
How to analyse large and complex data sets has become 
one of the most difficult problems facing the scientific 
community. There are many reasons this is so, but two 
reasons stand out. First, if we compare present-​day 
research with the scientific work done by Galileo Galilei 
and Johannes Kepler, we can see that the data they used 
were small and simple, in that they consisted of a small 
number of observations. Furthermore, each observation 
consisted of a small set of numbers (that is, features), 
such as the 3D coordinates of an object. As a result, one 
could hope to analyse the data ‘by hand’. By contrast, 
the size of the data scientists currently attempt to study 
has grown tremendously, both in terms of the number 
of observations and the number of features — consider, 
for example, X-​ray imaging data1 or particle physics 
data from synchrotrons2 — and the techniques required 
to understand it go far beyond what was available to 
Galileo and Kepler. In short, the set of rows and the set 
of columns of the data matrices are very large.

The size of data creates computational problems for 
storage as well as computation. However, the second 
stand-​out reason that data analysis is now so challenging 
is a purely data analytic issue. This issue is the need for 
unsupervised analysis, which is made much more diffi-
cult by the presence of very large numbers of features. In 
the past, scientists often had particular models or fami-
lies of models in mind, and the data analysis was used to 
verify the hypotheses. For many of the problems that are 
now arising, we do not have a model in mind. Indeed, 
the goal of the analysis is to discover models from among 
a very large set of variables (that is, columns of the data 
matrix). In summary, the size of the data matrix creates 
substantial problems for all types of analysis.

There are, however, important challenges beyond  
the size of data sets. One of these is the complexity of the 
data. In fact, even small data sets can present problems 

of interpretation. The complexity comes in at least two 
distinct forms.

The first type of complexity is what might be called 
format complexity, in that the way the data is organized 
or presented creates difficulties. Consider, for example, 
a data set consisting of complex molecules. Each mole-
cule is represented as a collection of atoms with atomic 
weights, and a collection of bonds and lengths of those 
bonds. If we order the atoms, then such a data set might 
be stored as an ordered list of atomic weights, followed 
by a list of triples describing the bonds. The triple would 
include a pair of integers, namely the indices of the 
atoms comprising the bond, and a real number, which 
is the length of the bond. For example, a water molecule 
might be encoded as (wH, wH, wO, (1, 3, l), (2, 3, l)), where 
wH and wO represent the atomic weights of hydrogen 
and oxygen, respectively, l represents the length of the 
oxygen–hydrogen bond in water, and the vector (1, 3, l)  
represents the bond from the first atom (hydrogen) to 
the third atom (oxygen). It is possible to represent any 
molecule in this way, but a collection of such lists is dif-
ficult to analyse because there are many representations 
of the same molecule, due to the ordering of the list. 
This multiplicity of representations makes it difficult 
to construct appropriate features or coordinates for the 
data. Similar problems arise in the study of text data, in 
which the data in its native form is a list of documents, 
each of which is a list of words. Words are not typically 
of the same length, and thus feature generation can also 
be a challenge.

The second kind of complexity is structural com-
plexity, and applies even to data sets consisting of data 
matrices with numerical entries. Consider, for exam-
ple, a data set of major league baseball players, in which 
numerous features concerning hitting are tracked, such 
as batting average, runs batted in, home runs and walks. 

Features
In any data set, the features 
are the various numerical 
quantities attached to data 
points. In a data matrix,  
they are the columns of the 
matrix, and the rows are  
the data points.
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Abstract | The analysis of large and complex data sets is one of the most important problems 
facing the scientific community, and physics in particular. One response to this challenge has 
been the development of topological data analysis (TDA), which models data by graphs or 
networks rather than by linear algebraic (matrix) methods or cluster analysis. TDA represents  
the shape of the data (suitably defined) in a combinatorial fashion. Methods for measuring shape 
have been developed within mathematics, providing a toolkit referred to as homology. In working 
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of the data set. There is a suite of methods for constructing vector representations of various 
kinds of unstructured data. In this Review, we sketch the basics of TDA and provide examples 
where this kind of analysis has been carried out.
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In looking at this data, there are certain key properties 
that are evident, for example, that there are different 
types of player with different specialties — pitchers tend 
not to be good hitters. There are also different styles of 
play, which makes the analysis of the data set of types 
of player difficult. For instance, some batters are singles 
hitters with high averages and others are power hit-
ters with low averages. These observations lead to the 
decomposition of the set of players into groups. Some 
of these groups might overlap, meaning that the data 
should not be thought of as a disjoint union; the decom-
position is a so-​called soft clustering decomposition. Data 
exhibiting this kind of complexity are often not conven-
iently modelled by algebraic methods, such as princi-
pal component analysis or linear regression. Because of 
the fact that the groups may overlap, it is also often not 
well modelled by clustering methods such as k-​means 
clustering or hierarchical clustering3. Such problems 
suggest the need for a different organizing princi-
ple for large and complex data, and particularly for a 
method that extracts information from soft clustering 
decompositions into geometric information. Geometric 
information is extremely useful because it can encode 
both discrete information, such as a decomposition of a 
data set into discrete groups, and continuous variation 
within the data. The organizing principle we will discuss 
is topological modelling, which refers to the construc-
tion of graphs and simplicial complexes (defined below) 
to represent data sets and similarity relations on them. 
Topology is a highly developed subdiscipline within 
mathematics, which concerns itself with the study of 
shape.

The field of topology studies objects generically 
referred to as ‘spaces’. For the purpose of this Review, 
a space is simply a subset of n-​dimensional Euclidean 
space nR . Such a subset is simply a set of vectors of length 
n, and a large fraction of data analytic problems deal 
with such sets. Sets that are not given directly in this 
form can often be transformed into sets of vectors. The 
term ‘space’ is used to evoke the geometry coming from 
the natural extension of Euclidean distances in dimen-
sions two and three to higher dimensions. The subject 
has two main threads — geometric topology and alge-
braic topology. Geometric topology studies geometric 

objects (possibly in high dimensions) directly, in par-
ticular dealing with theorems that assert that particu-
lar spaces can be represented usefully in combinatorial 
ways. Algebraic topology develops tools for ‘measuring’ 
shape, by performing sophisticated counting procedures 
that count the number of occurrences of geometric fea-
tures of a certain kind. For example, one such feature 
would be the number of connected components, or the 
number of independent loops within a space. What has 
been initiated in the past 15–20 years is the extension of 
both these threads within topology to point clouds, that 
is, finite data sets. For purposes of this Review, this will 
just mean finite, but possibly large, subsets of Rn. Point 
clouds inherit the distance function from Rn, which can 
be thought of as a dissimilarity measure. We will occa-
sionally allow ourselves more general notions of distance 
functions and spaces, called metrics and metric spaces4. 
These notions provide an abstraction of the notion of 
distance from Euclidean spaces, which will be useful in 
studying unstructured data such as molecules. Thus, 
all spaces are metric spaces and point clouds are finite 
metric spaces.

