
 

Data Parallel C++ 
Mastering DPC++ for 

Programming of 
Heterogeneous Systems 

using C++ and SYCL 
 

Chapters 1-4 
UNEDITED ADVANCE REVIEW 

COPY 
 

 
Ben Ashbaugh, James Brodman, Michael Kinsner, 
John Pennycook, Xinmin Tian, and James R. Reinders 
 

  



ii 

 

Data	 Parallel	 C++:	 Mastering	 DPC++	 for	 Programming	 of	 Heterogeneous	 Systems	
using	C++	and	SYCL	
Copyright © 2020 by Intel Corporation 

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, 
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other 
physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar 
methodology now known or hereafter developed. 

ISBN-13 (pbk): TBA 

ISBN-13 (electronic): TBA 

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a 
trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark 
owner, with no intention of infringement of the trademark. 

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to 
be taken as an expression of opinion as to whether or not they are subject to proprietary rights. 

Intel, the Intel logo, Intel Optane, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries. 

Khronos and the Khronos Group logo are trademarks of the Khronos Group Inc. in the U.S. and/or other countries. 

OpenCL and the OpenCL logo are trademarks of Apple Inc. in the U.S. and/or other countries. 

OpenMP and the OpenMP logo are trademarks of the OpenMP Architecture Review Board in the U.S. and/or other countries. 

SYCL and the SYCL logo are trademarks of the Khronos Group Inc. in the U.S. and/or other countries. 

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests are measured 
using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should 
consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product 
when combined with other products. For more complete information visit www.intel.com/benchmarks. 

Performance results are based on testing as of dates shown in configuration and may not reflect all publicly available security updates. See configuration 
disclosure for details. No product or component can be absolutely secure. 

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies 
depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at 
www.intel.com. 

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. 
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or 
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use 
with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable 
product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804. 

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the 
editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no 
warranty, express or implied, with respect to the material contained herein. 

Managing Director, Apress Media LLC: Welmoed Spahr 

Acquisitions Editor: Natalie Pao 

Development Editor: James Markham 

Coordinating Editor: Jessica Vakili 

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza, New York, NY 10004. Phone 
1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a 
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc 
is a Delaware corporation. 

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/rights-permissions.   

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses are also available for 
most titles. For more information, reference our Print and eBook Bulk Sales  web page at http://www.apress.com/bulk-sales. 

Any source code or other supplementary material referenced by the author in this book is available to readers on GitHub via the book's 
product page, located at TBA. For more detailed information, please visit http://www.apress.com/source-code 



Table of Contents  

 
iii 

Chapter 1 - Introduction ............................................................................... 1 

What is Data-Parallel Programming? ....................................................................... 2 

What are Heterogeneous Systems? .......................................................................... 3 

Enjoy the Journey – This is something BIG ................................................................ 4 

Parallel Programming in C++ .................................................................................... 4 

Journey to Parallelism, Scaling, Portability ............................................................... 4 

First look at DPC++ code ............................................................................................ 6 

Why DPC++? .............................................................................................................. 6 

Why must it be a first-class citizen? ................................................................................. 8 

Made for each other: Data parallelism and Big Data ........................................................ 8 

SYCL, DPC++, C++ ....................................................................................................... 9 

Khronos SYCL .................................................................................................................... 9 

DPC++ ............................................................................................................................... 9 

C++ ................................................................................................................................. 10 

Why Heterogeneous Systems? ................................................................................ 11 

Platform Model .............................................................................................................. 13 

Multiarchitecture (aka “Fat”) Binaries ............................................................................ 14 

Compilation Model ......................................................................................................... 14 

Truth and Fallacy of Write Once, Run Everywhere ......................................................... 15 

Direct programming ....................................................................................................... 17 

Why Data Parallelism? ............................................................................................ 18 

Think (Data) Parallel ....................................................................................................... 18 

Intranode, not multinode, parallelism .................................................................... 19 

Other Accelerator Programming Models ................................................................ 19 

Evolution of SYCL (thus far) ..................................................................................... 22 



TABLE OF CONTENTS 

 

 
iv 

March 2015 – SYCL 1.2 .................................................................................................... 22 

April 2019 – SYCL 1.2.1r5 ................................................................................................ 23 

SYCL 1.2.1r6 and beyond ................................................................................................ 23 

SYCL Provisional 2.2 ........................................................................................................ 23 
 

Chapter 2 – Where Code Executes ......................................................... 25 

Single source ........................................................................................................... 25 

Host code........................................................................................................................ 26 

Device code .................................................................................................................... 27 

Choosing a device on which to execute ................................................................... 28 

Method#1: Just run on a device (don’t care what type) .......................................... 28 

Queues ........................................................................................................................... 29 

Binding a queue to a device, when any device will do .................................................... 31 

Method#2: Using the host device for development and debugging ....................... 32 

Method#3: Using a GPU (or other accelerator)....................................................... 34 

Device types ................................................................................................................... 34 
Accelerator devices ................................................................................................................. 35 

Device selectors .............................................................................................................. 35 
When device selection fails ..................................................................................................... 38 

Method#4: Using multiple devices .......................................................................... 39 

Method#5: Custom (very specific) device selection ................................................. 40 

Writing a custom selector ............................................................................................... 40 
device_selector base class ............................................................................................. 40 
Mechanisms to score a device ................................................................................................. 41 

Three paths to device code execution on CPU .............................................................. 42 

Language constructs that generate work on a device ............................................ 43 

Introduction to the SYCL Graph ...................................................................................... 43 

Where is the device code? .............................................................................................. 44 



Table of Contents  

 
v 

Device dispatch and memory copy mechanisms ............................................................ 45 

Fallback .......................................................................................................................... 48 

 

Chapter 3 – Data Management .............................................................. 51 

The Data Management Problem ............................................................................. 52 

Device Local vs. Device Remote ............................................................................... 52 

Managing Multiple Memories ................................................................................ 53 

Explicit data movement.................................................................................................. 53 

Implicit data movement ................................................................................................. 54 

Selecting the right strategy: explicit or implicit .............................................................. 54 

USM, Buffers, and Images ....................................................................................... 55 

Unified Shared Memory .......................................................................................... 55 

Accessing memory through pointers .............................................................................. 55 

USM and Data Movement .............................................................................................. 56 
Explicit Data Movement in USM .............................................................................................. 57 
Implicit Data Movement in USM .............................................................................................. 58 

Buffers ..................................................................................................................... 59 

Creating buffers .............................................................................................................. 59 

Accessing buffers ............................................................................................................ 60 

Access Modes ................................................................................................................. 61 

Ordering the Uses of Data ....................................................................................... 62 

In-order Queues ............................................................................................................. 64 

Out-of-Order (OoO) Queues ........................................................................................... 65 

Explicit Dependences with Events .................................................................................. 65 

Implicit Dependences with Accessors ............................................................................. 67 

Choosing a Data Management Strategy ................................................................. 73 



TABLE OF CONTENTS 

 

 
vi 

 

Chapter 4 – Expressing Parallelism ....................................................... 75 

Parallelism within Kernels....................................................................................... 75 

Multi-dimensional Kernels.............................................................................................. 76 

Loops vs. Kernels ............................................................................................................ 77 

Overview of Language Features ............................................................................. 79 

Separating Kernels from Host Code ................................................................................ 79 

Different Forms of Parallel Kernel .................................................................................. 79 

Basic Data Parallel Kernels ..................................................................................... 80 

Basic Data Parallel Kernels: Execution Model ................................................................. 80 

Basic Data Parallel Kernels: Syntax ................................................................................. 81 

Basic Data Parallel Kernels: Important Classes ............................................................... 83 
The range Class ..................................................................................................................... 83 
The id Class ........................................................................................................................... 84 
The item Class ....................................................................................................................... 85 

Explicit ND-Range Kernels ....................................................................................... 86 

Explicit ND-Range Parallel Kernels: Execution Model ..................................................... 87 
Work-items ............................................................................................................................. 88 
Work-groups ........................................................................................................................... 88 
Sub-groups .............................................................................................................................. 89 

Explicit ND-Range Data Parallel Kernels: Syntax ............................................................. 91 

Explicit ND-Range Data Parallel Kernels: Important Classes ........................................... 95 
The nd_range Class .............................................................................................................. 95 
The nd_item Class ................................................................................................................ 96 
The group Class ..................................................................................................................... 97 
The sub_group Class...........................................................................................................102 

Hierarchical Parallel Kernels ................................................................................. 107 

Hierarchical Data Parallel Kernels: Execution Model .................................................... 108 

Hierarchical Data Parallel Kernels: Syntax .................................................................... 108 

Hierarchical Data Parallel Kernels: Important Classes .................................................. 112 



Table of Contents  

 
vii 

The h_item Class................................................................................................................. 112 
The private_memory Class .............................................................................................. 113 

Choosing a Kernel Form ........................................................................................ 114 

Summary ............................................................................................................... 116 

For More Information ........................................................................................... 117 

How to provide Feedback, Download Samples ..................................................... 118 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TABLE OF CONTENTS 

 

 
viii 

 

 

 

 

 

FOR THIS BOOK PREVIEW (CHAPTERS 1-4): 
ERRATA, NOTES, DOWNLOADS, FEEDBACK, ETC. 

Please check our “preview book” website for information including errata, updates, and 
downloads (includes all sample code):  https://tinyurl.com/book-dpcpp  

We will also list some additional resources as they become available. 

Your feedback is welcome.  You can email James Reinders at 
dpc++@jamesreinders.com with any suggestions, encouragement, criticism, or 
questions that you may have.  James will be sure to share any feedback that you send 
with all the authors. 

Of course – watch for the full book, by mid-2020, available from Apress (no charge for 
PDF for the completed book, print copies will be available too). 

https://tinyurl.com/book-dpcpp 

 



Preface for Chapter 1-4 Preview  

 
ix 

We are pleased to share a preview of the beginning of our new book on data parallel 

programming in C++, for Heterogeneous Systems, using DPC++.  

We have worked hard to make this text very useful — we believe it has been well-

reviewed for content and correctness. However, we are far from done on formatting at this 

point, so we ask you to look past the imperfect layout and formatting in this preview 

edition. 

While we will finish this book by mid-2020, we have decided to release the first four 

chapters to introduce DPC++ now.  This will afford you, the reader, a chance to give DPC++ 

a try, to learn, and to give us feedback. 

These four chapters form an excellent introduction to the entire topic. Remaining 

chapters will dive deeper into specific topics (we’ve attached a list at the end of this 

posting). 

All the features of DPC++, and SYCL, are supported by both the open-source and 

commercial versions of the DPC++ compilers. All examples in this book compile and work 

with either DPC++ compiler. 

Errata, Notes, Downloads, Feedback 
Please check our “preview book” website for information including errata, updates, and 

downloads (includes all sample code):  https://tinyurl.com/book-dpcpp  

We will also list some additional resources as they become available. Your 

feedback is welcome.  You can email James Reinders at dpc++@jamesreinders.com with 

any suggestions, encouragement, criticism, or questions that you may have.  James will be 

sure to share any feedback that you send with all the authors. 

oneAPI 
Visit https://oneAPI.com for information on the oneAPI. Find resources for software 

developers at https://software.intel.com/oneAPI — including the oneAPI toolkits, 

discussion forums, online training, event information, and more. 

The oneAPI website hosts some training on oneAPI, which contains a number of training 

modules dedicated to DPC++. While we expect the book to dig deeper than the online 

classes in many respects, listening to the training should be a very useful companion to the 

book. 



PREFACE FOR CHAPTER 1-4 PREVIEW 

 

 
x 

The online training also explains how to register for an online account to access the tools 

already installed with access to CPUs, GPUs, and FPGAs.  

Enjoy Learning DPC++ and SYCL 
It is our hope that our book supports and helps grow the SYCL community, as we help 

promote data parallel programming in C++ using the DPC++ compiler. 

We wish you the best as you learn DPC++, and SYCL. We welcome your feedback. 

We hope you will enjoy this preview, and be watching for the full book, by mid-2020, 

available from Apress in print, and as a free download. 

 
Michael Kinsner, 

James Brodman, 

John Pennycook, 

Xinmin Tian, 

Ben Ashbaugh, 

and James Reinders 

November, 2019 

 

 

 



CHAPTER 1 n Introduction  

 
1 

Introduction 
We are very excited to be teaching data-parallel programming for C++ in this book through 

use of DPC++ and SYCL. 

SYCL is an industry led, Khronos standard, for adding data parallelism to C++ for 

heterogeneous systems. We will define data parallelism, and heterogeneous systems, in the 

next few pages. 

DPC++ is an extension of C++, incorporating SYCL and other new features. There is 

an open-source DPC++ compiler, initially created by Intel, available from a GitHub 

repository. There is a commercial version of the DPC++ compiler, augmented with 

additional tools and libraries for DPC++ programming and support, available from Intel. 

All the features of DPC++, and SYCL, are supported by both the open-source and 

commercial versions of the DPC++ compilers. All examples in this book compile and work 

with either DPC++ compiler. 

In this book we introduce DPC++ for the first time, while also being the first full 

book teaching SYCL. 

It is our hope that this book supports and helps grow the SYCL community. 

To avoid writing “SYCL and DPC++” or “DPC++ and SYCL” over and 
over in this book, we do two things:  

(1) we speak of DPC++ in an inclusive manner, and 

(2) we speak of SYCL features with the understanding they are 
always DPC++ features as well. 

Most of the examples in this book should work with any up-to-date SYCL compiler 

including the DPC++ compilers.  Early in each chapter we clearly state when extensions 

unique to DPC++ are used. 



CHAPTER 1 n Introduction  

 
2 

DPC++ AND SYCL IN CHAPTER 1 

This chapter introduces DPC++ and SYCL. A box like this one, early in each chapter, 
will clearly state when extensions unique to DPC++ are used within the chapter. The 
sample code in this chapter does not use any DPC++ specific extensions. 

DPC++ includes all of SYCL. When something is specific to only 
DPC++, we will go out of our way to be clear. 

Our book will do considerably more than introduce — we will dive into the key 

issues and solutions that are encountered while constructing effective data-parallel 

programs, with C++, to program the powerful heterogeneous systems we have available 

today. 

What is Data-Parallel Programming? 
DPC++ and SYCL are designed to encourage and support a data-parallel programming 

style, although they do not limit us to only data-parallel programming. 

Data-parallel programming might be described as both a mindset, as well as a way 

of programming. Data is operated on in parallel by a collection of processing elements. 

Each processing element is hardware capable of some computation on the data. These 

processing elements may exist on a single device, or many devices in our computer 

systems. We specify our code to work on our data in the form of a kernel. 

When programming in a data-parallel fashion, we focus on specifying what 

operations (written as a kernel) should apply to every data element. Data-parallelism 

applies best on regular data structures like arrays and matrices because they may offer 

many opportunities for parallel computations that are easy to specify. 

An important concept in data-parallel programming is the kernel — a 
function that will be executed on a device containing processing 
elements. The term kernel is used in data-parallel programming 
including SYCL, OpenCL, CUDA, and DPC++. 



CHAPTER 1 n Introduction  

 
3 

In contrast, when programming in a task-parallel fashion, we specify a distribution 

of code among processing elements and then work to have the data travel to the 

computations as dictated by the code. 

Parallel programmers generally use elements of both data-parallel and task-

parallel programming, and therefore the features of DPC++ and SYCL are not all strictly 

data parallel only. One example is that SYCL allows running two separate submissions in 

parallel.  Blending data-parallel programming and task-parallel programming is to be 

encouraged, and we hope that will seem natural and normal after reading this book. A 

“Think Parallel” mindset will remain critical to make the most of such knowledge — know 

where your parallelism is, and have a plan to exploit it! 

DPC++ and SYCL are designed to encourage and support a data-
parallel programming style, although they do not limit us to only data-
parallel programming. 

What are Heterogeneous Systems? 
For our purposes, a heterogenous system is any system which contains multiple types of 

computational devices. For instance, a system with both a CPU (Central Processing Unit, 

often simply called a processor) and a GPU (Graphics Processing Unit, with 

computationally intensive versions often referred to as General-Purpose GPU, or GPGPUs) 

is a heterogeneous system. Today, the collection of devices includes CPUs, GPUs, FPGAs 

(Field Programmable Gate Arrays), DSPs (Digital Signal Processors), ASICs (Application 

Specific Integrated Circuits), and AI chips (graph, neuromorphic, etc.). 

Having multiple types of devices, each with different architectures and therefore 

different characteristics, leads to different programming and optimization needs for each 

device. This creates a number of challenges —helping solve these being the motivation 

behind DPC++. 

DPC++ exists to address the challenges of data-parallel 
programming for heterogeneous systems.  



CHAPTER 1 n Introduction  

 
4 

Enjoy the Journey – This is something BIG 
Seeking to support data parallelism for programming heterogeneous systems within C++ is 

no small vision.  We hope you enjoy the journey as much as we do. The emergence of both 

open source, and commercial, support for SYCL and DPC++ is strong evidence that we are 

on the cusp of something big. 

Parallel Programming in C++ 
Parallel programming is a wide and complex topic – and we focus on a key aspect of it, 

namely language support for data-parallel programming. This is distinct from, and 

complementary to, the highly portable facilities of Threading Building Blocks (TBB) and 

today’s C++ standard that address other key aspects of parallel programming. Language 

support for data parallelism is critical because it allows developers to express their data 

parallel algorithms more directly, and enables compiler optimization technologies. Prior 

efforts including OpenMP and OpenCL have given us substantial real-world experience 

upon which to build. That experience has led to a deep understanding of how critical it is 

to make data-parallel programming a first-class citizen in a programming language and 

support that directly with compiler technology. 

DPC++ is modern C++. 

DPC++ should feel familiar to C++11 programmers. 

DPC++ will act as a proving ground for C++ features supporting 
heterogeneous platforms and parallelism. 

DPC++ will provide valuable input to future ISO C++ standards. 

Journey to Parallelism, Scaling, Portability 
Parallel programming has come a long way over multiple decades and we can now better 

assess the most effective ways to support data-parallel programming. The heterogeneous 

nature of today’s computing systems must be accounted for as well. Being effective at both 

data parallelism and heterogeneous programming requires good solutions for scaling and 

portability. 



CHAPTER 1 n Introduction  

 
5 

Real Estate is all about location, location, and location. 
Parallel Programming is all about scaling, scaling, and scaling. 

Scaling is a measure of the effectiveness of parallel programming, which measures 

the degree to which a program effectively uses more parallel hardware when available. We 

must never lose sight of the objective, for any parallel programming system, to allow for 

effective scaling. This includes scaling as we move our application across platforms. 

Heterogeneous platforms confound the problem because different architectures can have 

substantially different needs. We do not pretend that DPC++ solves scaling and all 

heterogeneous platform needs for us. Rather, DPC++ is a tool that allows us to succeed by 

helping us to deal with issues that would otherwise interfere with our scaling goals, and by 

offering us techniques to address the needs of heterogeneous platforms. That may sound 

easier than it is; that DPC++ succeeds at this is quite an accomplishment. 

DPC++ forms a solid foundation on which to build scalable portable 
applications. 

Portability is a complex topic and includes the concept of functional portability (the 

program works) as well as performance portability (the program achieves high performance 

when ported to a new machine). DPC++ addresses both by giving us, as programmers, the 

tools we need to succeed. DPC++ does not magically make the issues disappear — DPC++ 

forms a solid foundation on which to build portable applications that also scale. Not every 

program can scale, but DPC++ helps us when they can — and even then, we are 

responsible for devising an effective plan for performance portability ourselves as 

programmers. 

