
CUDA Programming

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Computer Science

Department of Physics & Astronomy
Department of Quantitative & Computational Biology

 University of Southern California

Email: anakano@usc.edu

Goal: Multithreading on graphics processing units (GPUs);
heterogenous device concept

Graphics Processing Unit (GPU)
• GPU: A specialized processor that offloads 3D graphics

rendering from the central processing unit (CPU).
• GPGPU: General-purpose computing on GPU, by using a GPU

to perform computation traditionally handled by the CPU;
 GPU is considered as a multithreaded, massively data parallel

co-processor (accelerator).
• NVIDIA Quadro, Tesla & newer GPUs are capable of general-

purpose computing with the use of Compute Unified Device
Architecture (CUDA).

NVIDIA H100 (18,432 CUDA cores & 640 tensor cores)

CUDA

• Compute Unified Device Architecture

• Integrated host (CPU) + device (GPU) application
programming interface based on C language,
developed at NVIDIA

• CUDA homepage
 http://www.nvidia.com/object/cuda_home.html

• Widely used in the deep-learning community
 https://www.deeplearningbook.org/contents/applications.html

How to program GPGPU?

http://www.nvidia.com/object/cuda_home.html
https://www.deeplearningbook.org/contents/applications.html

Nvidia and Competitors

June 18, 2024

• CUDA was developed by Nvidia

Jensen Huang
• World’s fastest supercomputers are accelerated by AMD, Intel & Nvidia

GPUs [https://www.top500.org]

Using CUDA on Discovery

• Add the following commands in .bashrc in your home directory
module purge
module load usc/8.3.0
module load cuda

• Compilation
 nvcc -o pi pi.cu

• Submit a Slurm script
 #!/bin/bash
 #SBATCH --nodes=1
 #SBATCH --ntasks-per-node=1
 #SBATCH --gres=gpu:1
 #SBATCH --time=00:00:59
 #SBATCH --output=pi.out
 #SBATCH -A anakano_429
 ./pi

https://aiichironakano.github.io/cs596/src/cuda/pi.cu

https://aiichironakano.github.io/cs596/src/cuda/pi.cu

Example of NVIDIA GPU at CARC

• Host (CPU)
 > Dual octacore (2 ´ 8 = 16) Intel Xeon
 > Clock rate: 2.4 GHz
 > Memory: 64 GB

• Device (GPU): Dual NVIDIA Tesla K20m
 > Number of streaming
 multiprocessors (SMs) per GPU: 13
 > Number of cores (or streaming
 processors, SPs) per SM: 192
 > Total number of cores: 13 × 192 = 2496
 > Clock rate: 706 MHz
 > Global memory: 5 GB
 > Shared memory per SM: 48 KB

Grid, Blocks & Threads
• Computational grid = a 1 or 2D grid of thread

blocks (cf. SMs); each block = a 1, 2 or 3D array
of ≤ 512 threads (cf. SPs); the application
specifies the grid & block dimensions

 —gridDim provides dimension of grid;
 1 or 2 element struct: “.x” & “.y”
 —blockDim provides dimension of block;
 1, 2 or 3 element struct: “.x ”, “.y ” & “.z ”
• All threads within a block execute the same

kernel (SPMD) & cooperate via shared memory,
atomic operations & barrier synchronization

• Each block has a unique block ID
 —blockIdx is 1 or 2 element struct
• Each thread has a unique ID within the block
 —threadIdx is a struct with up to 3 elements:
 “.x ”, “.y ” (in 2 or 3D) & “.z ” (in 3D) for the
 innermost, intermediated & outermost index
• Each thread uses the block & thread IDs to

decide what data to work on (i.e., SPMD)

gridDim.x = 3
gridDim.y = 2

blockDim.x = 4
blockDim.y = 4

(blockIdx.x, blockIdx.y)

(threadIdx.x, threadIdx.y)

cf. vproc[3], vthrd[3], vid[3], vtd[3] in hmd.c

Hierarchical Device Memory

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Each thread can:
• Read/write per-thread registers
• Read/write per-thread local memory
• Read/write per-block shared memory
• Read/write per-grid global memory
• Read only per-grid constant memory

Host code can:
• Read/write per-grid global memory
• Read/write per-grid constant memory