This Review aims to give the reader a high-​level view 
of both the geometric and algebraic aspects of topology, 
particularly as adapted to the study of point clouds, and 
to do so in a way that minimizes the mathematical pre-
requisites required. A number of explicit applications 
are shown, to give an indication of the possibilities for 
the methods. A brief guide to available software for 
topological data analysis (TDA) is also included.

The main serious mathematical prerequisite is matrix 
algebra, with the wrinkle that the algebra uses modular 
arithmetic with modulus 2 (ref.5). That is, the entries 
of the matrices are in the set {0, 1}, where addition is 
‘exclusive or’ and multiplication is ‘and’. The properties 
of matrix algebra we use are all analogues of properties 
that hold for ordinary matrix algebra with real numbers. 
It will also useful to know the definitions of graphs, in 
the computer science or combinatorics sense.

To go beyond the present discussion, please see the 
more detailed resources in refs6,7.

Topological modelling
To give an idea of what is meant by the shape of a data 
set, suppose that we have a collection of points in the 
plane such as that in Fig. 1. It is a finite set of points, but 
to our eyes it has a shape, namely that of a loop. (It is not 
a perfectly round loop, but the set of points nevertheless 
exhibits loopy behaviour.) As a space, it is a discrete set 
of points, but the geometric distribution of the points 
produces the loopy structure. This kind of behaviour can 
occur in a number of situations, one being data that is 
time dependent and that exhibits periodic or recurrent 
behaviour. Another situation is data coming from the 
statistics of natural images8. In this case, the circular 
structure comes from a parametrization of edge patches 
by an angular coordinate. We would like to obtain mod-
els of the data set that reflect this loopy behaviour, and 
to be able to detect this aspect of shape in an automatic 
fashion.

Shape is a somewhat nebulous concept, which appe
ars to be difficult to formalize and measure. By contrast, 

Key points

•	The analysis of large and complex data sets is crucial to all areas of science and 
industry, and is needed to support artificial intelligence. Existing methods for data 
analysis are often inadequate to deal with data that exhibit a great deal of complexity, 
because they are unable to express complicated ‘data shapes’.

•	Topology (the mathematical study of shape) has been extended to topological data 
analysis to give systematic graph representations of data sets, which are informative 
in many different ways. Graphs can be thought of as encoding shape.

•	Graph representations of data permit systematic unsupervised analysis of data, with a 
variety of methods for the interrogation of the data. They constitute a compression of 
the data that nevertheless preserves salient features.

•	Because of the flexibility of graph representations, methods for measuring the 
corresponding shape are required. Homology is a family of such methods. It is useful 
both for overall understanding of data sets and for generation of numerical features 
for many kinds of unstructured data.

•	Topological data analysis has been applied in many different complex data situations.

Clustering decomposition
Any method that decomposes 
a data set into disjoint groups, 
called clusters.

Space
A set equipped with a notion  
of nearness. For any positive 
integer, subsets of Rn are 
examples, and so are metric 
spaces.

Connected components
The decomposition of a space 
into disjoint pieces that are 
separated from each other, 
and which cannot be so 
decomposed further.

Metric spaces
An abstraction of the notion of 
distance in the plane. A metric 
space consists of a set X and a 
non-​negative valued distance 
function d on pairs of points in 
X, satisfying certain conditions, 
such as symmetry and the 
triangle inequality d(x, z) ≤ d(x, 
y) + d(y, z).
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graphs are simple combinatorial objects, given as a pair 
(V, E), where V is a set of points or vertices and E is a 
set of edges, that is, a set of unordered pairs of vertices. 
Graphs may be embedded in the plane for visualization 
(Fig. 2), but as a mathematical object they are simply 
the list of vertices and edges. Figure 2a depicts a graph 
in the shape of a triangle. Note that the graph is only 
the boundary of the triangle and not the interior. The 
graph is given by a list of three vertices and three edges, 
namely a,b,c,{a,b},{a,c},{b,c}. Graphs are by their nature 
1D objects, in the sense that they consist only of verti-
ces and edges, where edges are simplices with only two 
vertices. One can extend the notion of graphs to that 
of simplicial complexes, where one permits simplices 
that are higher-​dimensional edges, or faces, which 
correspond to unordered n-​tuples of vertices for n > 2. 
Adjoining higher-​dimensional faces is critical when the 
space is more than 1D, such as a sphere. A spherical 
data set could be given by the positions of a system of 
sensors distributed around the Earth. See ref.4 or ref.9 
for a thorough discussion of simplicial complexes and 
related constructions. Figure 2b depicts such a simpli-
cial complex. It is encoded by a list of vertices, edges 
and faces: e,f,g,h,{e,f},{e,g},{e,h}, {f,h}, {g,h},{e,g,h}. The 
inclusion of the set {e,g,h} corresponds to the presence 
of the interior of the triangle with vertices e, g and h. 
This shape is 2D. The inclusion of sets of vertices of 
cardinality four allows one to include tetrahedra, and 
higher cardinalities correspond to higher-​dimensional 
versions of these shapes referred to as simplices. We 
formalize the notion of a simplicial complex as being 
given by a pair (V, ∑), where V is a finite set of vertices 
and ∑ is a collection of subsets of V, so that if a sub-
set S ⊆ V is an element of ∑ and T ⊆ S, then T is also 
an element of ∑. This condition holds for the two lists 
given above, and for 2D simplices (triangles), it means 
that if a triangle is included in the list then so are all of  
its edges.

Graphs and simplicial complexes can be viewed as 
spaces via a process called geometric realization. For 
instance, it is possible to reconstruct the shape of the 
graph in Fig. 2a directly from the list of vertices and 
edges, and this reconstruction is called geometric reali-
zation. Note that although the triangle in the figure lies 
on a 2D plane, geometric realization is not the same 
as graph drawing algorithms that seek to create graph 
layouts in 2D. Instead, geometric realization produces 
a simplicial complex in NR , where N is the number 
of vertices, which is generally a very high dimension. 
However, by moving the vertices in RN , it is typically 
possible to obtain a set in a much lower-​dimensional 
space. For example, if the complex has simplices of 
dimension at most n, that is, all simplices have n or 
fewer vertices, then the vertices of the realization can be 
moved so that the complex lies in n2 +1R . This means that 
the points of the realization can be encoded as vectors 
of length 2n + 1. The list of vertices and edges does not 
determine the exact details of the shape, including the 
lengths of the edges, but the list does determine the con-
nectivity properties. Connectivity is an informal notion 
that refers to closeness in the limit of very small scales, 
without regard for the distances at any particular scale. 