Constantly question your own approaches with respect to their 
impact on both scaling and the multiple facets of portability. 

We will touch on scaling and performance portability throughout this book. We 

will teach to reinforce both capabilities, usually without dwelling on them specifically. We 

encourage you to constantly question your own approaches with respect to their impact 

on both scaling and the multiple facets of portability for your own applications. 



CHAPTER 1 n Introduction  

 
6 

First look at DPC++ code 
Figure 1-1 shows a sample SYCL program. In this example, only a short segment of code is 

destined to run on a device (the default accelerator if one exists on the system, or the host 

via the always available host device if no accelerator is present). Coding in DPC++ or SYCL 

has a “single source” property, which means that host code and device code can exist 

within the same source file. This is illustrated in the example in Figure 1-1. Supporting 

single source allows host and device code to be easily considered, and also optimized, 

together by a compiler. This, it turns out, is a critical advantage in using DPC++ or SYCL. 

DPC++ and SYCL also allow for compilation of the device code to be completed at runtime 

for more flexibility. Even in such a case, significant optimization can occur, in advance, 

during the compilation of the application. We will discuss this more in an upcoming 

section on the Compilation Model. 

In Figure 1-1, the motivations for chapters 2, 3, 4 are highlighted. Chapter 2 will 

describe how to control where our code runs — in other words, on what device(s) code will 

run. Chapter 3 will describe how to manage data effectively — so that it shows up where 

and when it is needed. Chapter 4 will describe how to write kernels — the essence of code 

to be run on a device. Additional chapters follow to expand on the basics learned in the 

first four chapters. 

Why DPC++? 
There are several reasons that DPC++ is needed, and is the right answer for us today: 

• We need to address the critical need for supporting data-parallel 

programming as a first-class citizen — it needs to be portable, high-

level, and non-proprietary while addressing modern heterogeneous 

computer architectures. 

• We want the same programming environment across host and device 

code: support for modern C++ features (in particular, templates), better 

type safety, and for data parallel code to look and feel like sequential 

code. 



CHAPTER 1 n Introduction  

 
7 

• The future of computer architecture includes accelerators that span 

scalar, vector, matrix, and spatial (SVMS) operations (coming up in 

Figure 1-2); support for heterogeneous machines including the SVMS 

capabilities are needed. Support should span highly complex and 

programmable devices, as well as fixed function or specialized devices 

that are less programmable. 

 

Figure 1-1: First look at DPC++/SYCL programming	



CHAPTER 1 n Introduction  

 
8 

• When targeting multiple architectures (e.g., CPUs., GPUs, FPGAs), 

access to performance is important – even if it takes programmer 

effort. Hiding the controls where a programmer cannot access them is 

unacceptable. 

• Programming should expose higher level abstractions and language 

mechanisms than those presented by OpenCL or CUDA, and in a non-

proprietary form.  Doing so will give us higher programmer 

productivity and lower the barrier to entry for new programmers. 

DPC++ addresses all of these needs. DPC++ serves as an open alternative to 

proprietary, device-specific languages. 

Why must it be a first-class citizen? 
We use the phrase ‘first-class citizen in the language’ to express a need that the features we 

discuss be a known part of the language, so that it is both portable and can be well 

supported (and especially optimized!) by a compiler. 

A compiler "knowing" SYCL and DPC++ will always be able to generate parallel 

code more effectively than a pure template library approach. However, we must note that 

SYCL and DPC++, are technically implementable as template libraries. They do not rely on 

new keywords or syntactic changes to C++.  Nevertheless, effective implementations of 

DPC++ or SYCL do require compile support and a tuned runtime. This differs from 

Threading Building Blocks (TBB), which relies only on its template implementation and 

does not require modified compilers for performance. The DPC++ approach is similar to 

OpenMP, which will compile with any compiler, but will not yield benefits without an 

optimizing compiler that “knows” OpenMP.  

Standardization into a language such as C++ is a long and careful process with 

constraints aimed to ensure a consistent experience far into the future. We hope that 

DPC++, and readers of this book, will provide valuable input into this process. 

Made for each other: Data parallelism and Big 
Data 
In addition to discussing how to program and control devices, we will also discuss data 

management repeatedly throughout this book. This is because assigning work to a device 

is complicated by data, beyond simply saying “do the work over there!” Data movement 

costs time and power and has to be managed as a first-class citizen. With data parallelism, 



CHAPTER 1 n Introduction  

 
9 

we are likely to manage a lot of data (think “Big Data”), so this is not a trivial concern. We 

cannot afford to behave like the proverbial ostrich sticking its head in the sand hoping all 

the data movement will be optimally handled with no effort from us. On the other hand, we 

hope that much of it is automatic so we can focus our programming where it matters most. 

Data parallelism and Big Data go hand-in-hand; data movement 
costs time and power, and has to be managed as a first-class citizen. 

SYCL, DPC++, C++ 
The focus of this book is “Data-Parallel C++” and it is realized via “SYCL with extensions.” 

Please allow us to explain. 

Khronos SYCL 
SYCL (pronounced ‘sickle’) represents an industry standardization effort that includes 

support for data-parallel programming for C++.  It is summarized as “C++ Single-source 

Heterogeneous Programming for OpenCL.” The SYCL standard, like OpenCL, is managed 

by the Khronos Group. 

SYCL is a cross-platform abstraction layer that builds on OpenCL. It enables code 

for heterogeneous processors to be written in a “single source” style using C++. This is not 

only useful for us as programmers, but it also gives a compiler the ability to analyze and 

optimize across the entire program regardless of the device on which the code is to be run. 

Unlike OpenCL, SYCL includes templates and lambda functions to enable higher-

level application software to be cleanly coded with optimized acceleration of kernel code. 

Developers program at a higher level than OpenCL but always have access to lower-level 

code through seamless integration with OpenCL, as well as C/C++ libraries. 

DPC++ 
In order to fully address the needs of C++ programmers, a number of features are needed 

that are not currently within SYCL. For now, critical support for Unified Shared Memory 

(USM), and subgroups, exist only in DPC++. 

The extensions we include in DPC++, to the extent they can be applied across 

many platforms, may be submitted for consideration in future SYCL specifications. We 



CHAPTER 1 n Introduction  

 
10 

cannot guarantee that they will be incorporated, or be unchanged. We do work hard in the 

SYCL community, and in our book, to minimize the need for changes.  

DPC++ includes all of SYCL. We may not dive into all aspects of DPC++ and SYCL 

in this book because our focus is teaching effective data-parallel programming. Regardless, 

all of SYCL is included in DPC++ and so these features are available even if not mentioned 

in this book. 

While we teach DPC++ and SYCL in this book – we do not intend 
this book to be an exhaustive reference for all capabilities. 

We focus on DPC++ and SYCL features (including extensions) that 
teach effective data-parallel programming. 

For the parts of DPC++ which are SYCL features, we will describe them as SYCL 

features.  For any extensions, which are not part of the SYCL specification at the time we 

write this (SYCL 1.2.1r5), we will not label them as SYCL features. Of course, the SYCL 

standard will evolve and may incorporate a feature in the future that will not be labeled as 

SYCL in this book because of the timing. 

Each chapter in this book includes a summary box near the beginning of the 

chapter as shown next. It is possible that by the time you read this book, some features we 

call out as unique to DPC++ may have been incorporated in some form by a future SYCL 

standard. We encourage you to browse our online errata (see Preface and Epilogue for 

URL), where we plan to make notes about such developments. 

DPC++ AND SYCL IN CHAPTER X 

Features that are discussed, but unique to DPC++ are called out clearly.  

Otherwise, most or all of each chapter will be SYCL features and will entirely be 
included in DPC++. 

C++ 
C++ lacks direct support for data parallelism in the language, and it lacks the controls 

needed for modern heterogeneous systems. We expect consensus to grow on the need and 



CHAPTER 1 n Introduction  

 
11 

the methods to solve these challenges. Therefore, you can see why we say that the focus of 

this book is “Data-Parallel C++” and it is realized via “SYCL with extensions.” 

Like the rest of the SYCL community, we hope many of the key features of SYCL 

will be considered for future C++ standards. Time will tell. 

Why Heterogeneous Systems? 
Heterogeneous computing matters as computer architects work to limit power 

consumption, reduce latency, and increase throughput. From the early 1990s until 2006, a 

so-called “free lunch” (continual performance boosts to virtually all applications) existed 

because processor performance was reliably doubling every two to three years, mostly 

because clock rates were doubling every couple of years. That era ended around 2006, and 

a new era of multicore and then many core processors emerged. The architectural shift to 

parallel processing gave multitasking systems a boost but did not give most existing single 

applications a performance boost without alterations in programming. This new era also 

saw accelerators, such as GPUs, gain popularity for accelerating more parts of applications 

than ever before. That gave rise to an era of heterogeneous computing, and a deluge of 

proposed accelerators with their own specialized processing capabilities, and with many 

different programming models. 

Trading Generality for Performance: Architects of Accelerators boost 
performance for specific algorithms by reducing generality. 

By being more specialized, accelerator designs can offer higher performance on 

specific problems because they do not have to be designed to handle every problem. This 

is a classic computer architecture trade-off. This generally means accelerators can only 

support subsets of the programming languages that were designed for processors. In fact, 

in DPC++ only code written in a kernel can be targeted to an accelerator. As we will see in 

Chapter 4, kernel code has some restrictions on it that do not exist for C++ code in general. 

Worrying about these restrictions would be a needless distraction because the uniqueness 

of each accelerator should be on our minds as programmers. 



CHAPTER 1 n Introduction  

 
12 

We need to think about the programming model, formulation of 
algorithms, and the types of workloads that an accelerator will 
perform well on. 

Accelerator architectures can be bucketed into broad categories that impact how 

we need to think about the programming model, formulation of algorithms, and the types 

of workloads that an accelerator will perform well on. Like all attempts to categorize, there 

are many possibilities. Figure 1-2 utilizes a taxonomy of Scalar, Vector, Matrix, and Spatial 

(SVMS).  

 

 

Figure 1-2: One possible taxonomy for highlighting unique strengths of devices within a 
heterogeneous system — should not be read to diminish the multifaceted capabilities of 
particular devices.	

CPUs are the best choice for general purpose code including scalar and decision 

making (frequently branching) code, and often have built in accelerators for vectors. GPUs 

seek to accelerate vectors, and the closely related tensors. DSPs seek to accelerate specific 

mathematical operations with low latency, often in designs dealing with analog signals 

such as a cellphone. Accelerators for AI generally seek to accelerate matrix operations, 

although some may accelerate graphs as well. FPGAs and ASICs are particularly suited to 

accelerate spatial problems, including problems expressed in terms of flow graphs or 

pipelines. 

While these buckets may be as good as any, they are only rough buckets for 

thinking — they are certainly not absolute rules. We can note that virtually all modern 



CHAPTER 1 n Introduction  

 
13 

processors have some form of vector, or even matrix, support. The point of Figure 1-2 

focuses more on observations about unique advantages, such as the fact that processors 

can prove uniquely capable at scalar when accelerators falter. Categorization can be useful 

for thinking, but we should not get hung up on them too much. 

Platform Model 
The platform model, used by SYCL and DPC++, specifies a host that coordinates and 

controls the compute work that is performed on the devices. A device is an accelerator, 

presumably with specialized capabilities. Chapter 2 describes how to assign work to 

devices, and Chapter 4 dives into how to program devices. 

As we discuss in Chapter 2, there is always a device corresponding to the host, 

known as the host device. Providing this guaranteed-to-be-available target for device code 

allows device code to be written assuming at least one device is available, even if it is the 

host itself! The choice of the devices on which to run device code is under program control 

— it is entirely our choice as programmer if, and how, we want to execute code on specific 

devices. 

Amdahl’s Law is a formula to predict the theoretical speedup when 
using multiple processors to do a fixed workload. Maximum gain from 
parallelism is limited to (1/(1-p)) where p is the fraction of the 
program that runs in parallel (e.g., 2/3rd run in parallel, limits speed-
up to 3X). 

We must take care in our program to overlap work in the system as well as to hide 

latencies caused by data movement. Otherwise, using the host to dispatch work serially 

can become a serious performance bottleneck due to Amdahl’s Law. This is why the 

programming model has us queue work to a device and not idly wait for its conclusion, 

gives methods to describe dependencies between work items, and provides numerous 

data management capabilities. These help to lower the time spent outside of parallel 

execution, as well as to free the host for doing important work itself. The most effective 

programs make efficient use of both the host and devices to get work done. 



CHAPTER 1 n Introduction  

 
14 

Multiarchitecture (aka “Fat”) Binaries 
Since our goal is to have a single source code to support a heterogeneous machine, it is 

only natural to want a single executable file to be the result. 

A multiarchitecture binary (also called a fat binary) is a single binary file that has 

been fattened (expanded) to include all the compiled and intermediate code needed for 

our heterogeneous machine. A multiarchitecture binary acts like we are used to having an 

a.out, or A.EXE, operate for us — but it contains everything needed for a heterogeneous 

machine. This helps automate the process of picking the right code to run for a particular 

machine. As we discuss next, one form of the device code in a fat binary is an intermediate 

form that defers the final code creation until runtime. 

Compilation Model 
The single source nature of SYCL and DPC++ allows compilation to “just work.” In other 

words, we do not need to know all the details of how it works because of the similarity to a 

standard C++ compilation. 

Since the compilation model supports code that executes on both a host and 

potentially several accelerators simultaneously, the commands issued by the compiler, 

linker, and other supporting tools are more complicated than the C++ compilations we are 

used to (targeting only one architecture). Welcome to a heterogeneous world! 

While this complexity is hidden from us by default and “just works,” advanced 

users may want to understand these details to better target specific architectures. 

In particular, compiling for multiple architectures presents several challenges, 

particularly because some may be known and some unknown at the time of compilation. 

The DPC++ compiler can generate target-specific executable code similar to 

traditional C++ compilers (ahead-of-time compilation, sometimes referred to as ‘offline 

kernel compilation’), or it can generate an intermediate representation that can be just-in-

time compiled to a specific target at run time.  

DPC++ compilation can be “ahead of time” or “just in time.” 

By default, when we compile our code (for most devices), the output for device 

code is in an intermediate form. At runtime, the device handler on the system will 

just-in-time compile the intermediate form into code to run on the device(s) to match what 

is available on the system. 



CHAPTER 1 n Introduction  

 
15 

We can ask the compiler to compile ahead-of-time for specific devices, or class of 

devices, in advance. This has the advantage of saving runtime, but it has the disadvantage 

of added compile time and fatter binaries! Compiling for a specific device ahead-of-time 

also helps us check at build time that our program should work on that device.  With just-

in-time, it is possible that a program will fail to compile for a specific device only when we 

try to run on it if device code uses features that are only optionally exposed by devices such 

as images. 

Figure 1-3 illustrates the compilation process from source code to fat binary 

(executable). Whatever combinations we choose are bundled together in a fat binary. The 

fat binary is employed by the runtime when the application executes and the particular 

form needed for the target device is determined at runtime.  

 

Figure 1-3: Compilation process showing ahead-of-time and just-in-time options using 
fat binary (executable). 

Truth and Fallacy of Write Once, Run 
Everywhere 
When we consider real heterogeneous systems, we might notice that the accelerators are 

there for specific reasons. The accelerators are not added into a computer design in order 

to run all the code, and in systems with multiple accelerators they are not there to be 

redundant with each other. 



CHAPTER 1 n Introduction  

 
16 

A single application may use multiple accelerators, but with specific purposes for 

each. This gives rise to two different usage scenarios to consider (illustrated in Figure 1-4 

and Figure 1-5), both of which are equally well supported by DPC++. 

In Figure 1-4, we consider that an application may use different algorithms that 

may be designed to perform on a particular type of accelerator if present. Such a program 

can run everywhere, and the CPU is used unless a well-suited accelerator is available for a 

particular algorithm. However, we do not try to make each algorithm run efficiently on all 

possible accelerators. While DPC++ code will be able run on all accelerators, there are 

options for “fallback” if and when an accelerator does not support a particular feature. We 

discuss coding for “fallback” in Chapter 2. 

  

Figure 1-4: Left: Fallback on Host (CPU) if no device present, Right: Offload different 
algorithms to the devices with best match for the needs of each algorithm. 

In Figure 1-5, we consider that some algorithms may be suitable for acceleration 

on a variety of devices. Inferencing, for instance, might be suitable for different accelerators 

— perhaps offering different tradeoffs in latency, performance, and power consumption. 

Again, such a program can be designed to run everywhere and the particular algorithm 

may be suitable for multiple accelerators. Even in this case, making each algorithm run 

efficiently on many different accelerators is likely to be a complex task. 



CHAPTER 1 n Introduction  

 
17 

  

Figure 1-5: Left: the top device can serve the needs of Algorithms M, N, and T; Right: The 
bottom device can serve the needs of Algorithms M, N, S, and T. If both devices, or 
neither, are present then refer to Figure 1-4.	

Direct programming 
In our two scenarios illustrated in Figure 1-4 and Figure 1-5, we can write our code once 

and let the compiler translate it for each accelerator. However, it is unlikely that a single 

coding will run efficiently on all accelerators when you consider the variety of architectures 

that give rise to accelerators being interesting in the first place! As we illustrated in Figure 

1-2, specific accelerators excel at specific styles of algorithms. Therefore, DPC++ gives us a 

way to specify different coding for different accelerators when we want to do so. This is 

called direct programming. As we will show in Chapters 13, 14, and 15, this direct 

programming is primarily motivated by architecture of a particular class of accelerator, 

and only a little by vendor specific features. In other words, coding for GPU is largely an 

exercise to aligning to the style of processing GPUs excel at doing, and coding for an FPGA 

is largely an exercise in aligning to the strengths of an FPGA. Of course, for the case that an 

accelerator is not always present we want to use the full capabilities of the CPU which may 

require we not rely on a version specifically optimized for an accelerator. 

Using direct programming is necessary because compilers simply do 
not perform algorithm conversions.  



CHAPTER 1 n Introduction  

 
18 

Using direct programming is necessary because compilers simply do not perform 

algorithm conversions. For instance, if we code a bubble sort (not a great sorting algorithm 

in general) we do not expect the compiler to refactor the code into a quicksort (generally 

considered a very good sort algorithm). Instead, it is our job as programmers to either code 

a quick sort, or to use a library routine called ‘sort’ and hope it uses the best algorithm. 

Compilers do not convert a bubble sort algorithm to a quick sort 
algorithm for us. That is our job as programmers. Likewise, a 
completely generic matrix multiply will not be compiled into an 
optimized matrix multiply for a GPU. 

Similarly, DPC++ gives us the opportunity to use coding styles aligned with the 

accelerator we anticipate using, or to use a different aspect of oneAPI and leverage APIs 

(e.g., library functions) that are supported across multiple different architectures. 

Why Data Parallelism? 
Data parallelism is one of the most important forms of parallelism for a parallel 

programmer to exploit. In practice, with a good data-parallel programming model, one can 

achieve high degrees of scaling. Scaling refers to a desire to see performance increase (scale 

up) when compute resources increase (scale up). 

Effective parallel programming is all about scaling.  If we expand our computing 

resources by 100X, ideally, we hope our application will run a hundred times as fast. Of 

course, there are complications — chief of which is expressed by Amdahl’s Law. 

Think (Data) Parallel 
Effective parallel programming starts with a clear vision, by the programmer, of where the 

parallelism is. That is followed by a strategy on how to exploit the parallelism in a manner 

that yields speed-up. Learning to be an effective parallel programmer rests squarely on 

developing a knack for finding the best way to break up a problem into a large number of 

independent tasks. Independence is critical, because interaction between tasks will limit 

scaling — interaction is effectively a serialization, and Amdahl’s Law tells us that will limit 

us. 



