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Abstract—Particle simulation has become an important research tool in many scientific and engineering fields. Data generated by

such simulations impose great challenges to database storage and query processing. One of the queries against particle simulation

data, the spatial distance histogram (SDH) query, is the building block of many high-level analytics, and requires quadratic time to

compute using a straightforward algorithm. Previous work has developed efficient algorithms that compute exact SDHs. While beating

the naive solution, such algorithms are still not practical in processing SDH queries against large-scale simulation data. In this paper,

we take a different path to tackle this problem by focusing on approximate algorithms with provable error bounds. We first present a

solution derived from the aforementioned exact SDH algorithm, and this solution has running time that is unrelated to the system size

N. We also develop a mathematical model to analyze the mechanism that leads to errors in the basic approximate algorithm. Our

model provides insights on how the algorithm can be improved to achieve higher accuracy and efficiency. Such insights give rise to a

new approximate algorithm with improved time/accuracy tradeoff. Experimental results confirm our analysis.

Index Terms—Molecular simulation, spatial distance histogram, quadtree, scientific databases

Ç

1 INTRODUCTION

MANY scientific fields have undergone a transition to
data/computation intensive science, as the result of

automated experimental equipments and computer simula-
tions. In recent years, much progress has been made in
building data management tools suitable for processing
scientific data [1], [2], [3], [4], [5]. Scientific data impose
great challenges to the design of database management
systems that are traditionally optimized toward handling
business applications. First, scientific data often come in
large volumes that require us to rethink the storage,
retrieval, and replication techniques in current DBMSs.
Second, user accesses to scientific databases are focused on
complex high-level analytics and reasoning that go beyond
simple aggregate queries. While many types of domain-
specific analytical queries are seen in scientific databases,
the DBMS should support efficient processing of those that

are frequently used as building blocks for more complex
analysis. However, many of such basic analytical queries
need superlinear processing time if handled in a straight-
forward way, as in current scientific databases. In this
paper, we report our efforts to design efficient algorithms
for a type of query that is extremely important in the
analysis of particle simulation data.

Particle simulations are computer simulations in which
the basic components (e.g., atoms, stars, etc.) of large
systems (e.g., molecules, galaxies, etc.) are treated as
classical entities that interact for certain duration under
postulated empirical forces. For example, molecular simu-
lations (MSs) explore relationship between molecular
structure, movement, and function. These techniques are
primarily applicable in modeling of complex chemical and
biological systems that are beyond the scope of theoretical
models. MS has become an important research tool in
material sciences [6], astrophysics [7], biomedical sciences,
and biophysics [8], motivated by a wide range of
applications. In astrophysics, the N-body simulations are
predominantly used to describe large scale celestial
structure formation [8], [9], [10], [11]. Similar to MS in
applicability and simulation techniques, the N-body simu-
lation comes with even larger scales in terms of total
number of particles simulated.

Results of particle simulations form large data sets of
particle configurations. Typically, these configurations store
information about the particle types, their coordinates, and
velocities—the same type of data we have seen in spatial-
temporal databases [12]. While snapshots of configurations
are interesting, quantitative structural analysis of intera-
tomic structures are the mainstream tasks in data analysis.
This requires the calculation of statistical properties or
functions of particle coordinates [9]. Of special interest to
scientists are those quantities that require coordinates of
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two particles simultaneously. In their brute-force form,
these quantities require OðN2Þ computations for N particles
[8]. In this paper, we focus on one such analytical query: the
Spatial Distance Histogram (SDH) query, which asks for a
histogram of the distances of all pairs of particles in the
simulated system.

1.1 Problem Statement

The problem can be defined as follows: given the
coordinates of N points in space, we are to compute the
counts of point-to-point distances that fall into a series of
l ranges in the IR domain: ½r0; r1Þ; ½r1; r2Þ; ½r2; r3Þ; . . . ; ½rl�1; rl�.
A range ½ri; riþ1Þ in such series is called a bucket, and the
span of the range riþ1 � ri is called the width of the bucket.
In this paper, we focus our discussions on the case of
standard SDH queries, where all buckets have the same width
p and r0 ¼ 0, which gives the following series of buckets:
½0; pÞ; ½p; 2pÞ; . . . ; ½ðl� 1Þp; lp�. Generally, the boundary of the
last bucket lp is set to be the maximum distance of any pair
of points in the data set. Although almost all scientific data
analysis only require the computation of standard SDH
queries, our solutions can be easily extended to handle
histograms with nonuniform bucket width and/or arbitrary
values of r0 and rl.

1 The answer to an SDH query is
basically a series of nonnegative integers h ¼ ðh1; h2; . . . ; hlÞ,
where hi ð0 < i � lÞ is the number of pairs of points whose
distances are within the bucket ½ði� 1Þp; ipÞ.

1.2 Motivation

The SDH is a fundamental tool in the validation and
analysis of particle simulation data. It serves as the main
building block of a series of critical quantities to describe a
physical system. Specifically, SDH is a direct estimation of a
continuous statistical distribution function called radial
distribution functions (RDF) [7], [9], [13] that is defined as

gðrÞ ¼ NðrÞ
4�r2�r�

; ð1Þ

where NðrÞ is the expected number of atoms in the shell
between r and rþ �r around any particle, � is the average
density of particles in the whole system, and 4�r2�r is the
volume of the shell. Since SDH directly provides the value
for NðrÞ, the RDF can be viewed as a normalized SDH.

The RDF is of great importance in computation of
thermodynamic quantities about the simulated system.
Some of the important quantities like total pressure,

p ¼ �kT � 2�

3
�2

Z
drr3u0ðrÞgðr; �; T Þ;

and energy,

E

NkT
¼ 3

2
þ �

2kT

Z
dr 4�r2uðrÞgðr; �; T Þ;

can be derived in terms of structure factor that can be
expressed using gðrÞ [14]. For monoatomic systems, the
relation between RDF and the structure factor of the system
[15] takes simple form, viz.,

SðkÞ ¼ 1þ 4��

k

Z 1
0

gðrÞ � 1ð Þr sinðkrÞ dr:

The definitions of all notations in the above formulas can
be found in [14] and [15]. To compute SDH in a
straightforward way, we have to calculate distances
between all pairs of particles and put the distances into
bins with a user-specified width, as done in state-of-the-art
simulation data analysis software packages [7], [16]. MS or
N-body techniques generally consist of large number of
particles. For example, the Virgo consortium has accom-
plished a simulation containing 10 billion particles to study
the formation of galaxies and quasars [17]. This kind of
scale prohibits the analysis of large data sets following the
brute-force approach. From a database viewpoint, it would
be desirable to make SDH a basic query type with the
support of scalable algorithms.

Previous work [18], [19] have addressed this problem by
developing algorithms that compute exact SDHs with time
complexity lower than quadratic. The main idea is to
organize the data in a space-partitioning tree and process
pairs of tree nodes instead of pairs of particles (thus saving
processing time). The tree structure used include kd-tree in
[18] and region quad/oct-tree in our previous work [19],
which also proved that the time complexity of such
algorithms is OðN 2d�1

d Þ, where d 2 f2; 3g is the number of
dimensions in the data space. While beating the naive
solution in performance, such algorithms’ running time for
large data sets can still be undesirably long. On the other
hand, an SDH with some bounded error can satisfy the
needs of users. In fact, there are cases where even a coarse
SDH will greatly help the fine-tuning of simulation
programs [9]. Generally speaking, the main motivation to
process SDHs is to study the statistical distribution of point-
to-point distances in the simulated system [9]. Since a
histogram by itself is an approximation of the underlying
distribution gðrÞ (1), an inaccurate histogram generated
from a given data set will still be useful in a statistical sense.
Therefore, in this paper, we focus on approximate algo-
rithms with very high performance that deliver query
results with low error rates. In addition to experimental
results, we also evaluate the performance/accuracy trade-
offs provided by the proposed algorithms in an analytical
way. The running time of our proposed algorithm is only
related to the desired accuracy. Our experimental results
show significant improvement in performance/accuracy
tradeoff of our algorithm over the previous algorithms—the
error rates in query results are very small even when the
running time is reasonably short.

