Cluster
Delivers 9 Exaflops Aggregate Power

May 12,2022 by Doug Black

https://insidehpc.com



https://aiichironakano.github.io/cs596/Finkelstein-TensorCoreQuantumPerturbation-JCTC22.pdf
https://aiichironakano.github.io/cs596/Pederson-QuantumChemTPU-JCTC23.pdf

Aurora: Heterogeneous Future

World’s fastest
(>exaflop/s)
supercomputer?

Aurora’s compute nodes will be equipped with two Intel Xeon Scalable processors and six general-purpose GPUs based on Intel’s X architecture.
Image: Intel Corporation

GPU Architecture

X€ arch-based “Ponte Vecchio”
GPUTile-based, chiplets, HBM
stack, Foveros 3D integration, 7nm

On-Node Interconnect

CPU-GPU: PCle
GPU-GPU: X€ Link




Homogeneous Alternative: ARM

e ARM: Advanced RISC (Reduced Instruction Set Computer) Machine

* Big ARM: The world’s fastest supercomputer in 2021, Fugaku (442
petaflop/s) consists of 7.3 million ARM A64FX (2.2. GHz) cores

e Little ARM: Do-it-yourself Raspberry Pi 4 cluster can be bu1lt with 1.5 GHz
quadcore ARM Cortex-A72 processors '

48-core AG4FX processor | - Bl g

/?’;\

Water-cooled 2-socket g
Fugaku board B8

Easy to use: Any language that
runs on commonplace CPU + MPI



Where to Go from Here

e CUDA is a proprietary language for NVIDIA GPUs

* Several open languages are available

> High-level, directive-based languages
OpenACC: https://www.openacc.org

OpenMP 4.5 and later: https://www.openmp.org/specifications

> Low-level, comprehensive languages

OpenCL: https://www.khronos.org/opencl

SYCL: https://software.intel.com/content/www/us/en/develop/tools/oneapi.html



https://www.openacc.org/
https://www.openmp.org/specifications
https://www.khronos.org/opencl/
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html