CHAPTER 1 n Introduction  

 
19 

Data parallelism, in practice, tends to work very well for parallel programming. If 

we can figure out a kernel of computation that we want to apply on all of our vast data, we 

can see amazing speed-ups in our applications. The two key concepts in our favor here are: 

• Independence: Thinking in terms of kernels encourages exactly the sort 

of independence we need in our strategy to achieve high scaling. 

• Scale with problem size: problems that involve processing data will 

scale with the problem size when we have independence. This is 

wonderful – because tackling bigger data sets, or otherwise finding 

more Big Data, is not considered hard to do these days! 

Intranode, not multinode, parallelism 
DPC++ is focused on parallelism within a single node, often call intranode parallelism. A 

node, in this case, is defined as scope for the DPC++ host with its attached devices. The 

host may be a single, or multiple, CPUs for instance — a node is the shared memory 

environment of those one or more CPUs with attached accelerators (DPC++ devices). The 

topic of multinode parallelism (parallel programming often associated with MPI – which 

connects nodes together to operate in parallel), is not directly addressed by DPC++, SYCL, 

or OpenCL.  Multinode, in our context, would be a collection of multiple hosts. 

Mechanisms to allow efficient multinode parallelism are present in DPC++, SYCL, and 

OpenCL.  Multinode parallelism with DPC++, for instance, could use MPI to orchestra 

multiple nodes each running DPC++ in a fashion learned from this book. Multinode 

parallelism is beyond the scope of this book.  

Other Accelerator Programming Models 
The concept of accelerators in computing is not a new one, and over the decades they have 

been accompanied with a wide variety of programming models. Early floating-point 

processors were programmed separately, and even the introduction of float-point for x86 

processors occurred as a coprocessor with a distinct set of instructions that were executed 

outside the processor but with memory accesses coordinated by the processor. 

Having accelerator programming in the same high-level programming language 

has been a goal of many modern programming environments. The end of rising clock rate 

(circa 2006) has given rise to many new accelerators and interest in programming them 

more easily and effectively. 



CHAPTER 1 n Introduction  

 
20 

Rather than look at a historical view of accelerator models, we have chosen to 

briefly list ones with the most contemporary relevance and offer a few notes on how they 

relate to DPC++, and in some instances oneAPI. 

 

oneAPI: An Intel-led initiative to provide a common support model for 

accelerators regardless of programming language. First public beta Q4 2019. 

http://software.intel.com/oneAPI  

DPC++ (Data-Parallel C++): consists of C++ with SYCL and extensions, the subject 

of this book. DPC++ outfits C++ for data parallelism. DPC++ supports the execution of 

compute kernels. First public beta Q4 2019. http://software.intel.com/oneAPI 

SYCL: also the subject of this book, a Khronos specification for extending C++ with 

a cross-platform abstraction layer. SYCL offers a higher-level programming interface for 

OpenCL devices. SYCL enables code for heterogeneous processors to be written in a 

“single-source” style using C++.  The SYCL standards team enjoys widespread 

participation. SYCL supports the execution of compute kernels.  First specification May 

2015. https://www.khronos.org/sycl/  

OpenCL (Open Computing Language): a Khronos specification for a framework 

for writing programs that execute across heterogeneous platforms including CPUs, GPUs, 

DSPs, FPGAs, etc.  Most vendors participate in the OpenCL standards body.  Such broad 

support for OpenCL has resulted in the broadest list of accelerator devices being supported 

of any accelerator programming system. OpenCL focuses on support for the execution of 

compute kernels.  First specification in August 2009. https://www.khronos.org/opencl/  

CUDA (Compute Unified Device Architecture): A programming model for “CUDA 

enabled” Nvidia GPUs. The CUDA platform is a software layer to connect with the virtual 

instruction set of a large range of Nvidia GPUs in order to execute compute kernels. Initial 

release in June 2007. https://developer.nvidia.com/cuda-zone  

TBB (Threading Building Blocks): An Intel-led open-source project that adds 

support for parallelism to C++ through template libraries. The most popular abstract 

programming model for parallel programming in C++, and is supported on all modern 

systems. Does not itself implement SIMD or vectorization support — rather than duplicate 

such efforts it relies on compiler extensions (OpenMP, OpenCL, SYCL, DPC++) for that. 

Support for heterogeneous systems is achieved through the ability to offload functionality 

within a TBB flow graph using other models such as OpenCL, CUDA, SYCL, or DPC++. 

Initial release in mid-2006. https://github.com/intel/tbb  

OpenMP (Open Multiprocessing directives): A specification for a set of compiler 

directives, library routines, and environment variables that can be used to specify high-

level parallelism in Fortran, C, and C++ programs. Vendors and HPC users participate in 



CHAPTER 1 n Introduction  

 
21 

the OpenMP standards body. OpenMP is the most widely adopted standard for systems, 

has been implemented by all major compiler vendors, and is supported on all modern 

systems. First specification in late 1997. https://www.openmp.org/  

OpenACC (Open Accelerator directives): A specification for a set of compiler 

directives, library routines, and environment variables that can be used to specify high-

level parallelism in Fortran and C program — developed as an offshoot of OpenMP by 

Cray, CAPS, Nvidia and PGI to address the needs of Nvidia GPUs. OpenACC adopted a 

more compiler-friendly descriptive specification, versus the more user-friendly 

prescriptive specifications of OpenMP. Initial specification November 2011. Cray 

announced, in 2019, plans to phase out OpenACC support in favor of the unified OpenMP 

support for heterogeneous systems. https://www.openacc.org/  

C++ AMP (C++ Accelerated Massive Parallelism) is a library implemented on 

DirectX 11 and an open specification from Microsoft for implementing data parallelism 

using GPUs directly in C++. C++ AMP provides a single-source way to write programs that 

compile and execute kernels on GPU data-parallel hardware. First specification August 

2012. https://docs.microsoft.com/cpp/parallel/amp/cpp-amp-overview  

AMD HCC (Heterogeneous Compute Compiler): single source C++ with code 

generation to both x86 processors and HSAIL (heterogeneous offload to AMD APUs and 

discrete GPUs via HSA enabled runtimes and drivers). HSAIL is short for HSA Intermediate 

Language. HSA is short for Heterogeneous System Architecture. HSA is a set of 

specifications, initially created by AMD, that allows for the integration of central processing 

units and graphics processors on the same bus, with shared memory and tasks. First 

specification March 2015. https://gpuopen.com/compute-product/hcc-heterogeneous-

compute-compiler/  

Kokkos (C++ Performance Portability Programming EcoSystem): a project from 

Sandia National Labs; Kokkos provides abstractions for both parallel execution of code and 

data management with the stated objective to implement a programming model in C++ for 

writing performance portable applications targeting all major HPC platforms. First 

released in 2008 as a collection of the handful of sparse and dense kernels as part of the 

Trilinos Project at Sandia, it has developed notoriety in its innovations for heterogeneous 

support over the years since. https://github.com/kokkos  

RAJA: a collection of C++ software abstractions, being developed at Lawrence 

Livermore National Laboratory (LLNL). RAJA makes heavy use of C++ templates and is 

best when C++ lambda expressions are used to express the computational kernels. CHAI is 

a closely related library that complements RAJA by providing pointer abstractions that 

hide run-time data copies that move kernel data to execution memory spaces as needed. 

Umpire is a closely related library that provides a simple, unified interface to access 



CHAPTER 1 n Introduction  

 
22 

capabilities for memory resources. Described in 2014, first release 2016. 

https://github.com/LLNL/RAJA  

MPI (Message Passing Interface): widely used and supported standard for portable 

message-passing on parallel computing architectures. Many vendors and major HPC users 

participate in the MPI standards body. MPI defines the syntax and semantics of a core of 

library routines to enable writing portable message-passing programs in C, C++, and 

Fortran. There are several well-tested and efficient implementations of MPI, many of 

which are open-source or in the public domain. First draft specification in 1992, 1.0 

released in 1994. https://www.mpi-forum.org/  

Evolution of SYCL (thus far) 
What we know of as SYCL today started as the "High Level Model for OpenCL" (HLM for 

OpenCL) in 2010 when some members of the OpenCL working group wanted to develop a 

higher-level interface to target OpenCL devices. A sub-group was formed to study what 

could be done to provide a “high-level programming model, unifying host and device 

execution environments through language syntax for increased usability and broader 

optimization opportunities.” 

Early SYCL implementations relied on utilizing OpenCL to reach accelerator 

devices. However, SYCL has proven to be a more general heterogeneous framework able to 

target other systems. For example, the ComputeCpp and hipSYCL implementations each 

target Nvidia GPUs by outputting to CUDA, and hipSYCL targets AMD GPUs by outputting 

to AMD HIP on the ROCm platform. 

March 2015 – SYCL 1.2 
The first release of a specification from The Khronos Group was called SYCL 1.2 in March 

2015. SYCL continues as a complementary effort alongside the ongoing evolution of the 

OpenCL language. SYCL 1.2 built on the features of C++11. 

SYCL generated a lot of interest and support, largely among tool and framework 

creators. For instance, Tensorflow targeting of OpenCL has been implemented by using 

SYCL. Multiple efforts to develop compilers and tools for SYCL arose based on SYCL 1.2. 

However, for application writers, SYCL really starts with 1.2.1r5. 



CHAPTER 1 n Introduction  

 
23 

April 2019 – SYCL 1.2.1r5 
On April 18, 2019, SYCL 1.2.1 revision 5 became the latest SYCL based on OpenCL 1.2, and 

(despite the slight change in numbering) was a major update representing four years of 

efforts by the SYCL group. Khronos created an open-source project, hosted on github, to 

support Parallel STL on top of SYCL, running on OpenCL devices. The SYCL conformance 

test suite (CTS), an open-source project on github, was also introduced to help vendors 

test compliance. The announcements from Khronos noted that SYCL brings the power of 

single-source modern C++ to the OpenCL and SPIR world, it also prepares the convergence with 

other standards such as ISO C++, and Khronos' Vulkan, OpenVX, and NNEF. 

SYCL 1.2.1r6 and beyond 
Revisions to the 1.2.1 standard are needed to clarify or adjust the standard. In 

particular, implementers of the standard are finding opportunities for clarifications, 

refinements, and corrections. While these do not materially impact the intent of SYCL, they 

will impact some topics within this book. We have endeavored to be current with the 

specification at time of publication — but changes are inevitable. We encourage the reader 

to visit our web site (https://tinyurl.com/book-dpcpp) for errata notes that will include 

notes when an adjustment is needed because of a standard revision.  

SYCL Provisional 2.2 
An early and provisional SYCL 2.2 was previewed in May 2016 targeting C++14 and 

OpenCL 2.2. As related on Wikipedia, the SYCL committee decided to not finalize this 

version and is working on a more flexible SYCL specification to address the increasing 

diversity of current accelerators. 

The SYCL committee actively engages and examines proposals for future SYCL 

features. Intel, as a member of the SYCL standard committee, is open about experiences 

extending SYCL with DPC++ features. It is logical to hope that those experiences will lead 

to further refinements to SYCL in the future. 

Summary 
This chapter provided a base rationale for DPC++ and SYCL. Next, we will consider 

accelerators as devices. Such devices need to be given work to do (send code to run on 

them), be provided with data (send data to use on them), and have a method of writing 



CHAPTER 1 n Introduction  

 
24 

code (kernels). We will devote Chapters 2, 3, and 4, respectively, to expanding on facets of 

these three needs. 

 

 

FOR THIS BOOK PREVIEW (CHAPTERS 1-4): 
ERRATA, NOTES, DOWNLOADS, FEEDBACK, ETC. 

Please check our “preview book” website for information including errata, updates, and 
downloads (includes all sample code):  https://tinyurl.com/book-dpcpp  

We will also list some additional resources as they become available. 

Your feedback is welcome.  You can email James Reinders at 
dpc++@jamesreinders.com with any suggestions, encouragement, criticism, or 
questions that you may have.  James will be sure to share any feedback that you send 
with all the authors. 

Of course – watch for the full book, by mid-2020, available from Apress (no charge for 
PDF for the completed book, print copies will be available too). 

https://tinyurl.com/book-dpcpp 

 



CHAPTER 2 n Where Code Executes 

 
25 

Where Code Executes 
SYCL provides a heterogeneous programming framework in which code executes on a 

mixture of a host CPU and one or more devices.  In such a framework, the mechanisms 

used to select the destinations for code execution are a fundamental part of the solution.  

This chapter describes where code can execute, introduces when it will execute, and 

describes the mechanisms used to control the locations of execution. Chapter 3 will 

describe how to manage data so it arrives where we are executing our code, and then 

Chapter 4 returns to the code itself and discusses the writing of kernels. These chapters 

combine to teach the fundamentals of writing a SYCL application, because before writing 

data parallel code in Chapter 4, we first need to understand the assignment of code to 

targets (this chapter) and the management of data (Chapter 3). 

DPC++ AND SYCL IN CHAPTER 2 

Everything discussed in this chapter is SYCL and is therefore fully supported by 
DPC++. 

Single source 
SYCL programs can be single source, meaning that the same file contains both the code 

that defines the compute kernels to be executed on SYCL devices and also the host code 

that orchestrates execution of those compute kernels.  

 

Figure 2-1 shows these two code paths graphically, and Figure 2-2 provides an example 

SYCL application with the host and device code regions marked. 



CHAPTER 2 n Where Code Executes 

 
26 

Combining both device and host code into a single source file can make it easier to 

understand and maintain a heterogeneous compute application.  The combination also 

provides improved language type safety and can lead to additional compiler optimizations. 

 
Figure 2-1: SYCL single source code contains both host code that runs natively on the 
host CPU, and device code that is executed on SYCL devices.  

 

Figure 2-2: A simple SYCL program.  



CHAPTER 2 n Where Code Executes 

 
27 

Host code 
SYCL applications contain C++ host code which is executed by the CPU(s) on which the 

operating system has launched the SYCL application.  Host code is the backbone of a SYCL 

application in that it defines and controls the execution of compute on available devices.   

It is also the interface through which users define the data and dependencies that should 

be managed by the SYCL runtime. 

SYCL host code is standard C++11 and SYCL-specific constructs and classes are 

designed to be implementable as a C++ library.  This makes it easier to reason about what 

is allowed within host code (anything that is allowed in C++), and can simplify integration 

with build systems. 

The host code in a SYCL application orchestrates data movement and compute 

offload to devices, but can also perform compute-intensive work itself, and can use 

libraries like any C++ application. 

Device code 
Devices correspond to accelerators or processors that are conceptually independent from 

the CPU that is executing SYCL host code (the host processor).  A SYCL implementation 

may expose the host processor also as a device, as described later in this chapter, but the 

host processor and devices should be thought of as logically independent from each other.  

The host processor runs native C++ code, while devices run device code. 

SYCL queues are the mechanism through which host code submits work to a 

device for future execution.  There are three critical properties of device code to 

understand: 

1. It executes asynchronously from the host code.  The host 
program submits device code for future execution on a device, and 
the SYCL runtime tracks and initiates that work only when all 

dependencies for execution are satisfied (more on this in Chapter 
3).  The host program execution carries on before the submitted 
work is initiated on a device, providing the property that execution 
on devices is asynchronous to host program execution, unless the 

developer explicitly ties the two together. 



CHAPTER 2 n Where Code Executes 

 
28 

2. There are restrictions on device code to make it possible to 
compile and achieve performance on accelerator devices.  For 

example, C++ exceptions and run time type information (RTTI) are 
not supported within device code, because they would lead to 
performance degradation on many modern accelerators.  The small 
set of device code restrictions are covered in detail in Chapter 10. 

3. Some functions and queries defined by SYCL are available only 
within device code, because they only make sense in that context.  

For example, work item identifier queries that allow an executing 
instance of device code to query its position in a larger data parallel 
range (described in Chapter 4). 

Choosing a device on which to execute 
To explore the mechanisms that control where device code executes, we consider five use 

cases: 

 
Method#1: Running device code “somewhere”, with the developer not caring which 

device it ends up being.  This is often the first step in application 
development, because it requires the least code. 

Method#2: Explicitly running device code on the host device, which is typical used 
for debugging and is guaranteed to be always available on any system. 

Method#3: Dispatching device code to a GPU or another accelerator device. 
Method#4: Dispatching device code to a heterogeneous set of devices, such as a 

GPU and an FPGA. 
Method#5: Selecting specific devices from a more general class of devices, such as a 

specific type of FPGA from a collection of available FPGA devices. 

Developers will typically debug their code as much as possible with 
Method#2, and only move to Methods 3-5 when code is proven as 
much as it can be with Method #2. 



CHAPTER 2 n Where Code Executes 

 
29 

Method#1: Just run on a device (don’t care 
what type) 
By design, SYCL makes it easy to run device code on a device chosen by the runtime.  This 

automatic selection of an available accelerator is designed to make it easy to start writing 

and running device code, where the developer doesn’t yet care about what device is 

chosen.  This device selection does not take into account the code to be executed, so 

should be considered an arbitrary choice. 

To talk about choice of a device, even one that the implementation has selected for 

the user, it’s important to first introduce the primary mechanism through which the 

program interacts with a device: the queue. 

Queues 
A sycl::queue is an abstraction to which work is submitted for execution on a single 

device.  This work is most commonly the invocation of a data parallel computation, 

although other commands are also available such as for manual control of data motion, 

where the user wants more control than the automatic data movement provided by the 

SYCL runtime.  Work submitted to a sycl::queue can execute once certain 

prerequisites tracked by the SYCL runtime are met, such as availability of input data.  

These prerequisites are described in more detail in Chapters 3 and 8. 

A sycl::queue is bound to a single sycl::device, and that binding occurs 

on construction of the queue.  It is important to understand that work submitted to a 

queue is executed on the single device to which that queue is bound.  Queues do not map 

to collections of devices, for example, where there would be ambiguity on which device 

would perform the enqueued work.  Similarly, a queue cannot spread the work submitted 

to it across multiple devices.  Instead, there is an unambiguous and one-to-one mapping 

between a queue, and the device on which work submitted to that queue will execute, as 

shown in Figure 2-3. 



CHAPTER 2 n Where Code Executes 

 
30 

 

Figure 2-3: Queues are bound one-to-one to a specific device.  Work submitted to the 
queue executes on that device.  SYCL developers construct queues in their host code, so 
choose how many are needed for an application. 

Multiple queues may be created in a SYCL application, as desired for application 

architecture or programming style.  For example, multiple queues may be created to each 

bind with a different device, or to be used by different threads in a host program.  Any 

number of queues can be bound to a single device, such as a GPU, and submissions to 

different queues bound to the same device will result in the combined work being 

performed on that single device.  An example of such a binding is shown in Figure 2-4.  

Conversely, a queue cannot be bound to more than one device.  Queues bind only to a 

single device so that there is no ambiguity on where work submitted to a queue will 

execute.  If a user wants a queue that will load balance work across multiple devices, for 

example, then they can create that abstraction in their code. 



CHAPTER 2 n Where Code Executes 

 
31 

 

Figure 2-4: Multiple queues can be bound to a single device, and the combination of 
work submitted to such queues is combined onto the device.  The converse is not 
allowed, though, and a single queue cannot be bound to more than one device, because 
it would lead to ambiguity in where device code will execute. 

Because a queue is bound one-to-one with a device, queue construction is the 

most common location in SYCL code to choose the device on which the queue 

submissions will execute.  Selection of the device is achieved through a device selector 

abstraction and associated sycl::device_selector class. 