We will only use global device memory in assignment

Device Memory Allocation
cudaMalloc()
• Allocates object in the device global

memory
• Requires two parameters:
 —Address of a pointer to the
 allocated object
 —Size of of allocated object
cudaMalloc((void **)&sumDev, size);

cudaFree()
• Frees object from device global

memory
• Parameter: Pointer to freed object
cudaFree(sumDev);

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Host-Device Data Transfer

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

cudaMemcpy(dest, src, size, cmd)
• Arguments
 – dest = pointer to array to receive data
 – src = pointer to array to source data
 – size = # of bytes to transfer
 – cmd = transfer direction
 > cudaMemcpyHostToDevice
 > cudaMemcpyDeviceToHost
• Transfer specified # of bytes
 from one memory to the other
 in direction specified

cudaMemcpy(sumHost, sumDev, size, cudaMemcpyDeviceToHost);

Kernel Program for Device

• Set of threads triggered by invocation of a single kernel
• Definition
 __global__ void kernel_fun(argument_list)

• Invocation
 kernel_fun <<<execution configuration>>> (operands)
 – Range specifies set of values for thread grid

Kernel that can be called from a host function

host_fun() {
 ...
 dim3 dimGrid(4,2,1)
 dim3 dimBlock(2,2,2)
 kernel_fun <<<dimGrid, dimBlock>>> (operands)
 ...
}

4×2 grid (3rd dimension not used)

2×2×2 block

3-element struct accessed by dimGrid.x, dimGrid.y, dimGrid.z

Two underscores

Built-in Variables

• dim3 gridDim;
 Dimensions of the grid in blocks (gridDim.z unused)
• dim3 blockDim;
 Dimensions of the block in threads

• dim3 blockIdx;
 Block index within the grid
• dim3 threadIdx;
 Thread index within the block

cf. vid[3] & vtd[3] in hmd.c

cf. vproc[3] & vthrd[3] in hmd.c

Calculate Pi with CUDA: pi.cu (1)
// Using CUDA device to calculate pi
#include <stdio.h>
#include <cuda.h>

#define NBIN 10000000 // Number of bins
#define NUM_BLOCK 13 // Number of thread blocks
#define NUM_THREAD 192 // Number of threads per block
int tid;
float pi = 0;

// Kernel that executes on the CUDA device
__global__ void cal_pi(float *sum, int nbin, float step, int nthreads, int nblocks) {
 int i;
 float x;
 int idx = blockIdx.x*blockDim.x+threadIdx.x; // Sequential thread index across blocks
 for (i=idx; i< nbin; i+=nthreads*nblocks) { // Interleaved bin assignment to threads
 x = (i+0.5)*step;
 sum[idx] += 4.0/(1.0+x*x); // Data privatization
 }
}

blockIdx.x: 0 1 2
threadIdx.x: 0 1 2 ... 191 0 ... 191 0 ...
idx: 0 1 2 ... 191 192 ... 383 384 ...

gridDim.x|y = 13|1
blockDim.x|y|z = 192|1|1

Total number of threads = 13×192 = 2,496

NBIN NUM_THREAD NUM_BLOCK

step

idx = 0
idx = 1

Offset: how many threads before this block

1D grid & block

Calculate Pi with CUDA: pi.cu (2)
// Main routine that executes on the host
int main(void) {
 dim3 dimGrid(NUM_BLOCK,1,1); // Grid dimensions
 dim3 dimBlock(NUM_THREAD,1,1); // Block dimensions
 float *sumHost, *sumDev; // Pointer to host & device arrays

 float step = 1.0/NBIN; // Step size
 size_t size = NUM_BLOCK*NUM_THREAD*sizeof(float); //Array memory size
 sumHost = (float *)malloc(size); // Allocate array on host
 cudaMalloc((void **) &sumDev, size); // Allocate array on device
 // Initialize array in device to 0
 cudaMemset(sumDev, 0, size);
 // Do calculation on device by calling CUDA kernel
 cal_pi <<<dimGrid, dimBlock>>> (sumDev, NBIN, step, NUM_THREAD, NUM_BLOCK);
 // Retrieve result from device and store it in host array
 cudaMemcpy(sumHost, sumDev, size, cudaMemcpyDeviceToHost);
 for(tid=0; tid<NUM_THREAD*NUM_BLOCK; tid++) // Thread reduction
 pi += sumHost[tid];
 pi *= step;

 // Print results
 printf("PI = %f\n",pi);