1.3 Roadmap of the Paper

We continue this paper by a survey of related work and a
list of our contributions in Section 2; we introduce the
technical background on which our approximate algorithm
is built in Section 3; we describe the details of a basic
approximate algorithm and relevant empirical evaluation in
Section 4; we dedicate Section 6 to mathematical analysis of
the key mechanisms in our basic algorithm; the results of
our analytical work are used to develop a new algorithm
with improved performance and we introduce and evaluate
that algorithm in Section 7; Section 8 concludes this paper.
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1. The only complication of nonuniform bucket width is that, given a
distance value, we need Oðlog lÞ time to locate the bucket instead of constant
time for equal bucket width.



2 RELATED WORK AND OUR CONTRIBUTIONS

The scientific community has gradually moved from
processing large data files toward using database systems
for the storage, retrieval, and analysis of large-scale
scientific data [2], [20]. Conventional (relational) database
systems are designed and optimized toward data and
applications from the business world. In recent years, the
database community has invested much efforts into con-
structing database systems that are suitable for handling
scientific data. For example, the BDBMS project [3] handles
annotation and provenance of biological sequence data; and
the PeriScope [5] project is aimed at efficient processing of
declarative queries against biological sequences. In addition
to that, there are also proposals of new DBMS architectures
for scientific data management [21], [22], [23]. The main
challenges and possible solutions of scientific data manage-
ment are discussed in [1].

Traditionally, MS data are stored in large files and
queries are implemented in stand-alone programs, as
represented by popular simulation/analytics packages
[16]. Recent efforts have been dedicated to building
simulation data management systems on top of relational
databases, as represented by the BioSimGrid [4] and SimDB
[24] projects developed for MSs. However, such systems are
still in short of efficient query processing strategies. To the
best of our knowledge, the computation of SDH in such
software packages is done in a brute-force way, which
requires OðN2Þ time.

In particle simulations, the computation of (gravita-
tional/electrostatic) force is similar to the SDH problem.
Specifically, the force is the sum of all pairwise interactions
in the system, thus requires OðN2Þ steps to compute. The
simulation community has adopted approximate solutions
represented by the Barnes-Hut algorithm that runs on
OðN logNÞ time [25] and the Multipole algorithm [26] with
linear running time. Although all above algorithms use a
tree-like data structure to hold the data, they provide little
insights on how to solve the SDH problem. The main
reason is that these strategies take advantage of two
features of force: 1) for any pairwise interaction, its
contribution to the force decreases dramatically when
particle distance increases; 2) the effects of symmetric
interactions cancel out. However, neither features are
applicable to SDH computation, in which every pairwise
interaction counts and all are equally important. Another
method for force computation is based on well-separated
pair decomposition (WSPD) [27] and was found to be
equivalent to the Barnes-Hut algorithm. A WSPD is a
collection of pairs of subsets of the data such that all point-
to-point distances are covered by such pairs. The pairs of
subsets are also well separated in that the smallest distance
between the smallest balls covering the subsets (with radius
r) is at least sr, where s is a user-defined parameter.
Although relevant by intuition, the WSPD does not produce
fast solution for SDH computation.

It is worth mentioning that there has been work done on
a broader problem of histogram computation in the context
of data stream management [28]. The data stream systems
usually work with distributive aggregates [28] such as
COUNT, SUM, MAX, and MIN which may be computed

incrementally using constant space and time. They also
tackle so called holistic aggregates such as TOP-k [29], [30],
QUANTILE [31], and COUNT DISTINCT [32], [33]. When
computing the holistic aggregates they have utilized hash-
based functions that produce histograms [30], [34]. But the
data stream community has never specifically worked on
the problem of computing a histogram that will disclose the
distance counts belonging to a particular range (a bucket),
i.e., an SDH. After thoroughly reviewing their work, we
believe that none of their proposed solutions is directly
applicable to the problem of SDH computation stated in
this paper.

Another similar problem to the SDH computation is to
find k-nearest neighbors (kNN) in a high-dimensional space
[35]. In such a problem, avoidance of distance computation
is the primary goal in algorithmic design due to the high
cost of such operations. The main technique is to choose a
set of reference points (i.e., pivots) in the database and
precompute distances between data points to the pivots. In
processing kNN queries, the search space can be pruned
based on the precomputed distances. However, being a
searching problem, kNN is very different from the count-
ing-based SDH problem. As a result, the data structures and
algorithmic details shown in [35] have little overlap with
our solutions to the SDH problem.

Although SDH is an important analytics, there is not
much elaboration on efficient SDH algorithms. An earlier
work from the data mining community [18] opened the
direction of processing SDHs by space-partitioning trees.
The core idea is to process all the particles in a tree node as
one single entity to take advantage of the nonzero bucket
width p. By this, processing time is saved by avoiding
computation of particle-to-particle distances. Our earlier
paper [19] proposed a similar algorithm as well as rigorous
mathematical analysis (not found in [18]) of the algorithm’s
time complexity. Specifically, in [19], we proposed a novel
algorithm (named DM-SDH) to compute SDH based on a
data structure called density map, which can be easily
implemented by augmenting a Quadtree index. Contrary to
that, the data structure adapted in [18] is the kd-tree. Our
mathematical analysis [36] has shown that the algorithm
runs on �ðN 3

2Þ for two-dimensional data and �ðN 5
3Þ for

three-dimensional data, respectively. The technical details
of such an algorithm will be introduced in Section 3.

This paper significantly extends our earlier work [19]
by focusing on approximate algorithms for SDH proces-
sing. In particular, we claim the following contributions
via this work:

1. We present an approximate SDH processing strategy
that is derived from the basic exact algorithm, and
this approximate algorithm has constant-time com-
plexity and a provable error bound;

2. We develop a mathematical model to analyze the
effects of error compensation that led to high
accuracy of our algorithm; and

3. We propose an improved approximate algorithm
based on the insights obtained from the above
analytical results.

It is also worth mentioning that we have recently
published another paper [37] in this field. That paper
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focuses on a more sophisticated heuristics to generate
approximate results based on spatial uniformity of data
items. Such heuristics improves the accuracy of each
distance distribution, which is the basic operation of our
approximate algorithm (Section 4.1). In this paper, we
introduce the design of the approximate algorithm and its
performance analysis. Technically, we emphasize the
impacts of error compensation among different distribution
operations. As a result, we do not require low error rates to
be obtained from each operation, as we show the total error
is low even when a primitive heuristics is used. In other
words, these two papers, although both take approximate
SDH processing as the basic theme, make their contribu-
tions at two different levels of the problem. Work in [37]
focuses on improving accuracy of single distribution
operations while this paper, in addition to a systematic
description of the algorithm, studies how errors from
different distribution operations cancel out each other,
and to what extent such error compensation affects the
accuracy of the final results.