CHAPTER 2 n Where Code Executes 

 
32 

Binding a queue to a device, when any device 
will do 

 

Figure 2-5 provides an example code listing, where the device with which a queue will be 

bound is not specified.  The trivial queue constructor, that doesn’t take any arguments (as 

in Figure 2-5), simply chooses some available device behind the scenes.  SYCL guarantees 

that at least some device will be available, which might be the SYCL host device that is a 

device abstraction of the processor(s) on which the host code is executing. 

 

Figure 2-5: Implicit default device selector through default construction of a queue. 

Using the default queue constructor is a simple way to start application 

development, and to get device code running quickly.  Additional control over selection of 



CHAPTER 2 n Where Code Executes 

 
33 

the device bound to a queue can be added as it becomes relevant for application 

development. 

Method#2: Using the host device for 
development and debugging 
The host device can be thought of as enabling the host CPU to act as if it was an 

independent device, allowing device code (with the associated built-ins) to be executed 

regardless of the accelerators available in a system.  It also has the fundamental property 

that it is always available to a SYCL application.  The host device therefore provides a 

guarantee that device code can always be run within an application (no dependency on 

accelerator hardware), and has three primary uses: 
1. Development of device code on less capable systems that don’t have any 

accelerators.  One common use is development and testing of SYCL device code on 

a local system, before deploying to an HPC cluster for performance testing and 
optimization. 

2. Debugging of device code with non-accelerator tooling.  Accelerators are often 
exposed through lower level APIs that may not have debug tooling as advanced as 

is available for host CPUs.  With this in mind, the host device is expected to support 
debugging using standard tools familiar to CPU developers. 

3. Backup if no other devices are available, to guarantee that device code can be 
executed functionally.  The host device implementation may not have 

performance as a primary goal, so should be considered as a functional backup to 
ensure that device code can always execute in any SYCL application, but not 
necessarily a path to performance. 

The host device is functionally like a hardware accelerator device in that a queue 

can bind to it, and it can execute device code.  Figure 2-6 shows how the host device is a 

peer to other accelerators that might be available in a system.  It can execute device code, 

just like a CPU, GPU or FPGA, and can have one or more queues constructed that bind to 

it. 

 



CHAPTER 2 n Where Code Executes 

 
34 

 

Figure 2-6: The host device is logically like any accelerator device (e.g. CPU, GPU, 
FPGA) in that it can execute device code, and can have a queue bound to it that is used 
to enqueue device code kernels.  The host device is guaranteed to be available in every 
SYCL application, regardless of what other hardware devices are present. 

A SYCL application can choose to create a queue that is bound to the host device 

by explicitly passing the sycl::host_selector class to a queue constructor, as 

shown in Figure 2-7. 



CHAPTER 2 n Where Code Executes 

 
35 

 

Figure 2-7: Selecting the host device using the sycl::host_selector class.  

Even when not explicitly requested (using sycl::host_selector for 

example), the host device may be selected by the default device selector, as occurred in the 

output in Figure 2-5Figure 2-5. 

Figure 2-7 passes the sycl::host_selector class to the queue constructor, 

to define the expected target binding of the queue.  sycl::host_selector is an 

example of a SYCL device selector class, of which a few variants are defined to make it easy 

to target a device of a specific type. 

Method#3: Using a GPU (or other 
accelerator) 
GPUs are highlighted in this example use case, but any class of accelerator applies equally.    

To make it easy to target common classes of accelerators, SYCL groups devices into several 

broad categories, and provides built-in selector classes for them.  To choose from a broad 

category of device type such as “any GPU available in the system,” the corresponding SYCL 

code is very brief, as described in this section. 

Device types 
There are two main categories of device to which a queue can be bound: 

1. The host device, which has already been described. 



CHAPTER 2 n Where Code Executes 

 
36 

2. Accelerator devices such as a GPU, an FPGA, or a CPU device, which are used to 
accelerate workloads in real applications. 

Accelerator devices 
There are a few categories of accelerator devices defined by SYCL: 

1. CPU devices 
2. GPUs 
3. Accelerators, which capture devices that don’t identify as either a CPU device or a 

GPU.  Today this includes FPGAs and DSPs. 

These categories are easy to bind to a queue using SYCL’s built-in selector classes, 

which can be passed to queue (and some other class) constructors. 

Device selectors 
Classes in SYCL that must be bound to a specific device, such as a queue, have 

constructors that can accept a class derived from sycl::device_selector.  For 

example, the queue constructor is: 

queue( const device_selector &deviceSelector, 
  const property_list &propList = {}); 

  



CHAPTER 2 n Where Code Executes 

 
37 

SYCL defines five built-in selectors for the broad classes of common devices: 

 

default_selector 
Any device of the implementation’s choosing 

host_selector 
Select the host device (always available) 

cpu_selector 
Select device that identifies itself as a CPU 

device in device queries 

gpu_selector 
Select device that identifies itself as a GPU in 

device queries 

accelerator_selector 
Select device that identifies itself as an 

“accelerator”, which includes FPGAs 

One additional selector is shipped as part of DPC++ (not available in SYCL), and is 

available by including the header “CL/sycl/intel/fpga_extensions.hpp”: 

 

intel::fpga_selector 
Select device that identifies itself as an FPGA 

 

A queue can be constructed using one of the built-in selectors, such as: 

  queue myQueue( cpu_selector{} ); 

Figure 2-8 shows a complete example using the sycl::cpu_selector, and 

Figure 2-9 shows the corresponding binding of a queue with an available CPU device. 

Figure 2-10 shows an example using a variety of built-in selector classes, and also 

demonstrates use of device selectors with another class (sycl::device) that accepts a 

sycl::device_selector on construction. 

 



CHAPTER 2 n Where Code Executes 

 
38 

 

Figure 2-8: CPU device selector example.  

 

 

 

Figure 2-9: CPU device selector example.  The queue is bound to a CPU device available 
to the SYCL application. 



CHAPTER 2 n Where Code Executes 

 
39 

 

Figure 2-10: Example device identification output from various classes of device 
selectors, and demonstration that device selectors can be used for construction of more 
than just a queue (in this case construction of a device class instance). 

When device selection fails 
If a sycl::gpu_selector is used when creating an object such as a queue, and if there 

are no GPU devices available to the SYCL runtime, then the selector throws a 

sycl::runtime_error exception.  This is true for all device selector classes, in that if 

no device of the required class is available, then a sycl::runtime_error exception is 



CHAPTER 2 n Where Code Executes 

 
40 

thrown.  It is reasonable for complex applications to catch that error, and instead acquire a 

less desirable (for the application/algorithm) device class as an alternative. 

Method#4: Using multiple devices 
As shown in Figures 2-3 and 2-4, multiple queues can be constructed in a SYCL 

application.  These queues can be bound to a single device (the sum of work to the queues 

is funneled into the single device), to multiple devices, or to some combination of these.  

Figure 2-11 provides an example code listing that creates one queue bound to a GPU, and 

another queue bound to an FPGA.  The corresponding mapping is shown graphically in 

Figure 2-12. 

 

Figure 2-11: Creating queues to both GPU and FPGA devices.  



CHAPTER 2 n Where Code Executes 

 
41 

 

Figure 2-12: GPU and FPGA device selector example. One queue is bound to a GPU 
available to the SYCL application, and another queue is bound to an available FPGA. 

Method#5: Custom (very specific) device 
selection 

Writing a custom selector 
The SYCL built-in device selectors are intended to get code up and running quickly.  Real 

applications typically require specialized selection of a device, such as picking a desired 

GPU from a set of GPU models available in a system.  The device selection mechanism is 

easily extended to arbitrarily complex selection logic, as required for an application. 

device_selector base class 
All device selectors derive from the abstract sycl::device_selector base 

class, and define the function call operator in the derived class: 

virtual int operator()(const device &dev) const { 

  /* User logic */ 

} 



CHAPTER 2 n Where Code Executes 

 
42 

 

Defining this operator in a class that derives from sycl::device_selector is all that 

is required to define any complexity of device selection logic, resulting from three 

properties: 
1. The function call operator is automatically called on each device that the SYCL 

runtime finds as accessible to the application, including the host device. 
2. The operator returns an integer score. The highest score across all available 

devices defines the selected device. 

3. A negative integer returned by the function call operator means that the device 
must not be returned by the device selector. 

Mechanisms to score a device 
Many approaches are possible to create an integer score corresponding to a specific device 

or style of device, such as: 
1. Return positive value for a specific device class 
2. String match on device name and/or device vendor strings 

3. Anything you can imagine in code leading to an integer value, based on device or 
platform queries 

For example, one possible approach to select an Intel Arria-family FPGA device is shown 

in Figure 2-13. 

 
Figure 2-13: Custom selector for Intel Arria FPGA device.  

The select_device() method provided by the sycl::device_selector base 

class executes the function call operator for each device available in the system, and 

returns the device that saw the highest non-negative function call operator return value.  If 

multiple devices end up returning the same high score, then one of those devices will be 



CHAPTER 2 n Where Code Executes 

 
43 

returned, but which isn’t defined.  If no devices cause the function call operator to return a 

non-negative score, then a sycl::runtime_error exception is thrown automatically 

by the select_device() function. 

Three paths to device code execution on CPU 
A potential source of confusion comes from the multiple mechanisms through which a 

CPU can have code executed on it, as summarized in Figure 2-14. 

The first and most obvious path to CPU execution is host code, which is either part 

of the single source application (host code regions), or which is linked to and called from 

the host code such as a library function. 

The other two available paths execute device code.  The first CPU path for device 

code is through the host device, which was described earlier in this chapter.  It is always 

available and is expected to execute the device code on the same CPU(s) that the host code 

is executing on. 

 

Figure 2-14: SYCL mechanisms to execute on a CPU.  

A second path to execution of device code on a CPU is optionally exposed by an 

implementation, and is a CPU accelerator device that is optimized for performance.  This 

philosophy of implementation is described by the SYCL specification, where the host 

device is intended to be debuggable with a native CPU debugger, while CPU devices may 

be built on implementations optimized for performance where a native CPU debugger 

isn’t applicable. 



CHAPTER 2 n Where Code Executes 

 
44 

Language constructs that generate work 
on a device 
SYCL applications typically contain a combination of both host code and device code, with 

device code running on one or more of the devices described previously in this chapter, 

including possibly the host device.  Device code is defined in the language by passing it to a 

small set of language constructs, which makes it easy to distinguish from host code. 

The remainder of this chapter introduces some of the basic SYCL work dispatch 

constructs, with the goal to help readers understand and identify the division between 

device code in an application, and the host code that executes natively on the host 

processor. 

Introduction to the SYCL Graph 
A fundamental concept in the SYCL execution model is a graph of nodes.  Each node in 

this graph contains an action to be performed on a device, with the most common action 

being a data parallel device kernel invocation.  Figure 2-15 shows an example graph with 

four nodes, where each node can be considered to be a device kernel invocation for this 

example. 

The nodes in Figure 2-15 have dependency edges defining when it is legal for a 

node’s work to begin execution.  The dependency edges are most commonly generated 

automatically from data dependencies, although there are mechanisms to manually add 

additional dependencies.  Node B in the graph, for example, has a dependence edge from 

node A.  This edge means that node A must complete execution, and most likely 

(depending on specifics of the dependency) make generated data available on the device 

where node B will execute, before node B’s action is started.  The SYCL runtime controls 

resolution of dependencies and triggering of node executions, completely asynchronously 

from the host program’s execution.  The graph of nodes defining an application will be 

referred to in this book as the SYCL Directed Acyclic Graph (DAG), and is covered in more 

detail in Chapter 3. 



CHAPTER 2 n Where Code Executes 

 
45 

 

Figure 2-15: The SYCL Directed Acyclic Graph (DAG) defines the actions to perform 
(asynchronously from the host program) on one or more devices, and also the 
dependencies between actions that determine when it is safe for the SYCL runtime to 
initiate an action. 

 

Where is the device code? 
There are multiple mechanisms that can be used to define code that will be executed on a 

device, but a simple example with a lambda suffices to show how to identify such code.  

Even if the pattern in the example appears complex at first glance, the pattern remains the 

same across all device code definitions so quickly becomes second nature. 



CHAPTER 2 n Where Code Executes 

 
46 

 

Figure 2-16: A simple submission of device code  

The code passed as the final argument to the parallel_for member of the 

sycl::handler class, defined as a lambda in Figure 2-16, is the device code to be 

executed on a SYCL device.  The parallel_for in this case is the critical construct that 

is used to distinguish device code from host code.  parallel_for is one of a small set of 

device dispatch mechanisms, all members of the handler class, that define the code to be 

executed on a device. 

Device dispatch and memory copy mechanisms 
The code snip in Figure 2-16 contains a parallel_for construct, which defines work to 

be performed on a device through the C++ callable or sycl::kernel object passed as its 

final argument (a C++ lambda in this case).  The parallel_for is within a command 

group submitted to a queue, and the queue defines the device on which the work is to be 

performed.  Within the command group, there are two categories of code:  
1. At most one call to a handler class method that either dispatches work 

to be performed on the device (device code forming a kernel), or that 

performs a manual data movement command such as copy. 

2. Host code that typically sets up dependencies defining when it is safe for 
the SYCL runtime to start execution of the work defined in (1), such as 

creation of accessors to buffers (described in Chapter 3). 

The handler class contains a small set of member functions that define the work to 

be performed when a DAG node’s dependencies are met, and the SYCL runtime chooses 

to execute the node’s actions.  Figure 2-17 summarizes these methods. 

 

 

 



CHAPTER 2 n Where Code Executes 

 
47 

 

Work Type Handler class method Summary 

Device code 

execution 

single_task Execute a single instance of a 

device function. 

parallel_for Multiple overloads are available to 

launch device code with different 

combinations of work sizes. 

parallel_for_work_group Launch a kernel using hierarchical 

parallelism, described in Chapter 4. 

Explicit memory 

operation 

copy Copy data between locations 

specified by accessor, pointer, 

and/or shared_ptr.  The copy 

occurs as part of the DAG, including 

dependency tracking. 

update_host Trigger update of host data backing 
of a buffer object. 

fill Initialize data in a buffer to a 

specified value. 

Figure 2-17: Handler class methods that invoke device code or perform explicit memory 
operations  

Only a single handler method from Figure 2-17 may be called within a command 

group (it is an error to call more than one), and only a single command group can be 

submitted to a queue per submit call.  The result of this is that a single operation from 

Figure 2-17 exists per SYCL DAG node, to be executed when the DAG node dependencies 

are met and the SYCL runtime determines that the node is safe to execute. 

The notion of asynchronous execution in the future, when a DAG node’s 

dependencies have been satisfied, forms the critical difference between the two classes of 

code listed previously that can exist within a command group, and also with host code. 



CHAPTER 2 n Where Code Executes 

 
48 

 

Figure 2-18: A simple submission of device code  

There are three classes of code in Figure 2-18: 

1. Host code that drives the SYCL application, including creating and 
managing data buffers, and enqueueing nodes into the SYCL DAG 
for asynchronous execution. 

2. Code within a command group that is not a handler method 
listed in Figure 2-17.  This code is run on the processor that the 

host code is executing on, and executes immediately (before the 
submit call returns).  This code sets up the DAG node 

dependencies by creating accessors, for example, and is effectively 

CPU-executed setup code for the DAG node.  Any arbitrary CPU 
can execute here, but best practice is to restrict it to code that 
configures the DAG node dependencies. 

3. Device dispatch method or an explicit memory operation.  One 
handler member listed in Figure 2-17 can be included in a 

command group, and it defines the work to be performed 
asynchronously in the future, when the DAG node requirements 
are met (set up by (2)).  If a device dispatch function is called from 

the handler class, then the callable (or sycl::kernel object) 

passed to the appropriate argument will be compiled as device 
code, and executed on the device once the DAG dependencies are 

satisfied.  The device on which execution occurs is simply the 
device associated with the queue to which the command group was 
submitted. 



CHAPTER 2 n Where Code Executes 

 
49 

To understand when code in a SYCL application will run, the distinction is simple.  

Anything passed to a sycl::handler method listed in Figure 2-17 that initiates device 

code execution, or a sycl::handler explicit memory operation listed in Figure 2-17, 

will execute asynchronously in the future, when the DAG node dependencies have been 

met.  All other code runs as part of the host program immediately, as expected in typical 

C++ code. 

Fallback 
Typically, a command group is executed on the command queue to which it has been 

submitted. However, there may be cases where the command group fails to be submitted 

to a queue (e.g. when the enqueue size is too large for the device’s limits), or when a 

successfully submitted device operation such as a kernel execution is unable to begin 

execution (e.g. when a hardware device has failed). To handle such cases, it is possible to 

specify a fallback command queue for the command group to be executed on.  

The fallback queue mechanism must be explicitly enabled by passing 
a secondary queue to a submit call.  The fallback is of limited value, 
and it is instead recommended that you catch any exceptions thrown 
by a submit call (that doesn’t have a fallback queue) and re-submit 
the work to a different queue through another submit call, if 
appropriate.  Your exception catching code can record failure of the 
first submission through a debug mechanism of your choosing. 

Figure 2-19 shows code that will fail if executed on Intel Processor Graphics, such 

as Intel HD Graphics 530, due to the requested size of the workgroup. The SYCL 

specification allows specifying a secondary queue as a parameter to the submit function, 

and this secondary queue (the host device in this case) is used if the command group fails 

to be enqueued to the primary queue (if an exception is thrown by the submit call). 



CHAPTER 2 n Where Code Executes 

 
50 

 
Figure 2-19: Simple fallback queue example.  

Summary 
In this chapter, we provided an overview of queues, selection of the device with which a 

queue will be associated, and how to create custom device selectors.  We also introduced 

which code will execute on a device asynchronously when dependencies are met, versus 

the code that executed as part of the C++ application host code.  Chapter 3 describes the 

SYCL DAG and associated concepts in more depth. 

 

 

 

Please check our “preview book” website for information including errata, updates, and 
downloads (includes all sample code).  https://tinyurl.com/book-dpcpp 

  



CHAPTER 2 n Where Code Executes 

 
51 

 

 



CHAPTER 3 n Data Management 

 
51 

Data Management 
This chapter provides an overview of managing data, including controlling the ordering of 

data usage. This complements the prior chapter, which discussed controlling where code 

runs. This chapter helps us efficiently make our data appear where we have asked the code 

to run. This is important not only for correct execution of our application, but optimizing 

data movement will also help minimize execution time and power consumption. Since we 

covered how to control where code runs in Chapter 2 (on what device), once we discuss 

how to get data to our code (accessible from a particular device) in this chapter, we can get 

down to writing data parallel code in Chapter 4. 

DPC++ AND SYCL IN CHAPTER 3 

Unified Shared Memory (USM) and ordered queues are DPC++ extensions at the time 
this book is going to press and are not part of the SYCL 1.2.1 specification. 

Everything else discussed in this chapter is SYCL, and is therefore fully supported by 
DPC++. 

Introduction 
Compute is nothing without data.  The whole point of accelerating a computation is to 

produce an answer more quickly, so one of the most important aspects of data parallel 

computations is how they access data.  Introducing accelerator devices into a machine 

further complicates the picture.  In traditional single-socket CPU-based systems, we have a 

single memory.  Accelerator devices often have their own attached memories that cannot 

be directly accessed from the host.  Consequently, parallel programming models that 

support discrete devices must provide mechanisms to manage these multiples memories 

and move data between them. 