For example, a triangle might be equilateral, isosceles 
or scalene, but it is still a triangle. Similarly, a set of two 
discrete points is so whether the points are a millimetre 
or a kilometre apart.

Geometric realization is a method for producing 
geometric objects from combinatorial ones. The goal of 
modelling is to go the other way, that is, to produce sim-
plicial complexes from geometric objects. Topological 
modelling refers to any modelling procedure that pro-
duces a simplicial complex, and presumably represents 
the shape of the data. Should it be the case that the data 
are thought of as sampled (perhaps with noise) from 
a space X, one would like the complex constructed to 
be somehow comparable to X. The simplest such con-
struction is the Vietoris–Rips complex10,11, which takes 
as input a point cloud M and a threshold R, and outputs a 
simplicial complex V(X; R), the set of vertices of which is 
the set of points of M, and for which the elements of ∑(X; 
R) are the subsets {m0, m1, …, mk} for which the distance 
d(mi, mj) ≤ R for all pairs (i, j) — that is, points within the  
distance threshold are connected to each other. In  
the case of the vertices of the unit square, the Vietoris–
Rips complex at various scales R looks like the depiction 
in Fig. 3. The right-​most complex ( R2 ≤ ) is a full tetra
hedron. Note that any of these complexes also include 
all the complexes to its left. The complexes increase as 
R does.

The Vietoris–Rips complex is perhaps the simplest 
construction that can be used to assign shapes to point 
clouds. Although it is simple conceptually, it is typically 
difficult to compute with due to the very large number of 
vertices and simplices, and its approximation properties 
are not well developed, owing to the fact that it does not 
arise from a nerve construction. The nerve construc-
tion is a general and useful construction for simplicial 
complexes and is the key tool for topological model-
ling. Given a set X and a collection U U U= { , , …, }n0 1U  of 
non-​empty subsets of X, we form a simplicial complex 

Fig. 1 | statistical circle. The goal of topological modelling 
is to detect the loopy behaviour of the data points in an 
automatic and robust fashion.
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N X V Σ( ; ) = ( , )N NU  the vertices VN of which are the set 
n = {0, 1, …, n}, and where a subset {i0, i1, …, is} of n is 
in ∑N if and only if

∩ ∩ ∩ ∅U U U… ≠i i is0 1

For example, consider a space that is a fattened 
boundary of a square, covered by four rectangular sets 
that intersect at the corners of the square (Fig. 4). The 
corresponding nerve complex has one vertex for each of 
the four sets, with connections between vertices drawn 
if and only if the corresponding sets have a non-​empty 
intersection. Note that the intersections on the left part 
of Fig. 4 correspond to the edges on the right part of 
Fig. 4. When the set X is a space and the sets Ui are in 
an appropriate sense small, the nerve complex of the 
covering U  often approximates the original space X well. 
The precise statement of an approximation theorem in 
this direction is called the nerve lemma9.

There are a number of other constructions that have 
better computational and theoretical properties than 
the Vietoris–Rips complex, and which apply in differ-
ent situations. Three examples, each of which is given 
as a nerve construction on a covering, are α-​shapes12,13 
the witness complex14 and Mapper15. The first two are 
based on analogues of the Voronoi construction16, 
whereas Mapper is based on Reeb graphs17. Mapper is a 
construction based on a metric space X equipped with 
one or more projections from X to the real line. Each 
line is covered by a family of overlapping intervals, of 
identical length and identical degree of overlap. The 
inverse images of the intervals, or products of intervals, 
are each clustered using single linkage clustering, and 
these clusters create a covering of X, in which the sets 
can overlap because the intervals overlap. The nerve of 
the covering is the Mapper construction based on the 
chosen covering. This particular construction has been 
shown to be extremely useful for the direct exploratory 
study of complex data sets.

Measuring shape with homology
The notion of shape is inherently a fairly qualitative one, 
which appears not to be amenable to precise quantitative 
analysis. In fact, there is a precise method that can be used 
to distinguish between various different kinds of shape. 
It is described in detail in refs4,9. The idea is to proceed 
the way humans do in distinguishing different shapes. 

Consider the shapes given by the numbers 0 and 8.  
Humans readily recognize the distinction between them 
by counting the number of loops present in the figure. 
The zero has a single loop and the eight has two loops. 
This is a very robust way of recognizing the digits, which 
does not change under many deformations of the fig-
ures, such as shears, rotations, warping or bending, or 
under a change of viewing angle. It is, however, difficult 
to imagine a computational way of computing the num-
ber of loops. It turns out, though, that there is a method 
known as homology that performs exactly this task, and 
we sketch it here. Consider the complex in Fig. 2a. It is 
apparent that the complex has a single loop, and con-
sists of a single connected component. These are visual 
observations, but we claim that this information is con-
tained in a single matrix, called the boundary matrix. 
The boundary matrix has its rows labelled by the vertices 
of the graph, and the columns are labelled by the edges. 
The boundary matrix for the graph in Fig. 2a is

ab ac bc
a 1 1 0
b 1 0 1
c 0 1 1

The entries of the matrix are Boolean integers 
= {0, 1}B , for which addition is given by exclusive or 

(that is: 1 + 1 = 0, 1 + 0 = 1, 0 + 1 = 1, 0 + 0 = 0) and multi-
plication is given by and. This algebraic structure is also 
known as modular arithmetic with modulus 2, and its 
properties are described in ref.5. Matrices with entries 
that are in B can be manipulated in ways identical to 
matrices with real entries. In particular, the rank of a 
matrix with entries in B makes sense in the same way as 
it does for matrices with real entries. The above bound-
ary matrix above has rank equal to one, as the rows 
a + b = c. It therefore follows that the null space (which 
also has a meaning within modular matrix algebra) has 
dimension one, and that a basis is given by the vector 
represented by (1, 1, 1). Given the labelling of the col-
umns, it can be formally thought of as ab + ac + bc. If we 
permit ourselves to think of addition as union, then this 
element corresponds to the union of all the edges, which 
is a loop in X. One can show that in any graph, thought 
of as a 1D simplicial complex, there is a corresponding 
boundary matrix, and the dimension of its null space is 
the number of ‘independent cycles’. In other words, the 
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Fig. 2 | Geometric realization. a | A depiction of a graph consisting of vertices a, b and c, and edges {a,b}, {a,c} and {b,c}.  
b | A depiction of a simplicial complex consisting of vertices e, f, g and h, two-​simplex (face) {e,g,h} (shaded) and 
one-​simplices (edges) {e,f}, {e,g}, {e,h} and {f,h}. c | A graph that contains independent cycles uvy, vyx and xyz.