3 PRELIMINARIES

In this section, we introduce the algorithm we developed in
[19] to compute exact SDHs. Techniques and analysis
related to this algorithm are the basis for the approximate
algorithm we focus on in this paper. In Table 1, we list the
notations that are used throughout this paper. Note that
symbols defined and referenced in a local context are not
listed here.

3.1 Overview of the Density Map-Based SDH
(DM-SDH) Algorithm

To beat the OðN2Þ time needed by the naive solution, we
need to avoid the computation of all particle-to-particle
distances. An important observation here is: a histogram
bucket always has a nonzero width p. Given a pair of points,
their bucket membership could be determined if we only
know a range that the distance belongs to and this range is
contained in a histogram bucket. The central idea of our
approach is a data structure called density map, which is
basically a grid containing cells of equal size.2 In every cell
of the grid, we record the number of particles that are
located in the space represented by that cell as well as the

four coordinates that determine the exact boundary of the
cell in space. The reciprocal of the cell size in a density map
is called the resolution of the density map. To process the
SDH query, we build a series of density maps with different
resolutions. We organize all such density maps into a point
region (PR) Quadtree [38], in which the resolution of a
density map (i.e., all nodes on level i of the tree) is always
doubled as compared to the previous one (i.e., those on
level i� 1) in the series.

The pseudocode of the DM-SDH algorithm can be found
in Fig. 1. The core of the algorithm is a procedure named
RESOLVETWOCELLS, which is given as input a pair of cells
M1 and M2 on the same density map. In RESOLVETWO-

CELLS, we first compute the minimum and maximum
distances between any particle from M1 and any one from
M2 (line 1). Obviously, this can be accomplished in constant
time given the corner coordinates of two cells stored in the
density map. When the minimum and maximum distances
between M1 and M2 fall into the same histogram bucket i,
we say these two cells are resolvable on this density map,
and they resolve into bucket i. If this happens, the histogram
is updated (lines 2-5) by incrementing the count of the
specific bucket i by n1n2, where n1; n2 are the particle counts
in cells M1 and M2, respectively. If the two cells do not
resolve on the current density map, we move to a density
map with higher (doubled) resolution and repeat the
previous step. However, on this new density map, we try
resolving all four partitions of M1 with all those of M2

(lines 12-16). In other words, there are 4� 4 ¼ 16 recursive
calls to RESOLVETWOCELLS if M1 and M2 are not resolvable
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TABLE 1
Symbols and Notations

Fig. 1. The DM-SDH algorithm.

2. From now on, we use 2D data and grids to elaborate our ideas unless
specified otherwise. Note that extending our discussions to 3D data/space
would be straightforward, as studied in [36].



on the current density map. In another scenario, where M1

and M2 are not resolvable yet no more density maps are
available, we have to calculate the distances of all particles
in the nonresolvable cells (lines 6-11). The DM-SDH
algorithm starts at the first density map DMo whose cell
diagonal length is smaller than the histogram bucket width
p (line 2). It is easy to see that no pairs of cells are resolvable
in density maps with resolution lower than that of DMo.
Within each cell on DMo, we are sure that any intracell
point-to-point distance is smaller than p; thus, all such
distances are counted into the first bucket with range ½0; pÞ
(lines 3-5). The algorithm proceeds by resolving intercell
distances (i.e., calling RESOLVETWOCELLS) for all pairs of
cells in DMo (lines 6-7).

In DM-SDH, an important implementation detail that is
relevant to our approximate algorithm design is the height
of the quadtree (i.e., the number of density map levels).
Recall that DM-SDH saves time by resolving cells such that
we need not to calculate the point-to-point distances one by
one. However, when the total point counts in a cell
decreases, the time we save by resolving that cell also
decreases. Imagine a cell with only four or fewer (eight for
3D data/space) data points; it does not give us any benefit
in SDH query processing to further partition this cell on the
next level: the cost of resolving the partitions could be
higher than directly retrieving the particles and calculating
distances (lines 7-11 in RESOLVETWOCELLS). Based on this
observation, the total level of density maps H is set to be

H ¼
�

log2d
N

�

�
þ 1; ð2Þ

where d is the number of dimensions, 2d is the degree of the
nodes in the tree (4/8 for 2D/3D data), and � is the average
number of particles we desire in each leaf node. In practice,
we set � to be slightly greater than 4 in 2D (8 for 3D data)
because the CPU cost of resolving two cells is higher than
computing the distance between two points.

3.2 Performance Analysis of DM-SDH

Clearly, by only considering atom counts in the density
map cells (i.e., quadtree nodes), DM-SDH processes multi-
ple point-to-point distances between two cells in one shot.
This translates into significant performance improvement
over the brute-force approach. We have accomplished a
rigorous analysis of the performance of DM-SDH and
derived its time complexity. The analysis focuses on the
quantity of number of point-to-point distances that can be
covered in resolved cells. We generate closed-form for-
mulas for such quantities via a geometric modeling
approach; therefore, rigorous analysis of the time complex-
ity becomes possible. While the technical details of the
analytical model are complex and can be found in a recent
article [36], it is necessary to sketch the most important
(and also most relevant) analytical results here for the
purpose of laying out a foundation for the proposed
approximate algorithm.

Theorem 1. For any given standard SDH query with bucket
width p, let DMo be the first density map, where the DM-SDH
algorithm starts running, and �ðmÞ be the ratio of
nonresolvable pairs of cells on a density map that lies m levels

below DMo (i.e., map DMoþm) to the total number of cell pairs

on that density map. We have

lim
p!0

�ðmþ 1Þ
�ðmÞ ¼ 1

2
:

Proof. See [36, Section 4]. tu

What Theorem 1 tells us is: the chance that any pair of

cells is not resolvable decreases by half with the density

map level increases by one. In other words, for a pair of

nonresolvable cells on DMj where j � o, among the 16 pairs

of subcells on the next level, we expect 16� 1
2 ¼ 8 pairs to be

resolvable. Our analysis also shows that Theorem 1 not only

works well for large l (i.e., smaller p, and more meaningful

in simulation data analysis), but also quickly converges even

when l is reasonably small. Furthermore, the above result is

also true for 3D data (see [36, Section 5.1]). The importance

of Theorem 1 is in that it shows that the number of pairs of

cells that do not resolve declines exponentially when the

algorithm visits more levels of the density map. This is

critical in studying the time complexity of DM-SDH that can

be derived as follows: Given an SDH query with parameter

p, the starting level DMo is fixed. Suppose there are

I nonresolvable pairs of cells on DMo. On the next level

DMoþ1, total number of cell pairs considered by the

algorithm becomes I22d. According to Theorem 1, half of

them will be resolved, leaving only I22d�1 pairs unresolved.

On level DMoþ2, the number of nonresolvable pairs of cells

becomes I22d�122d

2 ¼ I22ð2d�1Þ. Thus, after visiting the

nþ 1 levels of the tree, the total number of calls to resolve

cells made by DM-SDH is

TcðNÞ ¼ I þ I22d�1 þ I22ð2d�1Þ þ � � � þ I2nð2d�1Þ

¼ I½2
ð2d�1Þðnþ1Þ � 1�
22d�1 � 1

:
ð3Þ

When N increases to 2dN , n increases by 1. Following the

previous equation, we get

Tcð2dNÞ ¼
I½2ð2d�1Þðnþ2Þ � 1�

22d�1 � 1
¼ 22d�1TcðNÞ � oð1Þ;

which derives

TcðNÞ ¼ O
�
N log2d 22d�1� ¼ O�N 2d�1

d

�
:

The second part of the running time of DM-SDH involves

the number of distances computed, which also follows the

aforementioned recurrence relation. Details of such deriva-

tions can be found in [36, Section 6].