In this chapter, we present an overview of the various mechanisms for data 

management in DPC++.  We introduce Unified Shared Memory and the Buffer abstractions 

for data management and describe the relationship between kernel execution and data 

movement. 



CHAPTER 3 n Data Management 

 
52 

The Data Management Problem 
Historically, one of the advantages of shared memory models for parallel programming is 

that they provide programmers a single, shared, view of memory.  Having this single view 

of memory simplifies life for the programmer, as he or she is not required to do anything 

special to access memory from parallel tasks (aside from proper synchronization to avoid 

data races).  While some types of accelerator devices (integrated GPUs, for example) share 

memory with a host CPU, many discrete accelerators often have their own local memories 

separate from that of the CPU as seen in Figure 3-1. 

 

Figure 3-1: Multiple Discrete Memories	

Device Local vs. Device Remote 
Parallel programs running on a device prefer to read and write data to memory attached 

directly to the device.  We refer to accesses to a directly attached memory as local accesses.  

Accesses to another device’s memory are remote accesses.  Remote accesses tend to be 

slower than local accesses because they must travel over data links with lower bandwidth 

and higher latency.  This means it is advantageous to co-locate both a computation and the 

data it will use.  However, the programmer must somehow ensure that data is copied or 

migrated between different memories in order to move it closer to where computation 

occurs. 



CHAPTER 3 n Data Management 

 
53 

 

Figure 3-2: Data Movement and Kernel Execution	

Managing Multiple Memories 
Managing multiple memories can be accomplished, broadly, in two ways: explicitly by the 

programmer or implicitly by the runtime.  Each method has its advantages and drawbacks, 

and programmers may choose one or the other depending on circumstances or personal 

preference. 

Explicit data movement 
One option for managing multiple memories is for the programmer to explicitly copy data 

between different memories.  Figure 3-2 shows a system with a discrete GPU where the 

programmer must first copy any data that the GPU kernel will require from the host 

memory to GPU memory.  After the kernel computes new results, the programmer must 

also copy these results back to the CPU before the host program can use that data.   

The primary advantage of explicit data movement is that the programmer has full 

control over when data is transferred between different memories.  This is important 

because overlapping computation with data transfer can be essential to obtaining the best 

performance on some hardware.   

The drawback of explicit data movement is that specifying all data movements can 

be tedious and error prone.  Transferring an incorrect amount of data or not ensuring that 

all data has been transferred before a kernel begins computing can lead to incorrect 



CHAPTER 3 n Data Management 

 
54 

results.  These drawbacks create a barrier to entry when prototyping or evaluating the 

computational power of a particular accelerator.  Getting all of the data movement correct 

up front can be a time-consuming task. 

Implicit data movement 
The alternative to programmer-controlled explicit data movement is implicit data 

movement controlled by a parallel runtime or driver.  In this case, instead of the 

programmer inserting explicit copies between different memories, the parallel runtime is 

responsible for ensuring that data is transferred to the appropriate memory before it is 

used. 

The advantage of implicit data movement is that it requires less effort on the 

programmer’s part to get an application to take advantage of device local memory.  All the 

heavy lifting is done by the runtime.  This also reduces the opportunity to introduce errors 

into the program since the runtime will automatically identify both when data transfers 

must be performed and how much data must be transferred. 

The drawback of implicit data movement is that the programmer has less or no 

control over the behavior of the runtime’s implicit mechanisms.  The runtime will provide 

functional correctness but may not move data in an optimal fashion that ensures maximal 

overlap of computation with data transfer, and this could have a negative impact on 

program performance.   

Selecting the right strategy: explicit or implicit 
Picking the best strategy for a program can depend on many different factors.  Different 

strategies might be appropriate for different phases of program development.  A 

programmer could even decide that the best solution is to mix and match the explicit and 

implicit methods for different pieces of the program, as they are not mutually exclusive.  A 

programmer might choose to begin using implicit data movement to simplify porting an 

application to a new device.  As we begin tuning the application for performance, we might 

start replacing implicit data movement with explicit in performance-critical parts of the 

code.  Future chapters will cover how data transfers can be overlapped with computation 

in order to optimize performance. 



CHAPTER 3 n Data Management 

 
55 

USM, Buffers, and Images 
DPC++ provides three abstractions for managing memory: Unified Shared Memory (USM), 

buffers, and images.  USM is a pointer-based approach that should be familiar to C/C++ 

programmers.  One advantage of USM is easier integration with existing C++ routines that 

operate on pointers as rewriting code to replace pointers with buffers can be time-

consuming.  Buffers, as represented by the buffer template class, describe one-, two-, or 

three-dimensional arrays.  Buffers provide an abstract view of memory that can be 

accessed on either the host or a device.  Buffers are not directly accessed by the 

programmer and are instead accessed through accessor objects.  Images act as a special 

type of buffer that provides extra functionality specific to image processing.  This 

functionality includes support for special image formats, reading images using sampler 

objects, and more.  Buffers and images are powerful abstractions that solve many 

problems for the programmer, but rewriting all interfaces in existing routines to accept 

buffers or accessors can be time-consuming.  Since the interface for buffers and images is 

largely the same, the rest of this chapter will only focus on USM and buffers.  

Unified Shared Memory 
Unified Shared Memory (USM) is one of DPC++’s tools for data management.  USM is a 

pointer-based approach that should be familiar to C and C++ programmers that use malloc 

or new to allocate data.  USM simplifies life for the programmer when porting existing 

C/C++ code to DPC++ since code that accepted pointers can continue to accept pointers.  

USM ensures that this works by requiring devices that support USM to support a unified 

virtual address space.  Having a unified virtual address space means that any pointer value 

returned by a USM allocation routine on the host will be valid pointer value on the device.  

It is unnecessary to map the pointer value on the host to a “device version”. 

A more detailed description of USM can be found in Chapter 6. 

Accessing memory through pointers 
Since not all memories are created equal when a system contains host memory and some 

number of device-attached local memories, USM defines three different types of 

allocations: device, host, and shared.  All types of allocations are performed on the 

host.   Figure 3-3 summarizes the characteristics of each allocation type. 

device allocations are allocations in device-local memory.  They can be read from 

and written to on a device but are not directly accessible from the host.  Programmers must 



CHAPTER 3 n Data Management 

 
56 

use explicit copy operations to move data between regular allocations in host memory and 

device allocations. 

Allocation 
Type 

Description Accessible 
 on host? 

Accessible  
on device? 

Located on 

device 
Allocations in 

device memory 
û ü device 

host 
Allocations in host 

memory 
ü ü host 

shared 
Allocations shared 

between host and 

device 

ü ü can migrate 

back and forth 

Figure 3-3: USM Allocation Types	

host allocations are allocations in host memory that are accessible both on the 

host and on a device.  This means the same pointer value is valid both in host code and in 

device kernels.  However, when these pointers are accessed, the data always comes from 

host memory.  If they are accessed on a device, the data does not migrate from the host to 

device-local memory.  Instead, data is typically sent over a bus, such as PCI-Express (PCI-

E), that connects the device to the host. 

shared allocations are allocations that are accessible on both the host and the 

device.  In this regard they are very similar to host allocations, but they differ in that data 

can now migrate between host memory and device-local memory.  This means that 

accesses on a device, after the migration has occurred, happen from much faster device-

local memory instead of remotely accessing host memory.  Typically, this is accomplished 

through mechanisms inside the DPC++ runtime and lower-level drivers that are mostly 

hidden from the programmer. 

USM and Data Movement 
USM supports both explicit and implicit data movement strategies, and different allocation 

types map to different strategies.  Device allocations explicitly move data between host and 

device while host and shared allocations use implicit data movement. 



CHAPTER 3 n Data Management 

 
57 

Explicit Data Movement in USM 
Explicit data movement with USM is accomplished with device allocations and a 

DPC++-specific memcpy() found in the queue and handler classes.  The programmer 

enqueues memcpy() operations to transfer data either from the host to the device or from 

the device to the host.  

Figure 3-4 contains one kernel that operates on a device allocation.  Data is copied 

between hostArray and deviceArray before and after the kernel executes using 

memcpy() operations.  Calls to wait() on the queue appear to ensure that the copy to 

the device has completed before the kernel executes and to ensure that the kernel has 

completed before the data is copied back to the host.  We will learn how we can eliminate 

these calls later in the chapter. 

 



CHAPTER 3 n Data Management 

 
58 

Figure 3-4: USM Explicit Data Movement	

Implicit Data Movement in USM 
Implicit data movement with USM is accomplished with host and shared allocations.  

With these types of allocations, the programmer does not need to explicitly insert copy 

operations to move data between host and device.  Instead, the programmer simply 

accesses the pointers inside a kernel, and any required data movement is performed 

automatically without programmer intervention.  This greatly simplifies porting existing 

codes to DPC++: simply replace any malloc or new with the appropriate DPC++ USM 

allocation functions, and everything should just work. 

 



CHAPTER 3 n Data Management 

 
59 

Figure 3-5: USM Implicit Data Movement	

 

In Figure 3-5, we create two arrays, hostArray and sharedArray, that are host 

and shared allocations, respectively.  We can directly initialize hostArray in the host 

code since it is valid pointer on both host and device.  Similarly, it can be directly accessed 

inside the kernel, performing remote reads of the data.  The runtime ensures that 

sharedArray is available on the device before the kernel accesses it and that it is moved 

back when it is later read by the host code, all without programmer intervention.   

Buffers 
The other abstraction DPC++ provides for data management is the buffer object.  Buffers 

are a data abstraction that represent one or more objects of a given C++ type. While a 

buffer itself is a single object, the C++ type encapsulated by the buffer could be an array 

that contains multiple objects.  Buffers represent data objects rather than specific memory 

addresses, so they cannot be directly accessed like regular C++ arrays.  Indeed, a buffer 

object might map to multiple different memory locations on several different devices, or 

even on the same device for performance reasons.   Instead, we use accessor objects to read 

and write buffers.   

A more detailed description of buffers can be found in Chapter 7. 

Creating buffers 
Buffers can be created in a variety of ways.  The simplest method is to simply construct a 

new buffer object only passing a range that specifies the size of the buffer.  However, 

creating a buffer in this fashion does not initialize its data, meaning that the programmer 

must first initialize the buffer through other means before attempting to read useful data. 

Buffers can also be created from existing data on the host.   This is done by 

invoking one of the several constructors that take either a pointer to an existing host 

allocation or a set of InputIterators.  Data is copied during buffer construction from 

the existing host allocation into the buffer object.  A buffer may also be created from an 

existing cl_mem object if the programmer is using the SYCL interoperability features with 

OpenCL. 



CHAPTER 3 n Data Management 

 
60 

Accessing buffers 
Buffers may not be directly accessed by the host and device (except through advanced and 

infrequently-used mechanisms not described here).  Instead, we must create accessors in 

order to read and write buffers.  The accessor class is heavily templated, so we typically 

do not directly create accessor objects.  Instead, we use helper methods contained in 

the buffer class: get_access(). 

 

 

Figure 3-6: Buffers and Accessors 



CHAPTER 3 n Data Management 

 
61 

 

 

 

 

Access Mode Description 

read 
Read-only access. 

write 
Write-only access. Previous contents not 

discarded. 

read_write 
Read and write access. 

discard_write 
Write-only access.  Previous contents discarded. 

discard_read_write 
Read and write access.  Previous contents 

discarded. 

atomic 
Read and write atomic access. 

Figure 3-7: Buffer Access Modes	

Access Modes 
When creating an accessor, we must inform the runtime how we are going to use it.  We do 

this by specifying an access mode.  Access modes are defined in the 

sycl::access::mode enum described in Figure 3-7.  In the code example shown in 

Figure 3-6, the accessor myAccessor is created with access::mode::read_write.  

This lets the runtime know that we intend to both read and write to the buffer through 

myAccessor.  Access modes are how the runtime is able to perform implicit data 

movement.  For example, access::mode::read tells the runtime that the data needs 

to be available on the device before this kernel can begin executing.  If a kernel only reads 

data through an accessor, there is no need to copy data back to the host after the kernel has 

completed as we haven’t modified it.  Likewise, access::mode::write lets the 

runtime know that we will modify the contents of a buffer and may need to copy the results 



CHAPTER 3 n Data Management 

 
62 

back after computation has ended.   Modes access::mode::discard_write and 

access::mode::discard_read_write are used to optimize kernels that do not 

require the original contents of a buffer to be copied to the device before execution, 

typically because the kernel will overwrite the data. 

Creating accessors with the proper modes gives the runtime more information 

about how we use data in a DPC++ program.  The runtime uses accessors to order the use 

of data, but it can also use this data to optimize scheduling of kernels and data movement.  

The other access modes are described in greater detail in Chapter 7. 

Ordering the Uses of Data 
In DPC++, kernels can be viewed as asynchronous tasks that are submitted for execution.  

These tasks must be submitted to a queue where they are scheduled for execution on a 

device.  In many cases, kernels must execute in a specific order so that the correct result is 

computed.   If obtaining the correct result requires task A to execute before task B, we 

say that a dependence exists between tasks A and B. 

However, kernels are not the only form of task that arises.  Any data that is 

accessed by a kernel needs to be available on the device before the kernel can start 

executing.  These data dependences can create additional tasks in the form of data 

transfers from one device to another.  Data transfer tasks may be either explicit in the form 

of programmer-specified copy operations or implicit data movements performed by the 

DPC++ runtime.  

If you take all the tasks in a program and the dependences that exist between them, 

you can use this to visualize this information as a graph.  This task graph is specifically a 

directed acyclic graph (DAG) where the nodes are the tasks and the edges are the 

dependences.  The graph is directed because dependences are one-way: task A must 

happen before task B.  The graph is acyclic because it does not contain any cycles, or 

paths from a node that lead back to itself. 



CHAPTER 3 n Data Management 

 
63 

 

Figure 3-8: Simple Task Graph	

In Figure 3-8, task A must execute before tasks B and C.  Likewise, B and C 

must execute before task D.  Since B and C do not have a dependence between each 

other, the runtime is free to execute them in any order (or even in parallel) as long as task 

A has already executed.  Therefore, the possible legal orderings of this graph are 

A Þ B Þ C Þ D,  A Þ C Þ B Þ D, and even A Þ B, C Þ D if B and C can 

concurrently execute. 



CHAPTER 3 n Data Management 

 
64 

 

Figure 3-9: Task Graph with Disjoint Dependences	

Tasks may have a dependence with a subset of all tasks.  In these cases, we only 

want to specify the dependences that matter for correctness.  This slack gives the runtime 

latitude to optimize the execution order of the task graph.  In Figure 3-9, we extend the 

earlier task graph from Figure 3-8 to add tasks E and F where E must execute before F.  

However, tasks E and F have no dependences with nodes A, B, C, and D. This allows the 

runtime to choose from many possible legal orderings to execute all the tasks.   

There are two different ways to model the execution of tasks in a queue:  the queue 

could either execute tasks in the order of submission or it could execute tasks in any order.  

However, executing tasks in an arbitrary order could lead to unexpected results, 

particularly if the tasks have dependences between each other.  DPC++ provides several 

mechanisms for programmers to order tasks using different strategies. 

In-order Queues 
The simplest option to order tasks is to submit them to an ordered_queue object.  An 

ordered_queue is an in-order queue that executes tasks in the order in which they were 

submitted as seen in Figure 3-10. While the intuitive task ordering of in-order queues 

provides an advantage in simplicity, it provides a disadvantage in that the execution of 

tasks will not overlap even if no dependences exist between them.  Ordered queues are 

useful when bringing up applications because they are simple, intuitive, deterministic on 

execution ordering, and suitable for many codes. 



CHAPTER 3 n Data Management 

 
65 

 

Figure 3-10: ordered_queue Usage	

Out-of-Order (OoO) Queues 
Since sycl::queue  objects in DPC++ are out-of-order queues (unlike 

ordered_queue), they must provide ways to order tasks submitted to them.  Queues 

order tasks by letting the programmers inform the runtime of dependences between them.  

These dependences can be specified, either explicitly or implicitly, using command groups. 

A command group is an object that specifies a task and its dependences.  

Command groups are typically written as C++ lambdas passed as an argument to the 

submit() method of a queue object.  This lambda’s only parameter is a reference to the 

handler object representing the command group.  The handler object is used to specify 

tasks, create accessors, and specify dependences. 

Explicit Dependences with Events 
Explicit dependences between tasks look like the examples we have seen in the previous 

sections where task A must execute before task B. This method of expressing dependences 

focuses on explicitly ordering tasks based on the computations that occur rather than on 

the data accessed by the computations.  Note that this method is primarily relevant for 



CHAPTER 3 n Data Management 

 
66 

codes that use USM.  In DPC++, we can express these dependences through event objects.  

When submitting a command group to a queue, the submit() method returns an event 

object.  These events can then be used in two ways.  

First, we can synchronize through the host by explicitly calling the wait() 

method on the event.  This forces the runtime to wait for the task that generated the event 

to finish executing before host program execution may continue.  Explicitly waiting on 

events can be very useful for debugging an application, but wait() can overly constrain 

the asynchronous execution of tasks since it halts all execution on the host thread.  

Similarly, one could also call wait() on a queue object, which would block execution on 

the host until all enqueued tasks have completed.  This can be a useful tool if the 

programmer does not want to keep track of all the events returned by enqueueing tasks. 

This brings us to the second way events can be used.  The handler class contains a 

method named depends_on().  This method accepts either a single event or a vector of 

events and informs the runtime that the command group being submitted requires the 

specified events to complete before the specified task may execute.  Figure 3-11 shows an 

example of how depends_on() may be used to order tasks.    

 

 



CHAPTER 3 n Data Management 

 
67 

Figure 3-11: Using events and depends_on	

Implicit Dependences with Accessors 
Implicit dependences between tasks in DPC++ are created from data dependences.  Data 

dependences between tasks take three forms, shown in Figure 3-12. 

Data dependences are expressed to the runtime through two components: 

accessors and program order.  Both components must be used for the runtime to properly 

compute data dependences.  This is illustrated in Figure 3-13 and Figure 3-14. 

 
Dependence Type Description 
Read-after-Write 
(RAW) 

Occurs when task B needs to read data computed 
by task A. 

Write-after-Read 
(WAR) 

Occurs when task B writes data after it has been 
read by task A. 

Write-after-
Write(WAW) 

Occurs when task B also writes over data 
computed by task A. 

Figure 3-12: Three forms of Data Dependencies	



CHAPTER 3 n Data Management 

 
68 

 

Figure 3-13: Read-After-Write	



CHAPTER 3 n Data Management 

 
69 

  

Figure 3-14: RAW Task Graph	

In Figure 3-13 and Figure 3-14, we execute three kernels: computeB, readA, and 

computeC, then read the final result back on the host.  The command group for kernel 

computeB creates two accessors, accA and accB.  Kernel computeB reads buffer A and 

writes buffer B.  Buffer A must be copied from the host to the device before the kernel 

begins execution.   

Kernel readA also creates a read-only accessor for buffer A.  Since kernel readA is 

submitted after kernel computeB, this creates a Read-after-Read (RAR) scenario.  

However, RARs do not place extra restrictions on the runtime, and the kernels are free to 

execute in any order.  Indeed, a runtime might prefer to execute kernel readA before 

kernel computeB or even execute both at the same time.  Both require buffer A to be 

copied to the device, but kernel computeB also requires buffer computeB to be copied 

since we didn’t specify a discard_write access mode.  This means that the runtime 

could execute kernel readA while the data transfer for buffer B occurs. 