Covering
A covering of a set X is a 
collection of subsets of X 
whose union is all of X.  
The sets need not be disjoint.

Homology
An invariant that counts 
occurrences of geometric 
patterns, such as loops, in  
a space.
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boundary matrix of a graph can be used to identify the 
number of loops in the graph. To understand this notion, 
consider the graph in Fig. 2c. The cycles uvy, vyx and 
xyz form an independent set of cycles. The cycle uvxy is 
thought of as dependent on the two cycles uvy and vyx 
because it is a union of them, with the edge vy occurring 
twice, and therefore treated as zero as 1 + 1 = 0 in B. In 
the null space of the boundary matrix of this graph, the 
null space has dimension 3, coinciding with the maximal 
number of independent cycles.

There is also a construction dual to the null space 
construction, which assigns to an m × n matrix A with 
entries in B the quotient of the B-​vector space Bm by 
the column space of A. It can be computed using col-
umn operations in the same way that the null space is 
computed using row operations. Moreover, the dimen-
sion of the quotient is m − rank(A). The dimension of 
the quotient space of the column space of the boundary 
matrix can be interpreted as the number of connected 
components of the complex. In summary, two interest-
ing geometric invariants of a complex may be identified 
using quantities representing algebraic properties of the 
boundary matrix.

It is natural to ask whether there are similar alge-
braic properties involving other matrices that represent 
higher-​dimensional geometric properties of a complex X.  
It turns out that there are, and they are obtained as 
follows.
•	 For each k ≥ 0, there is a boundary matrix ∂k 

whose rows are identified with the k-​simplices 
of X and whose columns are identified with the 
(k + 1)-​simplices of X. An entry of the matrix ∂k is 1 
if the k-​simplex corresponding to its row is contained 
as a face in the (k + 1)-​simplex corresponding to its 
column, and is 0 otherwise.

•	The matrix product ∂ ∂k k+1⋅  exists and is identically 
zero.

•	 Emmy Noether observed that one important conse-
quence of the construction of homology is that the 
numerical quantities attached to shapes obtained 
from it are in fact equal to dimensions of certain 
vector spaces Hk(X), defined for each k ≥ 0. These are 
called the homology groups of X. The dimension of 
Hk(X) is called the kth Betti number of X, is denoted 
by βk, and in an appropriate sense counts the number 
of holes in X whose boundary is k-​dimensional.

•	The Betti number β0 is equal to the number of  
connected components of X.

•	The Betti number β1 is equal to the number of  
independent loops in X, up to homotopy.

•	 For a map of complexes f : X→ Y, there is an induced 
linear transformation Hk(X) → Hk(Y), satisfying the 
functoriality property. This property, observed by 
Emmy Noether, is critical to all applications and 
computational in the area. It means that if we have 
a composite g · f : X → Y → Z, where f : X → Y and  
g : Y → Z are continuous maps, then the induced lin-
ear transformation H g f H X H Z( ) : ( ) ( )k k k⋅ →  is equal 
to the composite linear transformation H g H f( ) ( )k k⋅ . 
This means that if we equip the homology groups 
with bases, the transformation H g f( )k ⋅  is given as 
the matrix product of the matrices corresponding to 
Hk(f) and Hk(g).

Persistent homology
We have seen that we can assign invariants (vector 
spaces) to complexes and ultimately to spaces. What we 
are interested in, though, is the ability to assign simi-
lar invariants in more discrete situations, specifically to 
point clouds. For example, given the data set shown in 
Fig. 1, it is desirable to be able to recognize automatically 
the presence of a loop in the data. We have already seen 
that homology provides such a recognition mechanism 
in the case where our space is given completely, rather 
than only through a sample. There is an extension of this 
idea to the point cloud setting, called persistent homol-
ogy, which was defined in ref.18, and developed further 
in refs19–21. Useful surveys are given in refs10,22.

What we have seen above is that we are able to assign 
complexes to point clouds in a number of systematic 
ways. One of these methods is the Vietoris–Rips complex 
described above, and it suggests that for a point cloud X 
we may define the k-​dimensional homology of X at scale 
R to be Hk(V(X, R)). This natural definition, however, 
suffers from the need to choose a scale R. In many situa-
tions, there is not a natural choice of R, and in others we 
may wish to understand the k-​dimensional homology 
of X at all scales. In fact, it is possible to define a new 
invariant that encodes the values of Hk for all values of R 
in a single mathematical object. This is possible due to 
the functoriality property introduced above. The point 
is that if we consider all values of R at once, we obtain a 
family of vector spaces {VR}R, equipped with linear trans-
formations L(R, R′) : VR → VR′ for every R ≤ R′, so that 
L(R′, R″) · L(R, R′) = L(R, R″) whenever R ≤ R′ ≤ R″. Of 
course, VR = Hk(V(X, R)), and the linear transformations 
L(R, R′) are the linear transformations induced by the 
inclusions of complexes V(X, R) ⊂ V(X, R′), illustrated 
in Fig. 3. An object of this type, defined by a family of 
vector spaces parametrized by the real numbers and with 
transformations satisfying the above properties, is called 
a persistence vector space.

Just as we have the classification of vector spaces 
(up to isomorphism) by a non-​negative integer called 
the dimension, so there is a classification of persistence 
vector spaces up to isomorphism. In the case of per-
sistence vector spaces, the replacement for the dimen-
sion is the so-​called persistence barcode. It is a finite 

a
0 ≤ R < 1

b
1 ≤ R < √2

c
 √2 ≤ R

Fig. 3 | The Vietoris–Rips complex. The four vertices are positioned on the corners  
of a unit square. For a given distance threshold R, simplices are constructed that contain 
all vertices within a distance R. The Vietoris–Rips complex for a given R consists of the 
vertices and all simplices that exist for that R value.

Simplex
A subset of Rn that is the 
convex hull of k points, where 
k ≤ n + 1. For k = 2, 3 and 4, 
simplices are intervals, 
triangles and tetrahedra, 
respectively.