4 THE APPROXIMATE DM-SDH ALGORITHM

In this section, we introduce a modified SDH algorithm to

give such approximate results to gain better performance in

return. Our solution targets at two must-have features of a

decent approximate algorithm: 1) provable and controllable

error bounds such that the users can have an idea on how

close the results are to the fact; and 2) analysis of costs to
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reach (below) a given error bound, which guides desired
performance/correctness tradeoffs.

In the DM-SDH algorithm, we have to: 1) keep resolving
cells till we reach the lowest level of the tree; 2) calculate
point-to-point distances when we cannot resolve two cells
on the leaf level of the tree. Our idea for approximate SDH
query processing is: stop at a certain tree level and totally skip
all distance calculations if we are sure that the number of
distances in the unvisited cell pairs fall below some error tolerance
threshold. We name the new algorithm as ADM-SDH (that
stands for Approximate Density Map-based SDH), and it
can be easily implemented by modifying the DM-SDH
algorithm. In particular, we stop the recursive calls to
RESOLVETWOCELLS after m levels. The critical problem,
however, is how to determine the value of m given a user-
specified error tolerance bound �. In this paper, we use the
following metric to quantify the errors:

e ¼
P

i jhi � h0ijP
i hi

;

where for any bucket i, hi is the accurate count and h0i the
count given by the approximate algorithm. Obviously,
we have

P
i hi ¼

NðN�1Þ
2 .

For any given density map DMoþm and total number of
buckets l, our analytical model (Theorem 1) gives the
percentage of nonresolvable cell pairs �ðmÞ. Furthermore,
due to the existence of a closed-form formula (see [36,
Section 4.4]), �ðmÞ can be efficiently computed. Table 2
lists some values of 1� �ðmÞ (the percentage of resolvable

cell pairs).
Given a user-specified error bound �, we can find the

appropriate levels of density maps to visit such that the
unvisited cell pairs only contain less than � NðN�1Þ

2 distances.
For example, for an SDH query with 128 buckets and error
bound of � ¼ 3%, we get m ¼ 5 by consulting the table. This
means, to ensure the 3 percent error bound, we only need to
visit five levels of the tree (excluding the starting level
DMo), and no distance calculation is needed. Table 2 serves
as an excellent validation of Theorem 1: �ðmÞ almost exactly
halves itself when m increases by 1, even when l is as small
as 2. Since the numbers on the first row (i.e., values for
1� �ð1Þ) are also close to 0.5, the correct choice of m for the
guaranteed error rate � is

m ¼ lg
1

�
: ð4Þ

The cost of the approximate algorithm only involves

resolving cells on mþ 1 levels of the tree. Such cost can be

derived following (3). After visiting mþ 1 levels of the

tree, the total number of calls to resolve cells made by

ADM-SDH is

TcðNÞ ¼
I
�
2ð2d�1Þðmþ1Þ � 1

�
22d�1 � 1

: ð5Þ

Plugging (4) into (5), we have

TcðNÞ � I2ð2d�1Þm ¼ I2ð2d�1Þ lg1
� ¼ I

�
1

�

	2d�1

; ð6Þ

in which I is solely determined by the query parameter p.

Therefore, we conclude that the running time of the ADM-

SDH algorithm is not related to the input size N , but only to

the user-defined error bound � and the bucket width p.

4.1 Heuristic Distribution of Distance Counts

Now let us discuss how to deal with those nonresolvable

cells after visitingmþ 1 levels on the tree. In giving the error

bounds in our approximate algorithm, we are conservative

in assuming that the distances in all the unresolved cells will

be placed into the wrong bucket. In fact, this will almost

never happen because we can distribute the distance counts

in the unvisited cells to the histogram buckets heuristically

and some of them will be done correctly. Consider two

nonresolvable cells in a density map with particle counts n1

and n2 (i.e., total number of n1n2 distances between them),

respectively. We know their minimum and maximum

distances u and v (these are calculated beforehand in our

attempt to resolve them) fall into multiple buckets. Fig. 2

shows an example that spans three buckets.
Using this example, we describe the following heur-

istics to distribute the n1n2 total distance counts into the

relevant buckets. These heuristics are ordered in their

expected correctness.

1. Put all n1n2 distance counts into one bucket that is
predetermined (e.g., always putting the counts to the
leftmost bucket); We name this heuristic as SKEW;

2. Evenly distribute the distance counts into the three
buckets that ½u; v� overlaps, i.e., each bucket gets
1
3n1n2; this heuristic is named EVEN;

3. Distribute the distance counts based on the overlaps
between range ½u; v� and the buckets. In Fig. 2, the
distances put into buckets i, iþ 1, and iþ 2 are
n1n2

ip�u
v�u , n1n2

p
v�u , and n1n2

v�ðiþ1Þp
v�u , respectively.

Apparently, by adapting this approach, we assume
the (statistical) distribution of the point-to-point
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TABLE 2
Expected Percentage of Pairs of Cells that Can Be Resolved

under Different Levels of Density Maps and
Total Number of Histogram Buckets

Computed with Mathematica 6.0.

Fig. 2. Distance range of two resolvable cells overlap with three buckets.



distances between the two cells is uniform. This
heuristic is called PROP (short for proportional).

The assumption of uniform distance distribution in PROP

is obviously an oversimplification. In [19], we briefly
mentioned a fourth heuristic: if we know the spatial
distribution of particles within individual cells, we can
generate the statistical distribution of the distances either
analytically or via simulations, and put the n1n2 distances to
involved buckets based on this distribution. This solution
involves very nontrivial statistical inference of the particle
spatial distribution and is beyond the scope of this paper.

Note that all above methods require only constant time
to compute a solution for two cells. Therefore, the time
complexity of ADM-SDH is not affected no matter which
heuristic is used.

5 EMPIRICAL EVALUATION OF ADM-SDH

We have implemented the ADM-SDH algorithm using the
C programming language and tested it with various
synthetic/real data sets. The experiments are run at an
Apple Mac Pro workstation with two dual-core 2.66-GHz
Intel Xeon CPUs, and 8 GB of physical memory. The
operating system is OS X 10.5 Leopard. In these experi-
ments, we set the program to stop after visiting different
levels of density maps and distribute the distances using the
three heuristics (Section 4.1). We then compare the
approximate histogram with those generated by regular
DM-SDH. We use various synthetic and real data sets in our
experiments. The synthetic data are generated from: 1) uni-
form distributions to simulate a system with particles
evenly distributed in space; and 2) Zipf distribution with
order 1 to introduce skewness to data spatial distribution.

The real data sets are extracted from a MS of biomem-
brane structures (Fig. 3). The data size in such experiments
ranges from 50,000 to 12,800,000.

Table IV in Appendix I, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2012.149, sum-
marizes the range and default values of the parameters
used in our experiments. The code of the algorithm and
the data sets used in the experiments can be found in [39].

Fig. 5 shows the running time of ADM-SDH under one
single p value of 2,500.0. Note that the “Exact” line shows
the results of the basic DM-SDH algorithm, whose running
time obviously increases polynomially with N at a slope of
about 1.5. First, we can easily conclude that the running
time after the tree construction stage does not change with
the increase of data set size (Fig. 5a). The only exception is

when m is 5—the running time increases when N is small
and then stays as a constant afterwards. This is because the
algorithm has less than five levels to visit in a bushy tree
resulted from small N values. When N is large enough,
running time no longer changes with the increase of N . In
Fig. 5b, we plot the total running time that includes the time
for quadtree construction. Under small m values, the tree
construction time is a dominating factor because it increases
with data size N (i.e., OðN logNÞ). However, when m > 3,
the shape of the curve does not change much as compared
to those in Fig. 5a, indicating the time for running
RESOLVETWOTREES dominates.