CHAPTER 3 n Data Management 

 
70 

Kernel computeC reads buffer B, which we computed in kernel computeB.  Since 

we submitted kernel computeC after we submitted kernel computeB, this means that 

kernel computeC has a RAW data dependence on buffer B.  RAW dependences are also 

called true dependences or flow dependences, as data needs to flow from one computation 

to another in order to compute the correct result.  Finally, we also create a RAW 

dependence on buffer C between kernel computeC and the host, since the host wants to 

readC after the kernel has finished.  This forces the runtime to copy buffer C back to the 

host.  Since kernel computeC does not later write to buffer A, the runtime does not need to 

copy it back to the host. 



CHAPTER 3 n Data Management 

 
71 

 
Figure 3-15: Write-After-Read and Write-After-Write	



CHAPTER 3 n Data Management 

 
72 

 

 

Figure 3-16: WAR and WAW Task Graph	

In Figure 3-15 and Figure 3-16, we again execute three kernels: computeB, 

rewriteA, and rewriteB.  Kernel computeB once again reads buffer A and writes 

buffer B, kernel rewriteA writes to buffer A, and kernel rewriteB writes to buffer B.  

Kernel rewriteA could theoretically execute earlier than kernel computeB since less 

data needs to be transferred before the kernel is ready, but it must wait until after kernel 

computeB finishes since there is a WAR dependence on buffer A.  In this example, kernel 

computeB requires the original value of A from the host, and it would read the wrong 

values if kernel rewriteA executed before kernel computeB.  WAR dependences are 

also called anti-dependences.  RAW dependences ensure that data properly flows in the 

correct direction while WAR dependences ensure existing values are not overwritten 

before they are read.  The WAW dependence on buffer B found in kernel rewrite functions 

similarly.  If there were any reads of buffer B submitted in between kernels computeB and 

rewriteB, they would result in RAW and WAR dependences that would properly order 

the tasks.  However, there is an implicit dependence between kernel rewriteB and the 

host in this example since the final data must be written back to the host.  The WAW 

dependence, also called an output dependence, ensures that the final output will be 

correct on the host. 



CHAPTER 3 n Data Management 

 
73 

Choosing a Data Management Strategy 
Selecting the right data management strategy for your applications is largely a matter of 

personal preference.  Indeed, you may begin with one strategy and switch to another as 

your DPC++ program matures.  However, there are few useful guidelines to help you pick a 

strategy that will serve your needs. 

The first decision to make is whether you want to use explicit or implicit data 

movement since this greatly affects what needs to be done to bring a program into DPC++.  

Implicit data movement is generally an easier place to start because DPC++ will handle all 

the data movement, letting you focus on expressing the computation. 

If you decide that you’d rather have full control over all data movement from the 

beginning, then explicit data movement using USM device allocations is where you want to 

start.  Just be sure to add the necessary copies between host and devices!   

When selecting an implicit data movement strategy, you still have a choice of 

whether to use buffers or USM host or shared pointers.  Again, this choice is a matter of 

personal preference, but there are a few questions that could help guide you to one over 

the other.  If you’re porting an existing C/C++ program that that uses pointers, USM might 

be an easier path since most code won’t need to change.  Another question to ask is how 

you would like to express your dependences between kernels.  If you prefer to think about 

data dependences between kernels, choose buffers.  If you prefer to think about 

dependences as performing one computation before another, choose USM. 

When using USM pointers (with either explicit or implicit data movement), you 

have a choice of which type of queue you want to use.  In-order queues are simple and 

intuitive, but they constrain the runtime and may limit performance.  Out-of-order queues 

are more complex, but they give the runtime more freedom to reorder and overlap 

execution.  The out-of-order queue class is the right choice if your program will have 

complex dependences between kernels.  If your program simply runs many kernels one 

after another, then the in-order ordered_queue class will be a better option for you. 

Summary 
In this chapter, we have introduced the mechanisms that DPC++ uses to address the 

problems of data management and how to order the uses of data.  Managing access to 

different memories is a key challenge when using accelerator devices, and DPC++ gives 

programmers different options to suit their needs. 



CHAPTER 3 n Data Management 

 
74 

We provided an overview of the different types of dependences that can exist 

between the uses of data, and we described how to provide information about these 

dependences to queues so that they properly order tasks. 

This chapter provided a very brief introduction to Unified Shared Memory and 

buffers.  We will explore all the modes and behaviors of USM in greater detail in Chapter 6.  

Chapter 7 will do a deep dive on buffers including all the different ways to create buffers 

and control their behavior.  Chapter 8 will revisit the DAG scheduling mechanism of 

DPC++ queues.  

 

 

 

 

 

 

 

FOR THIS BOOK PREVIEW (CHAPTERS 1-4): 
ERRATA, NOTES, DOWNLOADS, FEEDBACK, ETC. 

Please check our “preview book” website for information including errata, updates, and 
downloads (includes all sample code):  https://tinyurl.com/book-dpcpp  

We will also list some additional resources as they become available. 

Your feedback is welcome.  You can email James Reinders at 
dpc++@jamesreinders.com with any suggestions, encouragement, criticism, or 
questions that you may have.  James will be sure to share any feedback that you send 
with all the authors. 

Of course – watch for the full book, by mid-2020, available from Apress (no charge for 
PDF for the completed book, print copies will be available too). 

https://tinyurl.com/book-dpcpp 



CHAPTER 4 n Expressing Parallelism 

 
75 

Expressing Parallelism 
We have already covered how to control where code runs in Chapter 2 (on what device), 

and how to get data to our code (accessible from a particular device) in Chapter 3.  This 

chapter fills in missing details from the code samples shown so far and starts to transition 

from simple teaching examples towards real-world parallel code. 

Writing your first program in a new parallel language may seem like a daunting 

task, especially if you are new to parallel programming.  Language specifications are not 

written for application developers, and often assume some familiarity with terminology; 

they do not contain answers to questions like: 

• Why is there more than one way to express parallelism? 

• Which method of expressing parallelism should I use? 

• How much do I really need to know about the execution model? 

This chapter seeks to address these questions, and more.  We introduce the 

concept of a data parallel kernel, discuss the strengths and weaknesses of the different 

kernel forms available in DPC++ using working code examples, and highlight the most 

important aspects of the kernel execution model. 

DPC++ AND SYCL IN CHAPTER  

Work-group collectives and sub-groups are DPC++ extensions at the time this book is 
going to press, and are not part of the SYCL 1.2.1 specification. 

Everything else discussed in this chapter is SYCL, and is therefore fully supported by 
DPC++. 

Parallelism within Kernels 
Parallel kernels have emerged in recent years as a powerful means of expressing data 

parallelism.  The primary design goals of a kernel-based approach are portability across a 

wide range of devices and high programmer productivity.  As such, kernels are typically not 

hard-coded to work with a specific number or configuration of hardware resources (e.g. 



CHAPTER 4 n Expressing Parallelism 

 
76 

cores, hardware threads, SIMD instructions). Instead, kernels describe parallelism in terms 

of abstract concepts that an implementation (i.e. a combination of compiler and runtime) 

can then map to the hardware parallelism available on a particular target device. 

Exposing a great deal of parallelism in a hardware-agnostic way ensures that 

applications can scale up (or down) to fit the capabilities of different platforms, but... 

Guaranteeing functional portability is not the same as guaranteeing 
high performance! 

There is a significant amount of diversity in the devices supported by DPC++, and 

we must remember that different architectures are designed and optimized for different 

use-cases.  Whenever we hope to achieve the highest levels of performance on a specific 

device, we should always expect that some additional manual optimization work will be 

required — regardless of the programming language we’re using!  Examples of such 

device-specific optimizations include: blocking for a particular cache size; choosing a grain 

size that amortizes scheduling overheads; making use of specialized instructions or 

hardware units; and most importantly, choosing an appropriate algorithm.  Some of these 

examples will be revisited in Chapters 13, 14 and 15. 

Striking the right balance between performance, portability and productivity 

during application development is a challenge that we must all face — and a challenge that 

this book cannot address in its entirety.  However, we hope to show that DPC++ provides 

all of the tools required to maintain both generic portable code and optimized target-

specific code using a single high-level programming language.  The rest is left as an 

exercise to the reader! 

Multi-dimensional Kernels 
The parallel constructs of many other languages are one-dimensional, mapping work 

directly to a corresponding one-dimensional hardware resource (e.g. number of hardware 

threads).  Parallel kernels are a higher-level concept than this, and their dimensionality is 

more reflective of the problems that our codes are typically trying to solve (in a one-, two- 

or three-dimensional space). 

However, we must remember that the multi-dimensional indexing provided by the 

SYCL execution model is a programmer convenience implemented on top of an 

underlying one-dimensional space.  Understanding how this mapping behaves can be an 

important part of certain optimizations (e.g. tuning memory access patterns). 



CHAPTER 4 n Expressing Parallelism 

 
77 

All multi-dimensional quantities related to parallelism in DPC++ use the same row-

major convention, and in all contexts the contiguous dimension of a multi-dimensional 

quantity will be its rightmost.  Unfortunately, we often find ourselves in situations where 

terms like "row-major" and "rightmost" are of little help: for example, we may need to refer 

to a single, specific dimension!  To avoid confusion, dimensions are also numbered from 0 

to N-1, where dimension N-1 corresponds to the contiguous dimension in an 

N-dimensional space.  An example of mapping two dimensions to a linear index using the 

SYCL convention is shown in Figure 4-1.  We are of course free to break from this 

convention and adopt our own methods of linearizing indices, but must do so carefully — 

breaking from the SYCL convention may have a negative performance impact on devices 

that benefit from stride-one accesses. 

 

Figure 4-1: A two-dimensional range of size (2, 8) mapped to linear indices.	

If an application requires more than three dimensions, we must take responsibility 

for mapping between multi-dimensional and linear indices manually, using modulo 

arithmetic. 

Loops vs. Kernels 
An iterative loop is an inherently serial construct: each iteration of the loop is executed 

sequentially (i.e. in order).  An optimizing compiler may be able to determine that some or 

all iterations of a loop can execute in parallel, but it must be conservative — if the compiler 

isn't smart enough or doesn't have enough information to prove that parallel execution is 

always safe, it must preserve the loop's sequential semantics for correctness. 

 
Figure 4-2: A vector addition expressed as a serial loop.	



CHAPTER 4 n Expressing Parallelism 

 
78 

Consider the loop in Figure 4-2, which describes a simple vector addition.  Even in 

a simple case like this, proving that the loop can be executed in parallel is not trivial: 

parallel execution is only safe if c does not overlap a or b, which in the general case cannot 

be proven without a run-time check!  In order to address situations like these, languages 

have added features enabling us to provide compilers with extra information that may 

simplify analysis (e.g. asserting that pointers do not overlap with restrict), or to 

override all analysis altogether (e.g. declaring that all iterations of a loop are independent, 

or defining exactly how the loop should be scheduled to parallel resources). 

The exact meaning of a "parallel loop" is somewhat ambiguous — due to 

overloading of the term by different parallel programming languages — but many common 

parallel loop constructs represent compiler transformations applied to sequential loops.  

Such programming models enable us to write sequential loops and only later provide 

information about how different iterations can be executed safely in parallel.  These 

models are very powerful, integrate well with other state-of-the-art compiler optimizations, 

and greatly simplify parallel programming, but do not always encourage us to think about 

parallelism at an early stage of development. 

A parallel kernel is not a loop, and does not have iterations.  Rather, a kernel 

describes a single operation, which can be instantiated many times and applied to different 

input data; when a kernel is launched in parallel, multiple instances of that operation are 

executed simultaneously. 

 

Figure 4-3: The example loop rewritten (in pseudocode) as a parallel kernel. 

Figure 4-3 shows our simple loop example rewritten as a kernel using pseudocode.  

The opportunity for parallelism in this kernel is clear and explicit: the kernel can be 

executed in parallel by any number of instances, and each instance independently applies 

to a separate piece of data. 

In short: kernel-based programming is not a way to retrofit parallelism into existing 

sequential codes, but a methodology for writing explicitly parallel applications. 

The sooner that we can shift our thinking from loops to kernels, the 
easier it will be to write effective parallel programs using DPC++. 



CHAPTER 4 n Expressing Parallelism 

 
79 

Overview of Language Features 
Once we've decided to write a parallel kernel, we must decide what type of kernel 

we want to launch and how to represent it in our program.  There are a multitude of ways 

to express parallel kernels in DPC++, and we must familiarize ourselves with all of these 

options if we want to master the language. 

Separating Kernels from Host Code 
DPC++ offers a number of alternative ways to separate host and device code, which we can 

mix and match within an application: “single-source” C++ lambda expressions or function 

objects (functors); OpenCL C source strings; or binaries.  Some of these options were 

already covered in Chapter 2, and all of them will be covered in more detail in Chapter 10. 

The fundamental concepts of expressing parallelism in DPC++ are shared by all of 

these options.  For consistency and conciseness, all of the code examples in this chapter 

express kernels using C++ lambdas. 

LAMBDAS NOT CONSIDERED HARMFUL 

Not all programmers like using C++ lambda expressions.  They’re (relatively) new to 
the language, they have unfamiliar syntax, and some compilers have historically had 
some problems optimizing around them.  However, there is no need to fully understand 
everything that the C++ specification says about lambdas in order to get started with 
DPC++ — all you need to know is how to copy the simple code examples found in this 
book and how to write the body of a loop.  There is no need to worry about any 
potential negative performance impacts, either — a DPC++ compiler always 
understands when a lambda represents the body of a parallel kernel, and can optimize 
for parallel execution accordingly. 

Different Forms of Parallel Kernel 
DPC++ provides three different kernel forms, each with their own execution models and 

syntax.  It is possible to write portable kernels using any of the kernel forms, and kernels 

written in any form can be tuned to achieve high performance on a wide variety of device 

types.  However, there will be times when we may want to use a particular form to make a 

specific parallel algorithm easier to express, or to make use of an otherwise inaccessible 

language feature. 

The first kernel form is used for basic data parallel kernels, and offers the gentlest 

introduction to writing kernels in DPC++.  With basic kernels, we sacrifice control over low-



CHAPTER 4 n Expressing Parallelism 

 
80 

level features like scheduling in order to make the expression of the kernel as simple as 

possible.  How the individual kernel instances are mapped to hardware resources is 

controlled entirely by the implementation, and so as basic kernels grow in complexity it 

becomes harder and harder to reason about their performance. 

The second kernel form extends basic kernels to provide access to low-level 

performance-tuning features.  This second form is known as ND-range (N-dimensional 

range) data parallel for historical reasons, and the most important thing to remember is 

that it enables certain kernel instances to be grouped together, allowing us to exert some 

control over data locality and the mapping between individual kernel instances and the 

hardware resources that will be used to execute them.  

The third and final form provides syntactic sugar to simplify the expression of ND-

range kernels using nested kernel constructs.  This third form is referred to as hierarchical 

data parallel, referring to the hierarchy of the nested kernel constructs that appear in user 

source code. 

We will revisit how to choose between the different kernel forms again at the end of 

this chapter, once we've discussed their features in more detail. 

Basic Data Parallel Kernels 
The most basic form of parallel kernel in DPC++ is appropriate for operations that are 

embarrassingly parallel (i.e. operations that can be applied to every piece of data 

completely independently and in any order).  By using this form, we give an 

implementation ultimate freedom to schedule work.  It is thus an example of a descriptive 

programming construct — we describe that the operation is embarrassingly parallel, and all 

scheduling decisions are made by the implementation. 

Basic data parallel kernels are written in a Single Program Multiple Data (SPMD) 

style — a single “program” (the kernel) is applied to multiple pieces of data.  Note that this 

programming model still permits each instance of the kernel to take different paths 

through the code, as a result of data-dependent branches. 

Basic Data Parallel Kernels: Execution Model 
The execution space of a basic parallel kernel is referred to in DPC++ as its execution range, 

and each instance of the kernel functor is referred to as an item.  This is represented 

diagrammatically in Figure 4-4. 



CHAPTER 4 n Expressing Parallelism 

 
81 

 

Figure 4-4: The execution space of a basic parallel kernel, shown for a 2D range of 64 
items. 	

The execution model of basic data parallel kernels is very simple: it allows for 

completely parallel execution, but does not guarantee or require it.  Items can be executed 

in any order, including sequentially on a single hardware thread (i.e. without any 

parallelism)!  Kernels that assume that all items will be executed in parallel (e.g. by 

attempting to synchronize items) could therefore very easily lead programs to hang on 

some devices. 

However, in order to guarantee correctness we must always write our kernels 

assuming that they could be executed in parallel.  For example, it is our responsibility to 

ensure that concurrent accesses to memory are appropriately guarded by atomic memory 

operations in order to prevent race conditions. 

Basic Data Parallel Kernels: Syntax 
Basic data parallel kernels are expressed using the parallel_for function, which is a 

member of the handler class and can only be called at command-group scope.  Figure 4-

5 shows how to use this function to express a vector addition, which is the equivalent of 

"Hello world!" for parallel accelerator programming.  

 
Figure 4-5: A vector addition kernel expressed with parallel_for. 



CHAPTER 4 n Expressing Parallelism 

 
82 

The function only takes two arguments: the first is a range specifying the number 

of items to launch in each dimension; and the second is a kernel function to be executed 

for each index in the range.  The kernel can take either an id or an item as its argument, 

and which should be used depends on which class exposes the functionality required by 

your use-case — we'll revisit this later. 

Figure 4-6 shows a very similar use of this function to express a matrix addition, 

which is (mathematically) identical to vector addition except working with two-

dimensional data.  This is reflected by the kernel — the only difference between the two 

code snippets is the dimensionality of the range and id classes used!  It is possible to 

write the code this way because a SYCL accessor can be indexed by a multi-dimensional 

id.  As strange as it looks, this can be very powerful, enabling us to write templated kernels 

that operate on data of any dimensionality. 

 
Figure 4-6: A matrix addition kernel expressed with parallel_for. 

It is more common in C/C++ to use multiple indices and multiple subscript 

operators to index multi-dimensional data structures, and this explicit indexing is also 

supported by DPC++.  This method of indexing can improve readability when a kernel 

operates on data of different dimensionalities simultaneously, or when the memory access 

patterns of a kernel are more complicated than can be described by using an item's id 

directly. 

For example, the matrix multiplication kernel in Figure 4-7must extract the two 

individual components of the index in order to be able to describe the dot-product 

between rows and columns of the two matrices.  In our opinion, consistently using 

multiple subscript operators (e.g. [j][k]) is more readable than mixing multiple 

indexing modes and constructing two-dimensional id objects (e.g. id(j,k)), but this is 

simply a matter of personal preference.   

The examples in the remainder of this chapter all use multiple subscript operators, 

to ensure that there is no ambiguity in the dimensionality of the buffers being accessed. 



CHAPTER 4 n Expressing Parallelism 

 
83 

 
Figure 4-7: A naïve matrix multiplication kernel expressed with parallel_for.	

 

Figure-8: Mapping of matrix multiplication work to items in the execution range.	

The diagram in Figure-8 shows how the work in our matrix-multiplication kernel is 

mapped to individual items.  Each item computes a single value of the C matrix, by 

iterating sequentially over a (contiguous) row of the A matrix and a (non-contiguous) 

column of the B matrix. 

Basic Data Parallel Kernels: Important Classes 
The functionality of basic data parallel kernels is exposed via three C++ classes: range, id 

and item.  The range and id classes were also discussed during the introduction of 

buffers in Chapter 3, but we revisit them here with a different focus.  