Homotopy
For maps f and g between 
spaces X and Y, f, g : X → Y, f 
and g are homotopic if there is 
a continuous one-​parameter 
family of maps beginning with f 
and ending at g.
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unordered collection of intervals, which are either finite 
or half-​infinite of the form [a, +∞). Each interval cor-
responds to a feature in the k-​dimensional homology of 
X, and indicates the scale values for which that feature 
exists. For instance, a point cloud A1 may appear to be 
a sample from a circle (Fig. 5a). If we analyse the cloud 
using a method such as the Vietoris–Rips complex at 
different scale values R, we find that there are several 
loops that appear for a narrow range of R values, as 
points become connected to each other in the simpli-
cial complex constructed from the data. However, one 
loop exists for a wide range of R values, which is seen in 
the H1 barcode A2 (Fig. 5b) as a long bar. This bar is our 
indication that the data are sampled from a space with 
one loop; the short-​lived bars are taken to be noise. It is 
often useful to have another representation of barcodes, 
as pairs of points in the Euclidean plane, with the x value 
being the birth time and the y value being the death time. 
Points near the diagonal are features that exist for only a 
small range of R values; points further from the diagonal 
are persistent (Fig. 5c). Such a representation is referred 
to as a persistence diagram.

In another example, for the point cloud B1 (Fig. 5d), 
the H1 barcode B2 (Fig. 5e) and persistence diagram 
B3 (Fig. 5f) give signals for the presence of two loops. 
Barcodes can be constructed for homology of any 
dimension. The point cloud C1 (Fig. 5g) has a H0 barcode 
C2 (Fig. 5h) and a corresponding persistence diagram C3 
(Fig. 5i). The H0 barcode encodes the evolution of the con-
nected components as R increases. The case of H0 bar-
codes is a little anomalous, because it always has exactly 
one infinite interval (indicated by the right arrow), 
owing to the fact that there is always at least one con-
nected component. For all dimensions >0, the barcodes 
have no infinite intervals. The infinite interval in the  
dimension-​zero case is therefore not considered in  
the persistence diagram, because it would correspond to 
a y value of ∞. Also, the number of intervals in H0 bar-
codes is equal to the number of data points in the point 
cloud, and is therefore very large. Displaying them for 
the point clouds A1 and B1 would not have been feasible.

What we have accomplished is an extension of the 
notion of homology and Betti numbers to the world of 

point clouds. The price we pay is that we no long obtain 
integers, but instead collections of intervals, where Betti 
numbers correspond to counts of ‘long bars’, suitably 
defined.

Functional persistence
It is possible to construct persistence barcodes in other 
ways. Supposing that we have a space X equipped with 
a real-​valued function f X: R→ , then we can form a 
persistence vector space H f r{ ( ((−∞, ])}k r

−1  and corre-
sponding persistence barcode. It reflects the topology of 
the sublevel sets as they develop over increasing values  
of r, regarded as a threshold value for f. To extend this idea 
to the case of a data set D (rather than a space) equipped 
with a real-​valued function f, then we fix a choice of 
R and filter the Vietoris–Rips construction V R( , )D   
by the filtration that associates to a simplex {do, …, dk} 
the filtration value max{f(do), …, f(dk)}. Only simplices 
for which the filtration value is below some threshold are 
retained in the construction. This kind of construction 
can be quite useful in detecting geometric features that 
do not obviously come from connected components, 
loops or higher-​dimensional generalizations thereof. For 
example, suppose our problem is to distinguish the two 
letters X and Y. No straightforward homology calcula-
tion is relevant, because these letters do not have loops. 
However, they do have ends, and, in fact, X has four ends 
and Y has three. If the letters are given as images, we 
can treat each as a collection of darkened pixels. The 
pixels can be given the structure of a point cloud, as they 
are embedded in the plane, and we can fix the distance 
threshold R to be δ2 , where δ is the distance from any 
pixel to any of its four nearest neighbours. We define 
the centrality function C on any point cloud X (such  
as the set of pixels in a hand-​drawn letter) by setting 
C(p) to be the largest distance from p to any other point 
in X. Letting Δ denote the diameter of X, we can consider 
the functional persistence associated to the function 
f C(p) = Δ − C(p). The first points included in the filtra-
tion are the points with highest C values, that is, those 
that are least central in the point cloud. The pictures of 
the complexes at increasing levels of f C are given in Fig. 6.

Notice that the functional persistence barcode for the 
letter Y has only three bars, whereas for X there are four 
bars. The number of bars reflects the number of ends in 
the letter. One can use different kinds of functional per-
sistence to capture other aspects of geometric behaviour, 
for example, corners. For many interesting kinds of data, 
such functions arise very naturally in the data. For exam-
ple, in the case of complex molecules, quantities such as 
charge and electron density are of great importance, and 
can be used as the functional parameter.

Metrics on barcodes
The barcodes as defined above form a set without any 
particular structure attached. If they are to be used 
as features for the analysis of unstructured data, it is 
important to understand how they behave under small 
changes in the input data. For example, suppose that we 
have found that the persistent homology for a data set 
indicates the presence of some geometric features, such 
as loops. We might be interested in determining whether 

Diameter
In any space where we have  
a notion of distance, the 
diameter is the maximum 
distance between any pair  
of points. For example, the 
diameter of the sphere is 2.

a b

Fig. 4 | The nerve construction of a covering. a | The fattened boundary of a square  
is covered by four rectangular sets that intersect at the corners of the square. b | The 
corresponding nerve complex has one vertex for each of the four sets, with the set and 
the corresponding vertex having the same colour. Connections between vertices are 
drawn if and only if the corresponding sets have a non-​empty intersection.
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the observed structure is meaningful, and one way to 
convince oneself that this is the case is to select multi-
ple samples and see whether they generate results that 
are similar, but not necessarily identical. To do so, one 
needs to formalize the notion of similarity of barcodes. A 
simple and useful way to do this is by imposing a metric 
space structure on the set of barcodes. This can be done 
in numerous distinct ways. There are stability theorems 
that assert that small changes in the input data (suitably 
defined) produce small changes, in terms of the distance 
between barcodes, of the output. We sketch one met
ric between barcodes, and outline the stability properties  
for it that can be proven. Alternative choices of metric 
are defined in refs23–25.

The bottleneck distance is a kind of edit distance 
between barcodes, for which one is allowed to edit a 
barcode by adding an interval, deleting an interval and 
replacing an interval by another interval. Each edit step is  
assigned a penalty. For adding an interval, the penalty 
is the length λ of the interval being added, for deleting 
an interval the penalty is the length of the interval being 
deleted and for replacing an interval the penalty is the 
discrepancy λ I λ J λ I J( ) + ( ) − ( )∩  when the interval I is 
replaced by the interval J. The penalty of a sequence of 

edit steps is the sum of the penalties of the individual 
steps, and the bottleneck distance is the length of an 
edit sequence going from one barcode to the other of 
minimal penalty.