We observed surprising results on the accuracy of
ADM-SDH. In Fig. 4, we plot the error rates observed in
experiments with three different data sets and three
heuristics mentioned in Section 4.1. First, it is obvious that
less error was observed when m increases. The exciting fact
is that, in almost all experiments, the error rate is lower
than 10 percent—even for the cases of m ¼ 1! These are
much lower than the error bounds we get from Table 2.
The correctness of heuristic SKEW is significantly lower
than that of EVEN, and that of EVEN lower than PROP, as
expected. Heuristic PROP achieves very low error rates
even in scenarios with small m values. For all experiments,
the increase of data size N does not cause an increase of the
error rate of the algorithm. The above trends are observed
in all three data sets. The interesting thing is, for the PROP

experiments, we can even see the trend of decreasing error
rates as N grows, especially for larger m values. We believe
that serves as evidence of a (possibly) nice feature of the
PROP heuristic. Our explanation is: when N is small, we
could make a very big mistake in distributing the counts in
individual operations. Imagine an extreme case in which
1 distance is to be distributed into two buckets—we could
easily get a 100 percent error in the operation. Since the
error compensation effects in PROP bring the overall error
down to a very low level (as shown in Fig. 4), PROP is more
sensitive to the errors of individual distribution operations
than SKEW and EVEN are. More in-depth explorations of
this phenomenon are worthwhile but also beyond the
scope of this paper, in which we focus on an upper bound
of the error.

5.1 Discussions

At this point, we can conclude that the ADM-SDH
algorithm is an elegant solution to the SDH computation
problem. According to our experiments, extremely low
error rates can be obtained even when we only visit as few
as one level of density map, leading to a very efficient
algorithm yet with high accuracy in practice. It is clearly
shown that the required running time for ADM-SDH grows
very slowly with the data size N (i.e., only when m is of a
small value does the tree construction time dominate).

The error rates achieved by ADM-SDH algorithm
shown by current experiments are much lower than what
we expected from our basic analysis. For example, Table 2
predicts an error rate of around 48 percent for the case of
m ¼ 1, yet the error we observed for m ¼ 1 in our
experiments is no more than 10 percent. With the PROP

heuristic, this value can be as low as 0.5 percent. Our
explanation for such low error rates is: in an individual
operation to distribute the distance counts heuristically,
we could have rendered a large error by putting too many
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Fig. 3. The simulated hydrated dipalmitoylphosphatidylcholine bilayer
system. We can see two layers of hydrophilic head groups (with higher
atom density) connected to hydrophobic tails (lower atom density) are
surrounded by water molecules (red dots).



counts into a bucket (e.g., bucket i in Fig. 2) than needed.
But the effects of this mistake could be (partially) canceled
out by another distribution operation, in which too few
counts are put into bucket i. Note that the total error in a
bucket is calculated after all operations are processed;
thus, it reflects the net effects of all positive and negative
errors from individual operations. We call this phenom-
enon error compensation.

While more experiments under different scenarios are

obviously needed, investigations from an analytical view-

point are necessary. From the above facts, we understand

that the bound given by Table 2 is loose. The real error

bound should be described as

� ¼ �0�00; ð7Þ

where �0 is the percentage of unresolved distances given by

Table 2, and �00 is the error rate created by the heuristics via

error compensation. In the following section, we develop an

analytical model to study how error compensation drama-

tically boosts accuracy of the algorithm.

6 PERFORMANCE ANALYSIS OF ADM-SDH

It is difficult to obtain a tight error bound for ADM-SDH
due to the fact that the error is related to data distribution.
In this paper, we develop an analytical framework that
achieves qualitative analysis of the behavior of ADM-SDH,

with a focus on the generation of errors. Throughout the
analysis, we assume uniform spatial distribution of particles
and we consider only one level in the density map. At the
start level (and the only level we visit), the side length of a
cell is

ffiffiffi
2
p

p=2.

6.1 The Distribution of Two Cells’ Distance

We study two cells A and B on a density map, with cell
A’s row number denoted as t and column number as j,
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Fig. 4. Accuracy of ADM-SDH.

Fig. 5. Efficiency of ADM-SDH.



and cell B’s row number as k and column number as l.
We further denote the minimum distance between A and
B as u, and the maximum distance as v. We propose the
following lemma:

Lemma 1. The range ½u; v� overlaps with at most three buckets in
the SDH. In other words, p <¼ v� u <¼ 2p.

The proof of Lema 1 can be found in Appendix II,
available in the online supplemental material. By Lemma 1,
we can easily see that v must fall into one of the two buckets
with ranges ½bupcpþ p; bupcpþ 2pÞ and ½bupcpþ 2p; bupcpþ 3pÞ.

Suppose the distance between points from the two cells
follow a cumulative distribution function F over the range
½u; v�, then the probabilities of a distance falling into the
relevant bucket can be found in Table 3.

6.2 Compensating the Distance Counts in the SKEW

Method

As mentioned earlier, an important mechanism that leads to
low error rate in our algorithm is that the errors made by
one distribution operation can be compensated by those of
another. We can use the SKEW heuristic as an example to
study this. In SKEW, all distance counts are put into one
bucket, say, the one with the smallest bucket index. In other
words, the distance counts in all three buckets (Table 3) are
put into bucket with range ½bupcp; bupcpþ pÞ. The error would
be large if we only consider this single distribution
operation—by denoting the error as e, we have e ¼
1� F ðbupcpþ pÞ for the bucket ½bupcp; bupcpþ pÞ. The error e
here is positive, meaning counts in the first bucket are
overestimated. However, such errors can be canceled out by
other distribution operations that move all distance counts
from this bucket into another one. For example, if there
exists another distribution operation with minimum dis-
tance u1 ¼ u� p, it would move some counts that belong to
bucket 1 in Table 3 out, generating a negative error in
bucket 1 and, thus, compensating the positive error
mentioned before. Given this, an important goal of our
analysis is to find such compensating distribution operations and
study how much error can be compensated. We first show that
under an ideal situation the error can reach zero.

Lemma 2. For any distribution operation with minimum
distance u, if there exists another such operation with
minimum distance u1 ¼ u� p, the error generated by
ADM-SDH using the SKEW approach is zero.

Proof. According to Table 3, for any distribution operation,
the error to the first SDH bucket (denoted as bucket i) it
involves is 1� F ðbupcpþ pÞ, and this error is positive (i.e.,
overestimation). Suppose that there is another distribu-
tion with minimum distance u1 ¼ u� p, then this

operation generates a negative error F ðbupcpþ 2pÞ �
F ðbupcpþ pÞ to bucket i. For the same reason, a third
distribution with minimum distance u2 ¼ u� 2p gener-
ates a negative error of 1� F ðbupcpþ 2pÞ. It is easy to see
that the combined error (by putting all relevant negative
and positive errors together) to bucket i is 0. tu

An example of two cells that contribute to each other’s
error compensation in the aforementioned way can be seen
in Fig. 6. Namely, the cells C and C0 when we compute the
minimum distances AC and AC0.