The range Class 
A range represents a one-, two- or three-dimensional range.  The dimensionality of a 

range is a template argument and must therefore be known at compile-time, but its size 

in each dimension is dynamic and is passed to the constructor at run-time.  Instances of 



CHAPTER 4 n Expressing Parallelism 

 
84 

the range class are used in DPC++ to describe both the execution ranges of parallel 

constructs and the sizes of buffers. 

A simplified definition of the range class, showing the constructors and various 

methods for querying its extent, is shown in Figure 4-9. 

 

Figure 4-9: A simplified definition of the range class. 	

The id Class 
An id represents an index into a one, two- or three-dimensional range.  The definition of 

id is similar in many respects to range: its dimensionality must also be known at 

compile-time; and it may be used to index an individual instance of a kernel in a parallel 

construct or an offset into a buffer. 

As shown by the simplified definition of the id class in Figure 4-10, an id is 

conceptually nothing more than a container of one, two or three integers.  The operations 

available to us are also very simple: we can query the component of an index in each 

dimension, and we can perform simple arithmetic to compute new indices. 

Although we can construct an id to represent an arbitrary index, the only way to 

obtain the id associated with a particular kernel instance is to accept it as an argument to 

a kernel function.  This id (or values returned by its member functions) must be 

forwarded to any device function in which we want to query the index.  If a kernel functor 



CHAPTER 4 n Expressing Parallelism 

 
85 

accepts an instance of id, there is no way to identify how many instances of the kernel 

function were launched. 

 

Figure 4-10: A simplified definition of the id class. 	

The item Class 
An item represents an individual instance of a kernel function, encapsulating both the 

execution range of the kernel and the instance's index within that range (using a range 

and an id, respectively).  Like range and id, its dimensionality must be known at 

compile-time. 

A simplified definition of the item class is given in Figure 4-11. The main 

difference between item and id is that item exposes additional functions to query 

properties of the execution range (e.g. size, offset) and a convenience function to compute 

a linearized index.  As with id, the only way to obtain the item associated with a 

particular kernel instance is to accept it as an argument to a kernel function. 



CHAPTER 4 n Expressing Parallelism 

 
86 

 

Figure 4-11: A simplified definition of the item class. 	

Explicit ND-Range Kernels 
The second form of parallel kernel in DPC++ replaces the flat execution range of basic data 

parallel kernels with an execution range where items belong to groups, and is appropriate 

for cases where we would like to express some notion of locality within our kernels.  

Different behaviors are defined and guaranteed for different types of groups, giving us 

more insight into and/or control over how work is mapped to specific hardware platforms. 

These explicit ND-range kernels are thus an example of a more prescriptive parallel 

construct — we prescribe a mapping of work to each type of group, and the implementation 

must obey that mapping.  However, it is not completely prescriptive, as the groups 

themselves may execute in any order and an implementation retains some freedom over 

how each type of group is mapped to hardware resources.  This combination of 

prescriptive and descriptive programming enables us to design and tune our kernels for 

locality without impacting their portability. 

Like basic data parallel kernels, ND-range kernels are written in a SPMD style 

where all work-items execute the same kernel "program" applied to multiple pieces of data.  

The key difference is that each program instance can query its position within the groups 

that contain it, and can access additional functionality specific to each type of group. 



CHAPTER 4 n Expressing Parallelism 

 
87 

Explicit ND-Range Parallel Kernels: Execution 
Model 
The execution range of an ND-range kernel is divided into work-groups, sub-groups and 

work-items (as shown in Figure 4-12).  The ND-range represents the total execution range, 

which is divided into work-groups of uniform size (i.e. the work-group size must divide the 

ND-range size exactly in each dimension).  Each work-group can be further divided by the 

implementation into sub-groups.  Understanding the execution model defined by DPC++ 

for work-items and each type of group is an important part of writing correct and portable 

programs. 

 

Figure 4-12: A three-dimensional ND-range of size (8, 8, 8) divided into 8 work-groups 
of size (4, 4, 4).  Each work-group contains 16 one-dimensional sub-groups of 4 work-
items.	

The exact mapping from each type of group to hardware resources is 

implementation-defined, and it is this flexibility that enables DPC++ programs to execute on 

a wide variety of hardware.  For example, work-items could be executed completely 

sequentially, executed in parallel by hardware threads and/or SIMD instructions, or even 

executed by a hardware pipeline specifically configured for a particular kernel. 

In this chapter we are focused only on the semantic guarantees of the ND-range 

execution model in terms of a generic target platform, and we will not cover its mapping to 

any one platform.  The reader is referred to Chapters 13, 14 and 15 for details of the 

hardware mapping and performance recommendations for GPUs, CPUs and FPGAs 

respectively. 



CHAPTER 4 n Expressing Parallelism 

 
88 

Work-items 
Work-items represent the individual instances of a kernel function.  In the absence of other 

groupings, work-items can be executed in any order and cannot communicate or 

synchronize with each other except by way of atomic memory operations to global 

memory. 

Work-groups 
The work-items in an ND-range are organized into work-groups.  Work-groups can 

execute in any order, and work-items in different work-groups cannot communicate or 

synchronize with each other except by way of atomic memory operations to global 

memory.  However, the work-items within a work-group have concurrent scheduling 

guarantees when certain constructs are used, and this locality provides some additional 

capabilities: 

1. Work-items in a work-group have access to work-group local 

memory, which may be mapped to a dedicated fast memory on 

some devices 

2. Work-items in a work-group can synchronize using work-group 

barriers and guarantee memory consistency using work-group 

memory fences 

3. Work-items in a work-group have access to work-group collectives, 
providing fast implementations of common parallel patterns 

The number of work-items in a work-group is typically configured for each kernel 

at run-time, as the best grouping will depend upon both the amount of parallelism 

available (i.e. the size of the ND-range) and properties of the target device.  We can 

determine the maximum number of work-items per work-group supported by a particular 

device using the query functions of the device class, and it is our responsibility to ensure 

that the work-group size requested for each kernel is valid. 

There are some subtleties in the work-group execution model that are worth 

emphasizing. 

First, although the work-items in a work-group are scheduled to a single compute 

unit, there need not be any relationship between the number of work-groups and the 

number of compute units.  In fact, the number of work-groups in an ND-range can be 

many times larger than the number of work-groups that a given device is capable of 

executing concurrently!  If you are a parallel programming expert already, you may be 



CHAPTER 4 n Expressing Parallelism 

 
89 

tempted to try and write kernels that synchronize across work-groups by relying on very 

clever device-specific scheduling, but we strongly recommend that you do not attempt this 

— such kernels are very sensitive to implementation details that may change or be non-

deterministic. 

Second, although the work-items in a work-group are scheduled concurrently, they 

are not guaranteed to make independent forward progress — executing the work-items 

within a work-group sequentially between barriers and collectives is a valid 

implementation.   Communication and synchronization between work-items in the same 

work-group is only guaranteed to be safe when performed using the barrier and collective 

functions provided, and hand-coded synchronization routines may deadlock. 

THINKING IN WORK-GROUPS 
Work-groups are similar in many respects to the concept of a task in other 
programming models (e.g. Threading Building Blocks): tasks can execute in any order 
(controlled by a scheduler); it's possible (and even desirable) to oversubscribe a 
machine with tasks; and it's often not a good idea to try and implement a barrier across 
a group of tasks (as it may be very expensive or incompatible with the scheduler).  If 
you're already familiar with a task-based programming model, you may find it useful to 
think of work-groups as though they are data-parallel tasks. 

Sub-groups 
On many modern hardware platforms, a subset of the work-items in a work-group are 

executed simultaneously (e.g. as a result of compiler vectorization) or with additional 

scheduling guarantees (e.g. because subsets are mapped to independent hardware 

threads).  When working with a single platform it is tempting to bake such execution model 

assumptions into our codes, but this makes them inherently unsafe and non-portable — 

they may break when moving between different compilers, or even when moving between 

different generations of hardware from the same vendor! 

These subsets of work-items are known in DPC++ as sub-groups.  Defining sub-

groups as a core part of the language gives us a safe alternative to making assumptions that 

may later prove to be device-specific.  Leveraging sub-group functionality also allows us to 

reason about the execution of work-items at a low level (i.e. close to hardware) and is key 

to achieving very high levels of performance across many platforms. 

  



CHAPTER 4 n Expressing Parallelism 

 
90 

As with work-groups, work-items within a sub-group are able to access additional 

capabilities: 

1. Work-items in a sub-group can communicate directly, without 

explicit memory operations, using shuffle operations 

2. Work-items in a sub-group can synchronize using sub-group 

barriers and guarantee memory consistency using sub-group 

memory fences 

3. Work-items in a sub-group have access to sub-group collectives, 
providing fast implementations of common parallel patterns 

The number of sub-groups per work-group is implementation-defined and outside 

of our control.  However, a sub-group has a fixed (one-dimensional) size for a given 

combination of device, kernel and ND-range, and we can query this size using the query 

functions of the kernel class.  By default, the number of work-items per sub-group is also 

chosen by the implementation — we can override this behavior by requesting a particular 

sub-group size at compile-time, but must ensure that the sub-group size we request is 

compatible with the device. 

Like work-groups, the work-items in a sub-group are only guaranteed to execute 

concurrently between sub-group functions, and an implementation is free to execute the 

work-items in a sub-group sequentially.  Where sub-groups are special is that they are the 

only part of DPC++ capable of providing some guarantee of independent forward progress 

— on some devices, the sub-groups within a work-group are guaranteed to make 

independent forward progress with respect to other sub-groups in the same work-group.  

Whether or not this forward progress guarantee holds can be determined using a device 

query. 

THINKING IN SUB-GROUPS 
If you are coming from a programming model that requires you to think about explicit 
vectorization, it may be useful to think of each sub-group as a set of work-items packed 
into a SIMD register, where each work-item in the sub-group corresponds to a SIMD 
lane.  When multiple sub-groups are in flight simultaneously and a device guarantees 
they will make independent forward progress, this mental model extends to treating 
each sub-group as though it were a separate stream of vector instructions executing in 
parallel. 



CHAPTER 4 n Expressing Parallelism 

 
91 

Explicit ND-Range Data Parallel Kernels: Syntax 
Figure 4-13 re-implements the matrix multiplication kernel that we saw previously using 

the ND-range parallel kernel syntax, and the diagram in Figure 4-14 shows how the work in 

this kernel is mapped to the work-items in each work-group.  Grouping our work-items in 

this way ensures locality of access and hopefully improves cache hit rates: for example, the 

work-group in Figure 4-14 has a local range of (4, 4) and contains 16 work-items, but only 

accesses four times as much data as a single work-item — in other words, each value we 

load from memory can be re-used four times.  Tuning the work-group size (i.e. the B 

parameter) to realize this benefit based on the cache size of specific devices is left as an 

exercise to the reader. 

 
Figure 4-13: A naïve matrix multiplication kernel expressed with ND-range 
parallel_for.	

 
Figure 4-14: Mapping of matrix multiplication to work-groups and work-items. 

So far, our matrix multiplication example has relied on a hardware cache to 

optimize repeated accesses to the A and B matrices from work-items in the same work-

group.  Such hardware caches are commonplace on traditional CPU architectures and are 

becoming increasingly so on GPU architectures, but there are other architectures (e.g. 



CHAPTER 4 n Expressing Parallelism 

 
92 

previous generation GPUs, FPGAs) with explicitly managed "scratchpad" memories.  ND-

range kernels are able to use local accessors to describe allocations that should be placed in 

work-group local memory, and an implementation is then free to map these allocations to 

special memory (where it exists).  A version of our matrix multiplication kernel updated to 

use local accessors is shown in Figure 4-15. Usage of local memory will be covered in more 

detail in Chapter 9. 

 

Figure 4-15: A tiled matrix multiplication kernel expressed with ND-range 
parallel_for and work-group local memory. 

The operation of this new kernel can be thought of as two distinct phases: in the 

first, the work-items in the work-group collaborate to load shared data from the A and B 

matrices into work-group local memory; and in the second, the work-items perform their 

own private computations using that data.  In order to ensure that the first phase has 

completed on all work-items in the work-group before any work-item begins executing the 

second phase, they are separated by a call to barrier(), which synchronizes all work-



CHAPTER 4 n Expressing Parallelism 

 
93 

items and also acts as a memory fence.  This pattern is a common one, and the use of 

work-group local memory in a kernel almost always necessitates the use of work-group 

local barriers.  Note that a call to mem_fence() is insufficient in cases like these: a 

memory fence imposes an ordering on the execution of instructions from a single work-

item, but does not force each work-item to wait for all other work-items to reach the same 

point in kernel execution. 

We can go one step further to improve locality by leveraging the ability of sub-

groups to communicate without explicit memory accesses.   There are several ways that 

work could be mapped to sub-groups, and one potential mapping is shown in Figure 4-16: 

in this mapping, each work-group remains responsible for computing one tile of the output 

matrix, and each sub-group is therefore responsible for computing one row of its parent 

work-group's tile.  Each sub-group accesses one row of the A matrix, and each work-item in 

the sub-group accesses one column of the B matrix. 

 

Figure 4-16: Mapping of matrix multiplication to work-groups and work-items. 

The corresponding code for this mapping is shown in Figure 4-17. In order to 

ensure that the number of work-items in a sub-group is the same as the width of the work-

group, we have two options: 1) set the work-group size based on the sub-group size chosen 

by the compiler; or 2) request a particular sub-group size at compile-time.  The code 

shown goes with the latter option, decorating the kernel lambda with the 

[[intel::reqd_sub_group_size]] attribute to guarantee that the compiler selects 

a sub-group size of 8. 

Since we have now guaranteed that each sub-group will access an independent 

row of the A matrix, we can replace the a_tile local accessor with direct communication 

between work-items.  Each sub-group loads a row (with the load function), and 

iterates through the elements of that row using a shuffle (specifically, the broadcast 

function). 



CHAPTER 4 n Expressing Parallelism 

 
94 

 

Figure 4-17: Tiled matrix multiply using sub-groups and one work-item per element.	

Unfortunately, this mapping does not permit us to replace the b_tile local 

accessor with shuffles in a similar fashion, because the reads and writes to b_tile are 

transposed — when loading the B matrix into b_tile, each sub-group loads a contiguous 

row, but when performing the matrix multiplication each sub-group reads a non-



CHAPTER 4 n Expressing Parallelism 

 
95 

contiguous column.  As written, this transpose operation requires communication 

between different sub-groups, which can only take place via memory. 

We could work around this issue by changing our mapping of work to work-items, 

making each sub-group responsible for a full (8, 8) tile of the output matrix.  Such a 

mapping is interesting because it demonstrates that there need not be a one-to-one 

mapping between work-items and the dimensionality of the problem space: here, each 

work-item would be responsible for computing multiple values in the output matrix.  The 

resulting code would likely be quite difficult to read, and its portability would suffer too 

(since it would rely on a compile-time tile size), but such tricks may be necessary to extract 

every last ounce of performance from a given device. 

Explicit ND-Range Data Parallel Kernels: 
Important Classes 
ND-range data parallel kernels use different classes compared to basic data parallel 

kernels: range is replaced by nd_range, and item is replaced by nd_item.  There are 

also two new classes, representing the different types of groups to which a work-item may 

belong: functionality tied to work-groups is encapsulated in the group class, and 

functionality tied to sub-groups is encapsulated in the sub_group class. 

The nd_range Class 
An nd_range represents a grouped execution range using two instances of the range 

class: one denoting the global execution range, and another denoting the local execution 

range of each work-group.  A simplified definition of the nd_range class is given in Figure 

4-18. 

It may be a little surprising that the nd_range class does not mention sub-groups 

at all: the sub-group range is not specified during construction, and cannot be queried.  

There are several reasons for this omission.  First, sub-groups are a low-level 

implementation detail that can be ignored for many kernels.  Second, there are several 

devices supporting exactly one valid sub-group size, and specifying this size everywhere 

would be unnecessarily verbose.  Finally, sub-groups as a DPC++ feature are an Intel 

extension to SYCL, and all functionality related to sub-groups is encapsulated in a 

dedicated class that will be discussed shortly. 



CHAPTER 4 n Expressing Parallelism 

 
96 

 

Figure 4-18: A simplified definition of the nd_range class. 	

The nd_item Class 
An nd_item is the ND-range form of an item, again encapsulating the execution range of 

the kernel and the item's index within that range.  Where nd_item differs from item is in 

how its position in the range is queried and represented, as shown by the simplified class 

definition in Figure 4-19. For example, we can query the item's index in the (global) ND-

range using the get_global_id() function, or the item's index in its (local) parent 

work-group using the get_local_id() function. 

The nd_item class also provides functions for obtaining handles to classes 

describing the group and sub-group that an item belongs to.  These classes provide an 

alternative interface for querying an item's index in an ND-range.  We strongly recommend 

writing kernels using these classes instead of relying on nd_item directly: using the 

group and sub_group classes is often cleaner; conveys intent more clearly; and is more 

aligned with the future direction of DPC++. 



CHAPTER 4 n Expressing Parallelism 

 
97 

 

Figure 4-19: A simplified definition of the nd_item class. 

The group Class 
The group class encapsulates all functionality related to work-groups, and a simplified 

definition is shown in Figure 4-20.  

Many of the functions that the group class provides each have equivalent 

functions in the nd_item class: for example, calling group.get_id() is equivalent to 

calling item.get_group_id(), and calling group.get_local_range() is 

equivalent to calling item.get_local_range().  If we're not using any of the work-

group functions exposed by the class, should we still use it?  Wouldn't it be simpler to use 

the functions in nd_item directly, instead of creating an intermediate group object?  

There is a trade-off here: using group requires us to write slightly more code, but that code 

may be easier to read.  For example, consider the code snippet in Figure 4-21: it is clear that 

foo expects to be called by all work-items in the group, and it is clear that the range 

returned by get_local_range() in the body of the parallel_for is the range of the 

group.  The same code could very easily be written using only nd_item, but it would 

likely be harder to follow. 



CHAPTER 4 n Expressing Parallelism 

 
98 

 

Figure 4-20: A simplified definition of the group class.  

 

 

 

Figure 4-21: An example of using the group class to improve readability. 	



CHAPTER 4 n Expressing Parallelism 

 
99 

Broadcast 
The broadcast function of the group class enables one work-item in a group to share 

the value of a variable with all other work-items in the group.  An example is shown in 

Figure 4-22. 

  

Figure 4-22: An example of the broadcast function.  

Votes 
The any and all functions of the group class (henceforth referred to collectively as 

"vote" functions) enable work-items to compare the result of a Boolean condition across 

their group: any returns true if the condition is true for at least one work-item in the group; 

and all returns true only if the condition is true for all work-items in the group.  A 

comparison of these two functions for an example input is shown in Figure 4-23. 

 

Figure 4-23: A comparison of the any and all functions.  

Collectives 
The collective functions provide implementations of closely-related common parallel 

patterns.  It would be straightforward to implement functional versions of these patterns 

manually by building on top of barriers and local memory, but providing them as library 

functions instead increases developer productivity and gives implementations the ability 



CHAPTER 4 n Expressing Parallelism 

 
100 

to generate highly optimized code for individual target devices.  A comparison of reduce, 

exclusive_scan, and inclusive_scan is given in Figure 4-24. 

 

Figure 4-24: A comparison of reduce, exclusive_scan and inclusive_scan.  

At the time of writing, the collectives are limited to supporting only primitive data 

types and the most common reduction operators (plus, minimum and maximum).  This 

is sufficient for many use-cases, but future versions of DPC++ are expected to extend 

collective support to user-defined types and operators. 

 

Figure 4-25: 1 of 2: A simplified definition of the sub_group class. 



CHAPTER 4 n Expressing Parallelism 

 
101 

 

Figure 4-26: 2 of 2: A simplified definition of the sub_group class. 