 // Cleanup
 free(sumHost);
 cudaFree(sumDev);

 return 0;
}

13 192

sumDev[]
sumHost[]

Summary: CUDA Computing

copy: host device

copy: host device

Multithreading
(SPMD*):
big loop

input

output

* Single program multiple data we have learned is called single instruction
multiple threads (SIMT) in GPU terminology

cudaMemcpy(,,,cudaMemcpyDeviceToHost)

cudaMemcpy(,,,cudaMemcpyHostToDevice)

New Generations of GPUs
• Running time per molecular dynamics (MD) step on Kepler

(K20), Pascal (P100) & Volta (V100) GPUs

3 million-atom SiO2 system

New Generations of GPUs (2)
• Use A100 at CARC

cf. Pytorch GPU engine

BERT: Bidirectional Encoder
Representations from Transformers used
in natural language processing (NLP)

https://github.com/pytorch/pytorch/tree/fbf274f5a7c55f58ee1f7eb9b515f23f29bff443/aten/src/ATen/native/cuda

New Generations of GPUs (3)
• H100 is here: 18,432 CUDA cores & 640 tensor cores

• Unlike general-purpose CUDA
cores, tensor cores are specialized
processing units designed for
(mixed-precision) matrix operations
in deep learning

Warp & Control Divergence
• Threads in a block are subdivided into warps (e.g.

consisting of 32 threads)
• Warps are executed in SIMD (single-instruction multiple-

data) fashion, i.e., multiple threads concurrently perform
the same operation

• CUDA provides warp-level primitives for efficient warp-
level programming

• Single instruction multiple thread (SIMT) execution model
penalizes control divergence, where different threads
execute different instructions

• Warp voting: All threads (e.g. particles) within a warp vote
on which computation to perform, with an overhead of
unnecessary computations, for example:

 if (any thread in a warp wants to compute) all threads do

Massive SIMD Data-Parallel Accelerator

Quantum dynamics on 8,192-processor
(128 × 64) MasPar 1208B
Nakano,
Comput. Phys. Commun.
83, 181 (’94)

𝑨 ← 𝑩 + 𝑪

𝑨𝒊𝒋 ← 𝑩𝒊𝒋 + 𝑪𝒊𝒋

See lecture on pre-Beowulf parallel computing

SIMD: single-instruction multiple data

https://aiichironakano.github.io/cs596/PreBeowulf.pdf

CSCI 596 Final Projects on GPU

• L. Peng et al., “Parallel lattice Boltzmann flow simulation
on emerging multi-core platforms,” Proc. Euro-Par, 763
(’08)

• P. E. Small et al., “Acceleration of dynamic n-tuple
computations in many-body molecular dynamics,” Proc.
IEEE HPC Asia (’18)

• S. Tavakkol’s final project became a poster in GPU
Technology Conference (see nice videos 1 & 2)

• C. Rizzo et al., “PAR2: parallel random walk particle
tracking method for solute transport in porous media,”
Comput. Phys. Commun. 239, 265 (’19)

https://aiichironakano.github.io/cs596/Peng-pLBM-LNCS08.pdf
https://aiichironakano.github.io/cs596/Peng-pLBM-LNCS08.pdf
https://aiichironakano.github.io/cs596/Small-TupleDecompGPU-HPCAsia18.pdf
https://aiichironakano.github.io/cs596/Small-TupleDecompGPU-HPCAsia18.pdf
https://aiichironakano.github.io/cs596/Sasan-WaterWave-GTC16.pdf
https://www.nvidia.com/en-us/gtc
https://www.nvidia.com/en-us/gtc
https://www.youtube.com/watch?v=1ncB_Euuu_k&feature=youtu.be
https://www.youtube.com/watch?v=tJeGviPzwEs&feature=youtu.be
https://aiichironakano.github.io/cs596/Rizzo-PAR2-CPC19.pdf

Final Project on GPU-MD?
• J. C. Phillips et al., “Quantum-based molecular dynamics simulations

using tensor cores,” J. Chem. Phys 153, 044130 (’20)

• S. Pall et al., “Heterogeneous parallelization and acceleration of
molecular dynamics simulations in GROMACS,” J. Chem. Phys. 153,
134110 (’20)