There are variants of this notion of distance that 
use different penalty functions, and these are called 
the p-​Wasserstein distances. The importance of these 
metrics derives from the existence of stability theorems. 
To understand the most important of these theorems, 
it is necessary to understand the so-​called Gromov–
Hausdorff distance on the collection of compact met-
ric spaces. Two metric spaces have Gromov–Hausdorff 
distance equal to zero if and only if they are isometric. 
In the case of ordinary persistent homology, for which 
the input is a metric space, the stability theorem asserts 
that if two metric distances are a distance R apart, then 
each of their persistence barcodes are at most a distance 
R apart. When one studies functional persistence, and 
has two functions on the data set whose L∞ distance is 
R, then if one generates the persistence barcodes of the 
functional persistence based on the two functions, one 
finds the barcodes are a distance ≤R apart. There are 
numerous stability theorems of this type23–25.

Vectorization of persistence barcodes
In the topology of spaces where we have complete infor-
mation about spaces rather than samples from a space, 
homology is used as an invariant that measures the 
shapes of individual data sets. Homology can be used 
to distinguish between spaces, and is often used to sug-
gest how the space is constructed. This is also done in 
applied topology (that is, in the sampled situation)8,26. 
However, there is an additional family of applications 
to the study of data that has structure that does not 
fit neatly into descriptions as data matrices. Consider, 
for example, a situation in which a data set consists of 
molecules described as lists of atoms, bonds and bond 
lengths. On the one hand, one can formulate this data 
as a data matrix, but the description of molecules as 
vectors is not unique. For example, the ordering of the 
atoms and the bonds will drastically affect the vectors, 
so the Euclidean metric on this set of vectors will not  
be meaningful. On the other hand, the molecules may be  
treated as point clouds in their own right; the distance 
between two atoms can be given using the edge path 
distance, in which one computes the minimum of the 
sum of the lengths along any path in the graph given by 
the bonds of the molecule. This approach allows us to 
compute persistence barcodes for each point of a data-
base of molecules. We can treat these barcodes as fea-
tures of the data, and they can be used to understand the 
data set, perhaps using machine learning. One problem, 
though, is that the barcodes themselves are expressed 
as unordered sets of intervals. Such an expression is not 
directly suitable for applications of machine learning, 
which typically operate on data matrices with numer-
ical entries. A solution to this problem is vectorization, 
that is, the development of methods that assign vectors 
to persistence barcodes, and therefore allow molecules 
(and other ‘unstructured data’) to be treated as struc-
tured data. There have been a number of methods for 
vectorization developed.

a b  H1 barcode c

d e  H1 barcode f

g h  H0 barcode i

Fig. 5 | Persistence barcodes for dimensions 0 and 1. Data points that form a  
loop (panel a) have a 1D homology (H1) barcode (panel b) that contains one long line 
(indicating the loop) and several shorter lines (which are noise). If the barcodes are 
plotted as death versus birth times (panel c), the loop is indicated by the single point  
with a large death time. Two loops (panel d) lead to two long bars in the H1 barcode 
(panel e) and gives the birth-​death pairs (panel f). For a data set that breaks clearly into 
components (panel g), the 0D (H0) homology barcode always has one infinitely long bar 
(panel h) indicating a connected component. This bar is omitted from the persistence 
diagram (panel i).

L∞ distance
A notion of distance for Rn in 
which the distance between 
two points is the maximum  
of the absolute values of  
the differences between the 
coordinates of the two points.
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Persistence landscapes. This is a method that assigns a 
sequence {φk} of real-​valued functions to a persistence 
barcode {(a1, b1), (a2, b2), …, (an, bn)} . It does so by first 
assigning to each interval [a, b] the function fa,b which is 
zero outside [a, b], which is equal to x − a for a x≤ ≤ a b+

2
, 

and which is equal to b − x for x b≤ ≤a b+
2 . The function 

value φk(x) is defined to be the kth-​largest value among 
the values f x( )a b( , )i i

. If k > n, we assign the value zero 
to φk(x). This function provides a number of ways of 
obtaining finite-​dimensional vectors, for instance, by 
evaluating at finite collections of values of k and x. This 
representation is shown to be stable for the bottleneck 
distance on the set of barcodes. See ref.27 for a complete 
discussion.

Persistence images. This is a method that proceeds by 
regarding barcodes through the persistence diagram 
representation, and viewing them as finite discrete sets 
of points in the plane. The idea is then to ‘blur’ the set by 
assigning a probability density function of fixed type to 
each point. Typically these will be 2D normal distribu-
tions centred at the points in question and with a fixed 
choice of variance. After a suitable recoordinatization 
of the (x,y) plane, and the multiplication by a chosen 
weighting function that vanishes on the x axis, the func-
tion can be regarded as lying in the first quadrant, and 
can therefore be regarded as an image, with the functions 
encoding greyscale values. This image is stable under the 
1-​Wasserstein distance. Details are given in ref.28.

Polynomial functions. It is also possible to write down an  
algebra of functions generated by the functions fij defined by 
f a b a b a b a b a b({( , ), ( , ), …, ( , )} = ∑ ( + ) ( − ) )ij n n s s s

i
s s

j
1 1 2 2 , 

where j ≥ 1. These functions have the property (shared 
by persistence landscapes and persistence images) that 
if all these functions agree for a pair of barcodes, then 
the two barcodes are identical. Moreover, they are stable 
for the p-​Wasserstein distances. They also have a tropical 
version, in which one considers analogues of polyno-
mials in which the role of addition is played by the max 

function, and the role of multiplication is played by addi-
tion. These tropical functions enjoy the stability property 
for bottleneck distance. See refs29,30 for details of these 
constructions.

Applications of topological modelling
We will discuss two classes of application. The first uses 
topological models (primarily Mapper)15 directly, via the 
use of layout algorithms. The second class of applications 
applies persistent homology and uses the barcode output 
to obtain useful features and gain global understanding 
of the data set.