Unfortunately, the above condition of the existence of a
u1 value that equals u� p cannot be satisfied for all pairs of
cells. From Lemma 2, however, we can easily see that the
error is strongly related to the quantity u. In the following
text, we study how the errors can be partially compensated
by neighboring pairs of cells.

Without loss of generality, we take any pair of cells in the
density map that are x cells apart horizontally and y cells
apart vertically, such as cells A and B in Fig. 6.

For the convenience of presentation, we define p to be a
unit (p ¼ 1 unit). Given that fact, a cell’s side is

ffiffi
2
p

2 .
Following this, the horizontal and vertical distances
between A and B are uhorizontal ¼

ffiffi
2
p

2 x and uvertical ¼
ffiffi
2
p

2 y,
respectively, as shown in Fig. 6. Thus, the minimum
distance between the above two cells can be written as

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
horizontal þ u2

vertical

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2
þ y

2

2

r
: ð8Þ

The critical observation that leads to the success of our
analysis is obtained by studying another cell, such as cell B0

in Fig. 6. Its minimum distance to the cell A is

u1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 1Þ2

2
þ ðy� 1Þ2

2

s
:

Let us denote the quantity u� u1 as �. We have

� ¼ u� u1 ¼
ðu� u1Þðuþ u1Þ

uþ u1
¼ u

2 � u2
1

uþ u1

¼
x2

2 þ
y2

2 �
ðx�1Þ2

2 � ðy�1Þ2
2

uþ u1
� xþ y� 1

2u
:

ð9Þ
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TABLE 3
The Buckets Involved in the Distribution of Distances from

Two Nonresolvable Cells

Fig. 6. Pairs of cells that lead to total or partial error compensation.



Suppose x >¼ y and z ¼ y=x, (9) can be rewritten as

� � xþ y� 1

2u
¼

xþy�1
x

2

ffiffiffiffiffiffiffiffiffi
x2

2 þ
y2

2

p
x

¼
1þ y

x� 1
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 x2

2x2 þ y2

2x2

� �r

¼
1þ z� 1

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2z2
p � 1þ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ 2z2
p :

ð10Þ

Although x and y are integers, we can treat z as a
continuous variable due to the existence of a large number
of possible values of x and y in a density map with many
cells. Since d�=dz > 0, we conclude that � increases with z.
Two boundary cases are: 1) when y ¼ 0 we have z ¼ 0 and
� ¼

ffiffi
2
p

2 ; 2) when y ¼ x, we have z ¼ 1 and � ¼ 1.
According to Lemma 2, the error of the SKEW method,

eskew, can be approximately noted by the difference between
one and �, eskew � 1��. This error, eskewed, ranges from 0
to 1�

ffiffi
2
p

2 , since � ranges from
ffiffi
2
p

2 to 1. The compensating
process in distance counts is shown in Fig. 6. As mentioned
before, C and C0 are examples of two cells for which the
difference of minimum distances to cell A is 1 and the cells
B and B0 are two cells for which the difference of minimum
distances is different from one (less than one in this case).

Let us analyze the minimum distances u and u1 from cell
pairs ðA;BÞ and ðA;B0Þ, respectively. We know that each
such pair of minimum distances ðu; u1Þ with property u�
u1 6¼ 1 generates an error. In the next few paragraphs, we
will quantitatively approximate the error generated by such
pair of minimum distances, and also show that the sum of
all such errors is small (can be qualitatively bounded).

Since we want to give an analytical description of a
quantity ð1�� or 1� ðu� u1Þ), we need to use the under-
lying distribution of that quantity. The distribution of the
distances between points from cell A and cell B (or B0) can
be viewed as noncentral chi-squared. Without loss of
generality, we can choose one point from cell A and make
it a base point with coordinates ð0; 0Þ. The distribution of
the distances between this base point and points from cell B
(or B0) can be regarded as triangular.

We use Fig. 7 to geometrically describe the background

of the error compensation in our method that leads to lower

error. The triangles in Fig. 7 represent the triangular density

distributions of the distances between the base point and

the points of three cells. The bases of the three triangles

represent the ½min;max� ranges that the distances between

points from a particular cell and the base point fall in. In our

analysis, we define G as buc, and we also define H ¼ Gþ 1

and I ¼ H þ 1. The triangles STU , AEW , and BCF are the

density distributions of u, u1, and u� 1, respectively. The

line H 0S0D0 is the symmetry line of WFH with respect to

the vertical line which passes through the point D.
As we know, if u1 ¼ u� 1, the error of distance counts

produced by the period between H and I can be

compensated by the one produced by the period between

G and H. In other words, according to SKEW, when we

count the number of distances between two cells with

minimum distance u, the number of distances between H

and I is added and leads to a positive error. When we count

the number of distances between two cells with minimum

distance u� 1, the number of distances between G and H is

missed and leads to a negative error. If the distribution is

the same, the area of GBCFH is the same as that of HSTUI,

and no error would be produced.

If u1 6¼ u� 1, there is difference between the area of

GAEWH and the area of HSTUI. In other words, there is

difference between the area of GAEWH and the area of

GBCFH. This difference can be computed by the area of

ABD0S0 and that represents the error imposed by the

difference between u1 and u� 1, which we denote as eu1;u�1.

We know that CE ¼ u1 � uþ 1 and GH 0 < u� u1 ¼ �.

Considering the fact that the area of each of the three

triangles in Fig. 7 is 1, the height of each of these triangles is
2

v�u (because the base is v� u). Therefore, the ratio AB
CE has

the following value (more details in Appendix III, available

in the online supplemental material):

AB

CE
¼

2
v�u
v�u

2

¼ 4

ðv� uÞ2
: ð11Þ

Furthermore, the length of AB is

AB ¼ 4

ðv� uÞ2
	 CE ¼ 4ðu1 � uþ 1Þ

ðv� uÞ2
¼ 4ð1��Þ
ðv� uÞ2

: ð12Þ

The area of ABD0S0, thus the error eu1;u�1, can be
computed as follows:

eu1;u�1 ¼ AB 	GH 0 <
4ð1��Þ 	�

ðv� uÞ2
ð13Þ

eu1;u�1 <
ð1��Þ

�
¼ 1

�
� 1: ð14Þ

Therefore, the accumulated error, ez¼0;1 over the range of z
(z 2 ½0; 1�) can be computed by the following equation
(considering (10) for �):

ez¼0;1 ¼
X1

z¼0

eu1;u�1 ¼
X1

z¼0

1

�
� 1

� 	

�
X1

z¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2z2
p

1þ z � 1

 !
:

ð15Þ

When 0 � z � 1, we can use well-established mathematical
tools (Fig. 8) to approximate ez¼0;1 as follows:

ez¼0;1 �
X1

z¼0

0:211 	 ð1� zÞ5 þ 0:211 	 ð1� zÞ2; ð16Þ
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treating z as continuous variable we get

ez¼0;1 �
Z 1

0

ð0:211 	 ð1� zÞ5 þ 0:211 	 ð1� zÞ2Þ dz

¼ 0:1055:

ð17Þ

Equation (17) means that the total error rendered by the
SKEW under the assumptions we stated in the beginning of
Section 6 is less than 10.55 percent. Due to the assumptions
we made, we do not claim this as a rigorous bound.
However, it clearly shows that our algorithm is able to
produce really good results with low errors by visiting
only one level in the density map. And this conclusion
builds the foundation of an improved approximate
algorithm (Section 7).

One special note here is that (17) does not cover the cases
in which the minimum distance u falls into the first SDH
bucket (i.e., u < p). However, our analysis shows that such
cases do not impact the results in (17) significantly. More
details can be found in Appendix IV, available in the online
supplemental material.