Persistent
GPU kernel

Thread blocking

https://aiichironakano.github.io/cs596/Phillips-NAMD-GPU-JCP20.pdf
https://aiichironakano.github.io/cs596/Pall-GROMACS-GPU-JCP20.pdf
https://aiichironakano.github.io/cs596/Pall-GROMACS-GPU-JCP20.pdf

Final Project on GPU-MD? (2)
• Machine learning (ML) interatomic potentials take full advantage of tensor

cores & other ML accelerators
> W. Jia et al., “Pushing the limit of molecular dynamics with ab initio

accuracy to 100 million atoms with machine learning,” Gordon Bell prize,
SC (’20)

> K. Nguyen-Cong et al., “Billion atom molecular dynamics simulations of
carbon at extreme conditions and experimental time and length scales,”
Gordon Bell finalist, SC (’21)

> A. Musaelian et al., “Scaling the leading accuracy of deep equivariant
models to biomolecular simulations of realistic size (Allegro model),”
Gordon Bell finalist, SC (’23)

> H. Ibayashi et al., “Allegro-Legato: scalable, fast, and robust neural-
network quantum molecular dynamics via sharpness-aware
minimization,” ISC (’23)

🤝
https://github.com/mir-group/allegro

https://aiichironakano.github.io/cs596/Jia-DeePMD-SC20.pdf
https://aiichironakano.github.io/cs596/NguyenCong-SNAPMD-Summit-SC21.pdf
https://aiichironakano.github.io/cs596/Musaelian-Allegro-v2-SC23.pdf
https://aiichironakano.github.io/cs596/Ibayashi-AllegroLegato-ISC23.pdf

Final Project on GPU-MD? (3)
• J. Finkelstein et al., “Quantum-based molecular dynamics simulations

using tensor cores,” J. Chem. Theo. Comput. 17, 6180 (’21); Python code
for an associated paper is available at
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c00057/suppl_file/ct1c00057_si_001.zip

“computational structure naturally takes
advantage of the exceptional processing
power of the tensor cores (utilizing
FP16) and allows for high performance
in excess of 100 Tflops on a single Nvidia
A100 GPU.”

Map scientific computation to mixed-
precision tensor processing!

https://aiichironakano.github.io/cs596/Finkelstein-TensorCoreQMD-JCTC21.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c00057/suppl_file/ct1c00057_si_001.zip

Scientific Tensor Computing?

• Joshua Finkelstein et al., “Quantum perturbation theory using tensor cores and
a deep neural network,” J. Chem. Theo. Comput. 18, 4255 (’22)

NVIDIA tensor cores to Google tensor processing unit (TPU) & beyond

• Ryan Pederson et al., “Large scale quantum chemistry with tensor processing units,”
J. Chem. Theo. Comput. 19, 25 (’23)

Joshua

Tokyo, Aug. ’23

Tensor processing unit (TPU) is an AI
accelerator developed by Google for
neural-network machine learning, using
Google’s own TensorFlow software

https://insidehpc.com

https://aiichironakano.github.io/cs596/Finkelstein-TensorCoreQuantumPerturbation-JCTC22.pdf
https://aiichironakano.github.io/cs596/Pederson-QuantumChemTPU-JCTC23.pdf

Aurora: Heterogeneous Future

World’s fastest
(>exaflop/s)

supercomputer?

Homogeneous Alternative: ARM
• ARM: Advanced RISC (Reduced Instruction Set Computer) Machine
• Big ARM: The world’s fastest supercomputer in 2021, Fugaku (442

petaflop/s) consists of 7.3 million ARM A64FX (2.2. GHz) cores
• Little ARM: Do-it-yourself Raspberry Pi 4 cluster can be built with 1.5 GHz

quadcore ARM Cortex-A72 processors

48-core A64FX processor

Raspberry Pi 4

Water-cooled 2-socket
Fugaku board

Easy to use: Any language that
runs on commonplace CPU + MPI

Where to Go from Here

• CUDA is a proprietary language for NVIDIA GPUs

• Several open languages are available

 > High-level, directive-based languages
 OpenACC: https://www.openacc.org

 OpenMP 4.5 and later: https://www.openmp.org/specifications

 > Low-level, comprehensive languages
 OpenCL: https://www.khronos.org/opencl

 SYCL: https://software.intel.com/content/www/us/en/develop/tools/oneapi.html

https://www.openacc.org/
https://www.openmp.org/specifications
https://www.khronos.org/opencl/
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html