Direct applications. In the discussion above, topological 
modelling is described as the construction of simplicial 
complexes or graphs that capture useful information 
about the data. It is useful to make this definition more 
restrictive, and we will define topological modelling as 
the construction of coverings of a data set and the analy
sis of the corresponding nerve complexes. Of the com-
plex constructors we discussed above, α-​shapes, witness  
complexes and Mapper are all of this form. Mapper 
and α-​shapes are equipped with explicit bounds on the 
dimension of the corresponding complexes. Supposing 
that we have constructed a covering U  of a data set D, 
and that we have constructed the corresponding simpli-
cial complex X, there is a great deal of functionality that 
is available within the model. These include:
•	Using standard graph layout algorithms to view the 

complex, thus providing a visualization tool for point 
clouds. This visualization is most effective when the 
complex is reasonably low dimensional. Functions 
on the vertex set of X are usefully represented by 
colourings of the vertices.

•	 Selecting subgroups on the laid-​out complex based 
on the geometric structures of X. These groups can 
be treated as data sets in their own right, and ana-
lysed to obtain a more local understanding of the data 
set. This often gives more fine-​grained information  
about D. One can select families of subgroups to obtain  
segmentations of the data set.

•	Given a function f on U , one can construct a corre-
sponding function f U  on the set of nodes of X using 
an averaging procedure, as follows. Each vertex v of X 
corresponds to a collection D D⊆v , by the definition 
of the nerve complex, and Uf v( ) can be defined to 
be the average of the function values f(v) over the set 
Dv. This procedure allows one to obtain an under-
standing of the behaviour of the function on D, and 
in particular allows for the identification of local 
‘hotspots’ of f.

•	Given a subset D D⊆0 , one can define a function on 
the set of vertices v of X to be the fraction of elements 
of Dv  that lie in 0D . In this way, one can understand 
where a chosen groups is localized in D.

•	One can obtain ‘explanations’ characterizing sub-
groups that have been selected or defined. This is 
done by considering all the variables, and for each 
computing a Kolmogorov–Smirnov score that com-
pares the distributions of the variable on the sub-
group to that on the entire set. The variables can 
then be ordered by this score, so that one obtains the 

Fig. 6 | Functional persistence barcodes. Images of the letters Y and X can be converted 
into point clouds of dark pixels. One can define a function that quantifies how far from 
the centre of the cloud each point is, and construct simplicial complexes that are filtered 
by the value of this function (left). The barcodes of this filtration (right) contain three bars 
for a shape with three ends (such as Y) and four bars for a shape with four ends (such as X).

Tropical
A tropical algebra is a version 
of algebra with addition and 
multiplication replaced by max 
or min and multiplication, 
respectively.
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variables with highest Kolmogorov–Smirnov score 
first in the list.

•	 If one has two distinct coverings U  and ′U  of D, it is 
often useful to produce layouts of the corresponding 
nerve complexes X and X′ simultaneously. This per-
mits the selection of a group of vertices in X, and then 
for each vertex v of X′ computing the percentage of 
points of vD  that lie in the subcollection of D given 
by the union of the collections corresponding to the 
selected group in X. This procedure gives a very good 
way to compare models.

•	 If we suppose that our data are given as the rows 
of a rectangular matrix, it is often useful to build a 
topological model not on the data points (rows) of 
the matrix, but rather on the columns (features) of the  
matrix. One can regard each data point of the original 
matrix as a function on the set of features, and con-
struct the corresponding function on the vertices of 
the topological model of the set of features. This pro-
cess gives a useful way to understand data sets with  
many features directly. There can be situations in 
which the number of rows is so small that building 
a useful topological model of them is not possible, 
but for which the number of features is sufficiently 
large to support such a model, and this method 
allows one to obtain useful insight about the small 
but high-​dimensional data set. By a further averaging 

procedure, one can obtain functions based on subsets 
of the data set as well.

The capabilities described above allow one to use 
topological models to interrogate data sets effectively,  
and provide a good way to search for useful subgroups and 
cohorts within a data set. We now present a few examples  
of the application of the modelling to scientific problems.

The study of dynamics of folding of biomolecules is 
a classical problem in biophysics. The folding process 
is determined by an underlying free-​energy landscape, 
which may contain local minima. Understanding these 
minima is important for understanding the folding 
process. Computer simulations are vital to this area of 
research, because experiments often cannot achieve 
sufficient resolution. In ref.31, the mapping methods 
described above are used in the simulation of a rela-
tively small molecule called an RNA hairpin to discover 
such local minima. Figure 7a shows the Mapper model 
of the space of conformations, with the corresponding 
conformations diagrammed below. The presence of a 
somewhat irregular area in the middle of the Mapper 
model was the clue to the presence of the local minima. 
The idea is that the space of conformations of the mole-
cules is large, and needs to be represented in a compact 
way that is nevertheless capable of capturing the local 
information around the minima.

100% 99% 100% 98%

23%

44%

3%

98% 100% 100%

a b

Fig. 7 | Applications of topological data analysis. a | Analysis of a 
simulation of RNA hairpin folding. The lower part shows contact maps of 
states of the molecule as it folds (from left to right). Mapper analysis of the 
simulation data (upper part) reveals two dominant pathways from  
the unfolded state to the folded. Colours indicate the value of a conditional 
density filter and the percentage labels indicate the fraction of 
configurations of the same level (based on the values of the conditional 
density filter) first included in the node. b | Infectious disease Mapper model. 

The underlying data points are 78 data points from a longitudinal study of 
three mice infected with malaria. The data points are converted into a 
network using Mapper. The network reveals a loop structure in which  
the transition from healthy to disease state is distinct from the recovery 
transition from disease to healthy state. The model is coloured by a 
quantitative measure of the presence of granulocytes, a particular type of 
white blood cell. Part a adapted with permission from ref.31, AIP Publishing. 
Part b reprinted from ref.34, CC BY 4.0.

Nature Reviews | Physics

R e v i e w s

https://creativecommons.org/licenses/by/4.0/


Spectroscopy is an important tool for many applica-
tions throughout the physical sciences and engineering. 
The data sets often have large numbers of features, and 
exhibit a great deal of complexity. References32,33 report 
on the application of topological methods to various 
problems in this area, and performing comparative 
evaluations of TDA with more conventional methods 
such as principal component analysis and hierarchi-
cal clustering, and find that TDA obtains additional 
resolution beyond both of these methods.

Reference34 reports on using topological methods 
to study the progression of infectious diseases, such as 
malaria and influenza (Fig. 7b). The idea is to use various 
physiological and genomic variables to produce a model 
for a space of states coming from the study of progres-
sion of infectious disease. The topological model for this 
situation should be a loop, where one imagines that one 
begins with the healthy state then moves along an arc as 
the disease develops, and where one traverses a much 
different arc in the return to the healthy state.