7 SINGLE-LEVEL APPROXIMATE ALGORITHM

Via the performance analysis of ADM-SDH, and looking
back to the error bound described in (7), we concluded that
�00 is very small. Even if we allow �0 to be 100 percent,
meaning no cell resolution is possible, we can still achieve
low and controllable error rates in our results. Based on such
conclusion, we introduce an improved approximate algo-
rithm we call single-level SDH algorithm (SL-SDH). There are
two major differences between the two algorithms: 1) the
number of levels (density maps) each algorithm visits:
unlike ADM-SDH, which visits mþ 1 levels, SL-SDH visits
only one level of the tree, and is thus given the name SL-SDH.
The single level visited by the SL-SDH is a user-defined
variable and can be any level of the tree. 2) the starting level
of the algorithms: ADM-SDH starts at a predetermined
level, based on the bucket width p and the maximum
distance between any two points of the system. SL-SDH, on
the other hand, starts at a user-defined level (and visits only
that level), which can be any level of the tree. SL-SDH
improves over ADM-SDH in two important aspects. First,

we only need a single DM that can be built in OðNÞ time
(instead of the OðN logNÞ time needed to build the
quadtree). Second, we reduce the posttree-construction
running time of the algorithm, with little increase of the
error, as we only run RESOLVETWOTREES for cells in one
density map (i.e., a single level).

A special note here is that the running time of SL-SDH
is no longer determined by the bucket width p. Recall that
ADM-SDH starts at the density map DMo, where the
diagonal of a single cell is less than or equal to p. When p
is small, the number of cells in DMo is large, and we have
to invoke the RESOLVETWOCELLS procedure more times.
To remedy this, we allow SL-SDH to run on a (single)
density map above DMo, i.e., one with larger cell sizes
(and fewer cells). This is based on a hypothesis motivated
by our performance analysis of ADM-SDH: the error
compensation mechanism we studied will also work for
density maps above DMo. We know the error is very
small for running RESOLVETWOTREES for those cells in
DMo—doing the same on higher level density maps
should still render reasonable (although higher) error
rates. Unfortunately, an analytical study of such errors is
very difficult. In the remainder of this section, we
empirically evaluate the error and time tradeoff of the
final version of the SL-SDH algorithm.

7.1 Experimental Results

We have implemented the SL-SDH algorithm using the
C programming language and tested it with various
synthetic/real data sets. The experiments are run in the
same environment as the experiments for the ADM-SDH
in Section 5.

Since we know, from our previous experiments, that the
PROP heuristic for distributing the distances in nonresol-
vable cells produces the best results, we have only used that
heuristic to show the results of the single level approximate
algorithm. We have run the algorithm on two synthetic data
sets (with uniform and skewed distribution of atoms) under
five different N values (i.e., 1, 3, 5, 7.5, and 12 million). We
also ran the algorithm on one real simulation data set with
891,272 atoms.

Fig. 9 shows the results from the experiments on
uniform and skewed data, respectively, with 7.5 million
atoms and the real data with 891,272 atoms. From this
figure, we can see that the error rate decreases when we
increase the level in the density map. We also see that the
error rate decreases when the bucket width increases.

Fig. 10 demonstrates the effects of system size N on the
accuracy of SL-SDH. Each line in Fig. 10 plots the error
rates of SL-SDH when run at a particular level of density
map under a particular atom count. We can easily see that
the lines for the five different system sizes (of the same
density map) are very similar, giving rise to one cluster of
lines for each level of density map. Fig. 10 shows that the
error introduced by the SL-SDH algorithm is not affected
by the number of atoms in the data set N , but by the level
of density map the algorithm works at. On the other hand,
the running time of the SL-SDH algorithm was also found
to be independent of N , as shown in Fig. 11. The only
exceptions are for levels 3 and 4, in which the tree
construction time dominates.
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The difference between SL-SDH and ADM-SDH can be
seen by comparing Fig. 11 with Fig. 5, and Fig. 10 with
Fig. 4. However, to better understand the accuracy/
performance tradeoffs provided by the two algorithms,
we introduce a new metric we call Error Delay Product
(EDP), which is defined as the product of the error rate and
the running time of the algorithm. Obviously, higher EDP
means worse accuracy/performance tradeoff. Fig. 12 shows
the EDPs for both algorithms ran under four different
bucket widths (i.e., 100, 500, 1,000, and 2,000). It is obvious
that the SL-SDH algorithm produces better EDP than the
regular approximate algorithm. This is especially the case
when the bucket width is small—the EDPs of SL-SDH are
orders of magnitude lower than those provided by ADM-
SDH. The reason for this is that the ADM-SDH algorithm
starts at a level predetermined by the bucket width p,
whereas SL-SDH can start at any level the user wants (this
is why the number of levels shown in Fig. 12 changes for
ADM-SDH and stays constant for SL-SDH for different
bucket widths). In other words, when p gets smaller, ADM-
SDH has to start at a lower level of the tree (higher in
number) with more cells to process which makes the
running time longer, thus increasing the EDP. As we can
see from Fig. 12, when the bucket width is 100, ADM-SDH
can only work in level 9 (its starting level DMo). This yields
long running time. On the other hand, the SL-SDH can
work at any user-defined level of the tree, one that yields
the desired accuracy while keeping the running time low.
The other three parts of Fig. 12 show that as the bucket

width grows, the EDPs of the two algorithms get closer.
Nevertheless, there is always an EDP of the SL-SDH that is
better than the EDP of the ADM-SDH. In general, the EDPs
of both algorithms decrease with the decrease of the density
map level (level 9 always showing the worst tradeoff).
However, the benefit of the SL-SDH is that it can work at
any user-defined level of the tree, and our experiments
show that its accuracy is already high when working on a
coarse density map.

In summary, our experimental results convey three
important messages. First, the SL-SDH algorithm signifi-
cantly improves the accuracy/performance tradeoff over
ADM-SDH. Such improvements are more obvious under
small SDH bucket width. This is very important: the
computation of SDHs is generally preferred to be done
under smaller p values as it carries more information about
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Fig. 10. Accuracy of SL-SDH under different bucket width and different
atom counts for synthetic data (uniform and skewed).

Fig. 11. Efficiency of SL-SDH.

Fig. 9. Accuracy of SL-SDH under different bucket width for synthetic
(uniform and skewed) and real data.



the distribution of the distances. Second, users can choose
the appropriate (single) level among all the density maps to
run the algorithm based only on the desired accuracy.
Third, we also show that, like ADM-SDH, the running time

and the error rate of SL-SDH are not affected by the
number of atoms in the data set.

8 CONCLUSIONS AND FUTURE WORK

The main objective of our work is to accomplish efficient
computation of SDH, a popular quantity in particle
simulations, with guaranteed accuracy. In this paper, we
introduce approximate algorithm for SDH query proces-
sing based on our previous work developed around a
Quadtree-like data structure named density map. The
experimental results show that our approximate algorithm
has very high performance (short running time) while
delivering results with astonishingly low error rates. Aside
from the experimental results, we also analytically
evaluate the performance/accuracy tradeoffs of the algo-
rithm. Such analyses showed that the running time of our
algorithm is completely independent of the input size N ,
and derived a provable error bound under desired
running time. We further developed another mathematical
model to perform in-depth study of the mechanism that
leads to low error rates of the algorithm. Aside from

administering tighter bounds (under some assumptions)
on the error of the basic approximate algorithm, our model
also gives insights on how the basic algorithm can be
improved. Following these insights, a new single-level
approximate algorithm with improved time/accuracy
tradeoff was proposed. Our experimental results sup-
ported our analysis. Having these experimental results on
hand, one aspect of our future work will be to establish a
provable error bound for the new algorithm.