CHAPTER 4 n Expressing Parallelism 

 
102 

The sub_group Class 
The sub_group class encapsulates all functionality related to sub-groups, and a 

simplified definition is shown in Figure 4-25 and Figure 4-26.  Unlike with work-groups, the 

sub_group class is the only way to access sub-group functionality; none of its functions 

are duplicated in nd_item.  The queries in the sub_group class are all interpreted 

relative to the calling work-item: for example, get_local_id() returns the local index 

of the calling work-item within its sub-group. 

The code sample in Figure 4-27 demonstrates the most basic usage of sub-groups, 

specifically: obtaining a handle to the sub-group an item belongs to 

(get_sub_group()); identifying an item's location in its sub-group 

(get_local_id()); and querying the size of the sub-group (get_local_range()).  

Possible output from this application running on an Intel Iris Graphics 540 is given in 

Figure 4-28. 

There are two important things to note in the output.  First, the print statements 

from each sub-group do not appear in order (and are expected to change between runs).  

As with work-groups, we should not assume that sub-groups will execute in any particular 

order.  Second, there is one sub-group with a smaller size than the others.  If the size of a 

work-group does not divide evenly by the sub-group size chosen by an implementation, 

then the size of the last sub-group will be equal to the remainder (e.g. 63 mod 8 = 7). 

 
Figure 4-27: Getting a sub-group handle.	



CHAPTER 4 n Expressing Parallelism 

 
103 

 
Figure 4-28: Possible output from the code in Figure 4-27.	

Shuffles 
One of the most useful features of sub-groups is the ability to communicate directly 

between individual work-items without explicit memory operations.  In many cases, these 

shuffle operations enable us to remove work-group local memory usage from our kernels 

and/or to avoid unnecessary repeated accesses to global memory.  There are several 

flavors of these shuffle functions available. 

The most general of the shuffle functions is called shuffle, and as shown in 

Figure 4-29 it allows for arbitrary communication between any pair of work-items in the 

sub-group.  This generality may come at a cost, however, and we strongly encourage 

making use of the more specialized shuffle functions wherever possible. 

The shuffle_up and shuffle_down functions effectively shift the contents of 

a sub-group by a fixed number of elements in a given direction, as shown in Figure 4-30.  

Shifting can be useful for parallelizing loops with loop-carried dependencies, or 

implementing common algorithms like exclusive/inclusive scans.  The two-input versions 

are especially useful, allowing a known value to be shifted into the end of a sub-group. 

 

 

 
Figure 4-29: A generic shuffle used to sort the x values of an 8-item sub-group using 
pre-computed permutation indices.	



CHAPTER 4 n Expressing Parallelism 

 
104 

 
Figure 4-30: A two-input shuffle_down used to shift the x values of an 8-item sub-
group by 5 items.  The value returned to the last 5 work-items in the sub-group are taken 
from y.	

The shuffle_xor function swaps the values of two work-items, as specified by 

the result of an XOR operation applied to the work-item's sub-group local ID and a fixed 

constant.  As shown in Figure 4-31 and Figure 4-32, several common communication 

patterns can be expressed using an XOR: for example, swapping pairs of neighboring 

values, or reversing the sub-group values. 

 
Figure 4-31: A shuffle_xor used in an 8-item sub-group to swap neighboring pairs 
of x. 

 

 
Figure 4-32: A shuffle_xor used in an 8-item sub-group to reverse the values of x. 

 



CHAPTER 4 n Expressing Parallelism 

 
105 

 
Figure 4-33: Using sub-group shuffle functions to optimize loads in a stencil.	

The code sample in Figure 4-33 demonstrates the use of shuffle_up and 

shuffle_down for a simple one-dimensional stencil.  Once each work-item has loaded 

its center value, the values to the left and right are known to have been loaded by other 

work-items.  Therefore, rather than loading the left and right values again from memory, 

we can use shuffles to access them directly.  Note that this example assumes that the total 

domain is very small (the size of the sub-group) and that 0.0f is an appropriate boundary 

value.  Real-life use-cases may require additional logic to ensure correct values at the 

boundaries. 

Broadcast, Vote and Collectives 
The behavior of these sub_group functions are almost exactly the same as their 

equivalents in the group class, but they deserve additional attention because they may 

enable aggressive optimizations in certain compilers.  For example, a compiler may be able 

to reduce register usage for variables that are broadcast to all work-items in a sub-group, or 

may be able to reason about control-flow divergence based on usage of the any and all 

functions.  An example of such optimizations being used in practice is shown in Figure 4-

34. 



CHAPTER 4 n Expressing Parallelism 

 
106 

 

Figure 4-34: Using sub-group collective functions to optimize atomic accesses.	

Loads and Stores 
The sub-group load and store functions serve two purposes: 1) informing the compiler that 

all work-items in the sub-group are loading contiguous data starting from the same 

(uniform) location in memory; and 2) enabling us to request optimized loads/stores of 

large amounts of contiguous data. 

In a SPMD programming context like an ND-range parallel_for, it may not be 

clear to the compiler how addresses computed by different work-items relate to one 

another.  For example, as shown in Figure 4-35, accessing a contiguous block of memory 

from indices [0, 32) appears to have a strided access pattern from the perspective of each 

work-item. 

 



CHAPTER 4 n Expressing Parallelism 

 
107 

Figure 4-35: Memory access pattern of an 8-wide sub-group accessing four contiguous 
blocks.	

Some architectures include dedicated hardware to detect when work-items in a 

sub-group access contiguous data and combine their memory requests, while other 

architectures require this to be known ahead of time and encoded in the load/store 

instruction.  Sub-group loads and stores are not required for correctness on any platform 

but may improve performance on some platforms, and should therefore be considered as 

an optimization hint. 

 

 

Figure 4-36: Using sub-group loads and stores to access four contiguous blocks of sub-
group size.	

Hierarchical Parallel Kernels 
Hierarchical data parallel kernels offer an experimental alternative syntax for expressing 

kernels in terms of work-groups and work-items, where each level of the hierarchy is 

programmed using a nested invocation of the parallel_for function.  This top-down 

programming style is intended to be similar to writing parallel loops, and may feel more 

familiar than the bottom-up programming style used by the other two kernel forms. 

One complexity of hierarchical kernels is that each nested invocation of 

parallel_for creates a separate SPMD context; each scope defines a new "program" 

that should be executed by all parallel workers associated with that scope.  This complexity 

requires compilers to perform additional analysis, and can complicate code generation for 



CHAPTER 4 n Expressing Parallelism 

 
108 

some devices; compiler technology for hierarchical parallel kernels on some platforms is 

still relatively immature, and performance will be closely tied to the quality of a particular 

compiler implementation.  Mapping nested parallelism to accelerators is a challenge that 

is not unique to DPC++: the parallel STL already supports nested algorithms with different 

execution policies; there is an ISO C++ proposal to associate execution resources with 

levels of nesting using executors; and languages outside of C++ (e.g. OpenMP) have long 

supported nested parallel constructs.  This topic is the subject of much interest and 

research, and we expect that the performance of hierarchical parallelism will improve over 

time. 

Since the relationship between a hierarchical data parallel kernel and the code 

generated for a specific device is compiler-dependent, hierarchical kernels should be 

considered a more descriptive construct than explicit ND-range kernels.  However, since 

hierarchical kernels retain the ability to control the mapping of work to work-items and 

work-groups, they remain more prescriptive than basic kernels. 

Hierarchical Data Parallel Kernels: Execution 
Model 
The underlying execution model of hierarchical data parallel kernels is the same as the 

execution model of explicit ND-range data parallel kernels.  Individual kernel instances are 

still mapped to work-items, sub-groups and work-groups, with identical semantics and 

execution guarantees. 

Hierarchical Data Parallel Kernels: Syntax 
In hierarchical kernels, the parallel_for function is replaced by the 

parallel_for_work_group and parallel_for_work_item functions, which 

correspond to work-group and work-item parallelism respectively.  At the time of writing, 

there is no access to sub-groups within hierarchical kernels (i.e. there is no equivalent of a 

parallel_for_sub_group function), but this is expected to be addressed by future 

versions of DPC++. 

DPC++ compilers must guarantee that hierarchical kernels execute as if code in a 

parallel_for_work_group scope is executed only once per work-group, and as if 

variables allocated in a parallel_for_work_group scope are visible to all work-

items (i.e. they are allocated in work-group local memory).  However, the code that is 

actually generated will be highly dependent on the results of compiler analysis: an 

optimizing compiler may be able to prove that it is safe to execute work-group code 



CHAPTER 4 n Expressing Parallelism 

 
109 

redundantly on all work-items, or that it is safe to allocate a work-group variable in work-

item private memory (e.g. because its value is constant). 

As shown in Figure-37, kernels expressed using hierarchical parallelism are very 

similar to ND-range kernels.  We should therefore view hierarchical parallelism primarily 

as a productivity feature; it doesn't expose any functionality that isn't already exposed via 

ND-range kernels, but it may improve the readability of our code and/or reduce the 

amount of code that we have to write. 

 

Figure-37: A naïve matrix multiplication kernel expressed with hierarchical 
parallelism.	

Like parallel_for, parallel_for_work_group is a member function of 

the handler class and can only be called inside of a command-group scope.  It is 

important to note that the ranges passed to the function specify the number of groups and 

an optional group size, not the total number of work-items and group size as was the case 

for ND-range parallel_for.  The kernel function accepts an instance of the group 

class, reflecting that the outer scope is associated with work-groups rather than individual 

work-items. 

parallel_for_work_item is a member function of the group class, and can 

only be called inside of a parallel_for_work_group scope.  In its simplest form, its 

only argument is a function accepting an instance of the h_item class, and the number of 

times that the function is executed is equal to the number of work-items requested per 

work-group; the function is executed once per physical work-item.  An additional 

productivity feature of parallel_for_work_item is its ability to support a logical 

range, which is passed as an additional argument to the function.  When a logical range is 



CHAPTER 4 n Expressing Parallelism 

 
110 

specified, each physical work-item executes zero or more instances of the function; the 

logical items of the logical range are assigned round-robin to physical work-items, as 

shown in Figure 4-38. 

 

Figure 4-38: A logical range of size 11 mapped to a physical range of size 8.   The first 
three work-items are assigned two instances of the function, and all other work-items 
are assigned only one. 

As shown in Figure 4-39, combining the optional group size of 

parallel_for_work_group with the logical range of parallel_for_work_item 

gives an implementation the freedom to choose work-group sizes without sacrificing our 

ability to conveniently describe the execution range using nested parallel constructs.  Note 

that the amount of work performed per group remains the same as in Figure-37, but that 

the amount of work has now been separated from the physical work-group size.  

 

 

Figure 4-39: A naïve matrix multiplication kernel expressed with hierarchical 
parallelism and a logical range. 



CHAPTER 4 n Expressing Parallelism 

 
111 

 

Figure 4-40: A tiled matrix multiplication kernel using work-group local memory 
expressed with hierarchical parallelism and a logical range. 

The code in Figure 4-40 shows how to extend Figure 4-39 to use work-group local 

memory in hierarchical parallelism.  There are two notable differences between this kernel 

and the version we wrote as an ND-range kernel.  The first difference is that we can declare 

the work-group local memory inside of the kernel (without using a local accessor) as long 

as the amount of local memory is known at compile-time.  The second difference is that 

the two phases of the kernel each has a corresponding parallel_for_work_item 



CHAPTER 4 n Expressing Parallelism 

 
112 

scope and its own logical range, with work-group barriers occurring implicitly between 

phases. 

Making B a compile-time parameter and using logical ranges effectively separates 

the block size from the work-group size, allowing us to tune both separately.  While it 

would have been possible to express this same pattern using an ND-range kernel, 

manually distributing the iterations of a loop over the work-items in each work-group, it 

would not have been as simple. 

Hierarchical Data Parallel Kernels: Important 
Classes 
Hierarchical data parallel kernels re-use the group class from ND-range data parallel 

kernels, but replace nd_item with h_item.  A new private_memory class is 

introduced to provide tighter control over allocations occurring in 

parallel_for_work_group scope. 

The h_item Class 
An h_item is a variant of item that is only available within a 

parallel_for_work_item scope.  It provides a similar interface to an nd_item, with 

one notable difference: the item's index can be queried relative to the physical execution 

range of a work-group (with get_physical_local_id()) or the logical execution 

range of a parallel_for_work_item construct (with 

get_logical_local_id()). 

 

Figure 4-41: Simplified definition of the h_item class.	



CHAPTER 4 n Expressing Parallelism 

 
113 

 

Figure 4-42: Simplified definition of the private_memory class.	

The private_memory Class 
The combination of parallel_for_work_group scope implying work-group 

local variables and parallel_for_work_item accepting a logical range complicates 

the declaration of variables that are intended to be private to a work-item: variables 

declared at the outer scope are only private if the compiler can prove it is safe to make 

them so; and variables declared at the inner scope are private to a logical work-item rather 

than a physical one.  It is impossible using scope alone for us to convey that a variable is 

intended to be private for each physical work-item. 

To see why this is a problem, let's refer back to our matrix multiplication kernels in 

Figure 4-39 and Figure 4-40.  The ib and jb variables are declared at 

parallel_for_work_group scope, and a compiler may therefore choose to allocate 

them in work-group local memory!  There's a good chance that an optimizing compiler 

would not make this mistake, because the variables are read-only and their value is simple 

enough to compute redundantly on every work-item, but the language makes no 

guarantees.  If we want to be certain that a variable is declared in work-item private 

memory, we must wrap the variable declaration in an instance of the private_memory 

class, shown in Figure 4-42. 

For example, if we were to rewrite our matrix multiplication kernel using the 

private_memory class, we would define the variables as private_memory<int> 

ib(grp), and each access to these variables would become ib[item].  In this case, 

using the private_memory class actually results in code that is harder to read, and 

manually re-computing the values at parallel_for_work_item scope is clearer. 

Our recommendation is to only use the private_memory class if a work-item 

private variable is used across multiple parallel_for_work_item scopes within the 

same parallel_for_work_group, it is too expensive to compute repeatedly, or its 

computation has side effects that prevent it from being computed redundantly.  Otherwise, 



CHAPTER 4 n Expressing Parallelism 

 
114 

we should rely on the abilities of modern optimizing compilers by default, and declare 

variables at parallel_for_work_item scope when their analysis fails (remembering 

to also file a bug report with the compiler vendor). 

Choosing a Kernel Form 
Choosing between the different kernel forms is largely a matter of personal preference, and 

we expect that preference to be heavily influenced by the amount of prior experience you 

have had with other parallel programming models and languages. 

The other main reason to choose a particular kernel form is that it is the only form 

to expose certain functionality required by your kernel.  Unfortunately, identifying which 

functionality you will need a priori may be complicated, especially while you are still 

unfamiliar with the different kernel forms and their interaction with various DPC++ 

classes. 

We have constructed two guides based on our own experience with DPC++ in 

order to help you navigate this complex space.  These guides should be considered rules-

of-thumb, and are definitely not intended to replace your own experimentation — the best 

way to choose between the different kernel forms will always be to spend some time 

writing in each of them, in order to learn which form is the best fit for your application and 

development style. 

The first guide is the flowchart in Figure 4-43, which selects a kernel form based on: 

1. Whether you have previous experience with parallel programming. 

2. Whether you are writing a new code from scratch, or are porting an 
existing parallel program written in a different language. 

3. Whether your kernel is embarrassingly parallel, already contains 
nested parallelism, or re-uses data between different instances of 
the kernel function. 

4. Whether you are writing a new kernel in SYCL to maximize 

performance, to improve the portability of your code, or because it 
provides a more productive means of expressing parallelism than 
lower-level languages. 



CHAPTER 4 n Expressing Parallelism 

 
115 

 

Figure 4-43: A flowchart designed to help you choose the right form for your kernel.	

The second guide is the table in Figure 4-44, which summarizes the functionalities 

of DPC++ that are exposed to each of the kernel forms.  It is important to note that this 

table reflects the state of DPC++ at the time of writing, and that the features available to 

each kernel form should be expected to change as the language evolves.  However, we 

expect the basic trend to remain the same: basic data parallel kernels will not expose 

locality-aware features; explicit ND-range kernels will expose all performance-enabling 

features of DPC++; and hierarchical kernels will lag behind explicit ND-range kernels in 

exposing features, but their expression of those features will use higher-level abstractions. 



CHAPTER 4 n Expressing Parallelism 

 
116 

Feature Basic Kernel ND-Range 
Kernel Hierarchical Kernel 

Work-group Local 

Memory 
No Yes Yes 

Work-group Barriers No Yes Yes 

Work-group 

Functions 

(e.g. scan, reduce) 

No Yes No 

Sub-groups No Yes No 

Figure 4-44: A summary of the features available to each kernel form.	

Summary 
In this chapter, we have introduced the basics of expressing parallelism in DPC++ and 

discussed the strengths and weaknesses of each approach to writing data-parallel kernels. 

DPC++ is a rich language supporting many forms of parallelism, and we hope that 

we have provided enough information to prepare readers to dive in and start coding! 

We have only scratched the surface of DPC++'s feature set, and a deeper dive into 

many of the concepts and classes introduced in this chapter are forthcoming: the usage of 

work-group local memory and barriers will be expanded upon in Chapter 9; different ways 

of defining kernels besides using lambda expressions will be discussed in Chapter 10; 

detailed mappings of the ND-range execution model to specific hardware will be explored 

in Chapters 13, 14 and 15; and best practices for expressing common parallel patterns 

using DPC++ will be presented in Chapter TBD. 
  



CHAPTER 4 n Expressing Parallelism 

 
117 

For More Information 
• SYCL Specification, Version 1.2.1, Section 3.4 and 3.6 

https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf 

• A Unified Executors Proposal for C++ 

http://wg21.link/p044 

 

 

 

 

 

 

 

 

 

 

FOR THIS BOOK PREVIEW (CHAPTERS 1-4): 
ERRATA, NOTES, DOWNLOADS, FEEDBACK, ETC. 

Please check our “preview book” website for information including errata, updates, and 
downloads (includes all sample code):  https://tinyurl.com/book-dpcpp  

We will also list some additional resources as they become available. 

Your feedback is welcome.  You can email James Reinders at 
dpc++@jamesreinders.com with any suggestions, encouragement, criticism, or 
questions that you may have.  James will be sure to share any feedback that you send 
with all the authors. 

Of course – watch for the full book, by mid-2020, available from Apress (no charge for 
PDF for the completed book, print copies will be available too). 

https://tinyurl.com/book-dpcpp 

  



CHAPTER 4 n Expressing Parallelism 

 
118 

 

 

 

 

 

 

 

 

 

 

 

 

FOR THIS BOOK PREVIEW (CHAPTERS 1-4): 
ERRATA, NOTES, DOWNLOADS, FEEDBACK, ETC. 

Please check our “preview book” website for information including errata, updates, and 
downloads (includes all sample code):  https://tinyurl.com/book-dpcpp  

We will also list some additional resources as they become available. 

Your feedback is welcome.  You can email James Reinders at 
dpc++@jamesreinders.com with any suggestions, encouragement, criticism, or 
questions that you may have.  James will be sure to share any feedback that you send 
with all the authors. 

Of course – watch for the full book, by mid-2020, available from Apress (no charge for 
PDF for the completed book, print copies will be available too). 

https://tinyurl.com/book-dpcpp 

 


	Table of Contents
	Preface
	Chapter1: Introduction
	Chapter 2: Where Code Executes
	Chapter 3: Data Management
	Chapter 4: Expressing Parallelism