The topological model is constructed without the use 
of the time variable, and so gives a time-​invariant notion of  
the state within the disease process. It is important to 
have such a time-​invariant model, because one might 
not have information about the time of infection and the 
speed with which the states are traversed depends on resi
lience of the subjects. References34,35 go further in relat-
ing the various types of microarray data to the traversal  
of the model, and also describes a method for predicting 
whether or not a given subject will in fact recover.

There are many other applications of this kind of 
modelling. In ref.36, a domain-​specific method for con-
structing graphical models in the context of molecular 
chemistry is introduced, and ref.37 provides another exam-
ple of work in this direction. In ref.38, another domain- 
specific graph construction for the study of salt solutions 
is given. Some highlights in the biomedical domain are 
refs39–48.

Applications of persistent homology. There are numerous 
applications of persistent homology. A very interesting 
one occurs in materials science. There is a large body 
of theory that is powerful in the analysis of crystalline 
structures. Conversely, amorphous solids are much 
more difficult to characterize and analyse. One can ini-
tially study the short-​range order, that is, the statistics of 
pairs of nearest neighbours in the structure. Doing so is 
important, but is insufficient in many situations, which 
motivates the study of longer-​scale interactions, the 
medium-​range order. In addition, it has been observed 
that such materials often exhibit hierarchical structures, 
with differing phenomena occurring at various scales. 
One approach is to study the distributions of bond angle 
and dihedral angle, which gives additional information, 
but which still only gives information of the atomic 
configurations involving the second- and third-​nearest 
neighbours. To study longer-​scale interactions, one may 
consider the substance as a network, with atoms as nodes 
and bonds as edges, and perform counts of rings (closed 
edge paths in the network) of various lengths and types, 
as in ref.49. Doing so gives yet more information, but the 
method is only applicable to crystalline materials and 

continuous random networks, cannot take distances 
(bond lengths) into account and furthermore cannot 
account for hierarchical structures. Persistent homology 
provides a method that enables the systematic study of 
geometric features, such as rings, in a way that accounts 
for lengths and hierarchical structure. The material is 
studied by treating it as a point cloud in its own right, in 
which points are the atoms and the distances are given by 
3D Euclidean distance. The persistence diagrams of such 
point clouds are used in ref.50 to quantify and make pre-
cise geometric properties of several substances, namely 
silica glass, the Lennard–Jones system and Cu–Zr  
metallic glass. In the case of silica glass, for example,  
the persistence diagram classified rings in both the short- 
and medium-​range orders, found the hierarchical rela-
tionship between them, and found that the first sharp 
diffraction peak was computable from the persistence 
diagram. In addition, it was able to make predictions 
regarding elastic response. Another example of persistent 
homology applied to materials science is given in ref.51.

Another application of persistent homology is in the 
study of the effects of forces acting on dense granular 
media, which consist of collections of granular particles. 
External forces acting on a granular material produce 
complicated interparticle forces within the material. An 
isotropic external force produces an internal force field, 
the magnitude of which in a particular direction can be 
viewed as a scalar function on the set of granular particles. 
The granular particles can be viewed as a point cloud, 
and the force field gives a function on this set, which 
permits the application of functional persistence. This 
approach gives a method to produce qualitative under-
standing of this force field, including the discovery of  
local maxima and minima. Two interesting examples of 
this kind of work are refs52,53.

A different direction is in the study of complex mole-
cules, including drug discovery. Each molecule is treated 
as a finite metric space, with the atoms constituting it 
being the points and the distances computed using the 
bonds in the molecule. Analysis based on the persistence 
diagrams associated to these metric space structures has 
been successfully applied to problems in drug design54,55. 
In addition, specifically designed functional persistence 
barcodes provide features that effectively distinguish 
between molecules.

Other interesting examples includes the study of the 
distribution of matter in the Universe56,57 and the study 
of non-​covalent bonds for systems containing heavy 
elements37. These examples use persistent homology as 
a method for feature generation for data sets in which 
the elements themselves are equipped with a geometry.

Persistent homology has also been used to study 
the structure of an entire data set. Two examples of this 
notion are given in refs8,26 for applications in the study 
of statistics of natural images and in the study of viral 
evolution, respectively.

Computational aspects
A systematic survey of algorithms and implementations 
for computing the persistent homology of filtered com-
plexes was presented in ref.58, to which we direct a reader 
interested in implementing persistent homology or using 

www.nature.com/natrevphys

R e v i e w s



existing software.The years since that survey was pub-
lished have seen continued algorithmic developments 
in a variety of directions, including parallelization, effi-
cient collapse methods for large complexes and the use 
of more complicated diagrams of complexes59–62, as well 
as implementations intended for massively parallel and 
graphics processing unit architectures63–65. A toolkit for 
general data science applications is described in ref.66. In 
refs36,37, domain-​specific toolkits are developed for the 
graphical analysis of molecular and condensed systems. 
Many of the innovations in computing persistent homol-
ogy since the mid-2000s have focused on improving the 
performance of the reduction algorithm introduced 
in ref.21, but persistent homology as presented here is 
only the first version of homology. There are numerous 
extensions that required more sophisticated algorithms, 
and the ability to support them was only recently fully 
implemented in ref.67.

Outlook
TDA is still in the early stages of development. There 
are number of important research directions, which 
we summarize here. There are excellent applications to 
solid-​state physics and materials science, in which the 
persistence barcodes provide invariants of large sets of 
points distributed in the plane or in space, as in ref.50. 
The points can be used to construct density functions, 
and the sublevel sets of these functions are also of a great 
deal of interest. The same kind methodology is also 
applied to the study of the cosmic web56,57. This kind of 

application is an active area of research, with the gen-
eral idea being that one is able to attach invariants in 
a systematic way to large ensembles of objects. In this 
level of generality, there are also many applications in 
biology. Dynamical systems is another active area of 
study, in which topological invariants such as Conley 
indices68 are useful in understanding the structure of the 
dynamics69–71. Within the subject, there is a great deal 
of work being done in understanding the statistical and 
probabilistic nature of the persistence barcodes. This is 
of fundamental importance for many problems in data 
science, as one would like to do inference concerning 
shapes from the barcodes, and that cannot be done 
without a detailed understanding of distributions on 
spaces of barcodes. Another important direction is work 
towards understanding directly the stability properties 
of the Mapper construction, as well as other complex 
constructions, rather than their barcodes. This work is 
exemplified by ref.72. Persistent homology as we have 
defined it is actually the first example of the applica-
tion of diagrams of vector spaces to study data. There 
are a number of extensions, including zig-​zag persis-
tent homology73 (generally giving more refined invar-
iants than ordinary persistence) and multidimensional 
persistence74 (which permits vectors spaces that depend 
on more than one parameter). Computational prob-
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