Many times, the MS systems are observed over certain
period of time and SDH computation is required for every
frame (time instance) over that period. Therefore, another
direction of our on-going work is to efficiently compute
the SDHs of consecutive frames by taking advantage of the
temporal locality of data points. We can also extend our
work to the computation of m-body correlation functions
with m > 2—a more general form of spatial statistics that
involves counting all possible m-particle tuples.

ACKNOWLEDGMENTS

The project described was supported by an Award Number
R01GM086707 from the National Institute Of General
Medical Sciences (NIGMS) at the National Institutes of
Health (NIH). The authors would like to thank Anand
Kumar who has contributed his time and knowledge
toward realization of this paper. These authors contributed
equally to this work.

REFERENCES

[1] J. Gray, D. Liu, M. Nieto-Santisteban, A. Szalay, D. DeWitt, and
G. Heber, “Scientific Data Management in the Coming Decade,”
ACM SIGMOD Record, vol. 34, no. 4, pp. 34-41, Dec. 2005.

[2] A.S. Szalay, J. Gray, A. Thakar, P.Z. Kunszt, T. Malik, J. Raddick,
C. Stoughton, and J. vandenBerg, “The SDSS Skyserver: Public
Access to the Sloan Digital Sky Server Data,” Proc. ACM SIGMOD
Int’l Conf. Management of Data, pp. 570-581, 2002.

[3] M.Y. Eltabakh, M. Ouzzani, and W.G. Aref, “BDBMS - A Database
Management System for Biological Data,” Proc. Third Biennial
Conf. Innovative Data Systems Resarch (CIDR), pp. 196-206, 2007.

[4] M.H. Ng, S. Johnston, B. Wu, S.E. Murdock, K. Tai, H. Fangohr,
S.J. Cox, J.W. Essex, M.S.P. Sansom, and P. Jeffreys, “BioSimGrid:
Grid-Enabled Biomolecular Simulation Data Storage and Analy-
sis,” Future Generation Computer Systems, vol. 22, no. 6, pp. 657-664,
June 2006.

[5] J.M. Patel, “The Role of Declarative Querying in Bioinformatics,”
OMICS: A J. Integrative Biology, vol. 7, no. 1, pp. 89-91, 2003.

[6] S. Klasky, B. Ludaescher, and M. Parashar, “The Center for
Plasma Edge Simulation Workflow Requirements,” Proc. IEEE
Workshop Workflow and Data Flow for Scientific Applications
(SciFlow ’06), pp. 73-73, 1991.

[7] J.L. Stark and F. Murtagh, Astronomical Image and Data Analysis.
Springer, 2002.

[8] M.P. Allen and D.J. Tildesley, Computer Simulations of Liquids.
Clarendon Press, 1987.

[9] D. Frenkel and B. Smit, Understanding Molecular Simulation: From
Algorithm to Applications, series Computational Science Series,
vol. 1. Academic Press, 2002.

[10] J.M. Haile, Molecular Dynamics Simulation: Elementary Methods.
Wiley 1992.

[11] D.P. Landau and K. Binder, A Guide to Monte Carlo Simulation in
Statistical Physics. Cambridge Univ. Press, 2000.

[12] P.K. Agarwal, L. Arge, and J. Erikson, “Indexing Moving Objects,”
Proc. Int’l Conf. Principles of Database Systems (PODS), pp. 175-186,
2000.

[13] M. Bamdad, S. Alavi, B. Najafi, and E. Keshavarzi, “A New
Expression for Radial Distribution Function and Infinite Shear
Modulus of Lennard-Jones Fluids,” Chemical Physics, vol. 325,
pp. 554-562, 2006.

1994 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 9, SEPTEMBER 2013

Fig. 12. Accuracy and performance tradeoffs of ADM-SDH and SL-SDH
algorithms under different SDH bucket widths.



[14] J.P. Hansen and I.R. McDonald, Theory of Simple Liquids. Academic
Press, 2006.

[15] A. Filipponi, “The Radial Distribution Function Probed by X-Ray
Absorption Spectroscopy,” J. Physics: Condensed Matter, vol. 6,
pp. 8415-8427, 1994.

[16] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl,
“GROMACS 4: Algorithms for Highly Efficient, Load-Balanced,
and Scalable Molecular Simulation,” J. Chemical Theory and
Computation, vol. 4, no. 3, pp. 435-447, Mar. 2008.

[17] V. Springel, S.D.M. White, A. Jenkins, C.S. Frenk, N. Yoshida, L.
Gao, J. Navarro, R. Thacker, D. Croton, J. Helly, J.A. Peacock, S.
Cole, P. Thomas, H. Couchman, A. Evrard, J. Colberg, and F.
Pearce, “Simulations of the Formation, Evolution and Clustering
of Galaxies and Quasars,” Nature, vol. 435, pp. 629-636, June 2005.

[18] A.G. Gray and A.W. Moore, “N-Body Problems in Statistical
Learning,” Proc. Advances in Neural Information Processing Systems
(NIPS), pp. 521-527, 2000.

[19] Y.-C. Tu, S. Chen, and S. Pandit, “Computing Distance Histo-
grams Efficiently in Scientific Databases,” Proc. IEEE 25th Int’l
Conf. Data Eng. (ICDE), pp. 796-807, Mar. 2009.

[20] M. Arya, W.F. Cody, C. Faloutsos, J. Richardson, and A. Toya,
“QBISM: Extending a DBMS to Support 3D Medical Images,” Proc.
10th Int’l Conf. Data Eng. (ICDE), pp. 314-325, 1994.

[21] M. Stonebraker, S. Madden, D.J. Abadi, S. Harizopoulos, N.
Hachem, and P. Helland, “The End of an Architectural Era (It’s
Time for a Complete Rewrite),” Proc. 33rd Int’l Conf. Very Large
Data Bases (VLDB), pp. 1150-1160, 2007.

[22] B. Howe, D. Maier, and L. Bright, “Smoothing the ROI Curve for
Scientific Data Management Applications,” Proc. Third Biennial
Conf. Innovative Data Systems Research (CIDR), pp. 185-195, 2007.

[23] P.G. Brown, “Overview of SciDB: Large Scale Array Storage,
Processing and Analysis,” Proc. ACM SIGMOD Int’l Conf. Manage-
ment of Data, pp. 963-968, 2010.

[24] M. Feig, M. Abdullah, L. Johnsson, and B.M. Pettitt, “Large Scale
Distributed Data Repository: Design of a Molecular Dynamics
Trajectory Database,” Future Generation Computer Systems, vol. 16,
no. 1, pp. 101-110, Jan. 1999.

[25] J. Barnes and P. Hut, “A Hierarchical O(N log N) Force-
Calculation Algorithm,” Nature, vol. 324, no. 4, pp. 446-449, 1986.

[26] L. Greengard and V. Rokhlin, “A Fast Algorithm for Particle
Simulations,” J. Computational Physics, vol. 135, no. 12, pp. 280-292,
1987.

[27] P.B. Callahan and S.R. Kosaraju, “A Decomposition of Multi-
Dimensional Point Sets with Applications to K-Nearest-Neighbors
and N-Body Potential Fields,” J. ACM, vol. 42, no. 1, pp. 67-90, 1995.
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