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the video novice to convey the message effectively, making
good use of annotation and motion. For greatest effectiveness,
scientists really need to incorporate the type of design expertise
found in film and television studios. They also need better tools
to control such technological aspects as aliasing, temporal fil-
tering, and color gamut mapping.

Strategies

How do we ensure that research on developing visualization
models is undertaken with the imperative we feel is required?
For example, several previous visualization workshops have
highlighted the need for reference models, but the models them-
selves are few. And we have not seen a comparison of visual-
ization reference models with existing graphics reference
models, apart from some early pipeline-oriented discussions.

Perhaps the most effective way of overcoming the reluctance
to formalize models in an evolving field is to establish special
sessions at a visualization conference, for example, at the IEEE
Visualization conference. Such a session could propose initial
models from which progress could emerge in a one- to two-year
time frame. We might expect standardization on a reference
model and the components of such a model, including data,
user, time, and device models, in around five years.

Validation requires enough attention to ensure that, as com-
putational platforms offer the performance needed for visual-
ization, we can have confidence in the validity and effectiveness
of the tools we develop and use. Clearly, a disciplined effort is
needed to establish test data sets and results and to benchmark
commercial software. The supercomputing community found
this necessary to maintain research and commercial credibil-
ity, and there is every reason to suggest that the visualization
community will have to do the same. Industry and research con-
sortia, perhaps through a dedicated workshop or through a ma-
jor society such as ACM or IEEE, are best placed to undertake
reproducibility test design.

Research groups will need to determine how to test the ef-
fectiveness of visualizations by establishing a major focus in
this area, drawing from expertise in psychology and cognitive
science. While there is some effort in this area, substantially
more is required to give us real faith in the visualizations we
produce.

We believe that computer scientists can help improve the
integration of tools and techniques within visualization
environments by applying modern software engineering ap-
proaches to many of the problems. We need research into the
design of systems that are sufficiently flexible to allow for min-
imal latency of interaction, for example, over a distributed com-

puting environment. Achieving interoperability, effective dis-
tributed systems, and progressively more automated genera-
tion of visualizations are significant research problems that will
take some years to result in commercially available systems.
However, consortia of research and industry group could ad-
dress some aspects of system limitations, for example, estab-
lishing default parameters, making database interfaces
available, standardizing on multimodal device interfaces, and
standardizing on device-independent color coordinate systems.
Successful efforts in these areas could make current systems
more usable within a one- to three-year time frame. Q
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Research Issues in Vector and Tensor Field Visualization

Lambertus Hesselink, Stanford University; Frits H. Post, Delft University of Technology;

low visualization has long been a part of fluid dynamics re-
search. We have photographs from the 19th century that
show the patterns resulting from the insertion of ink, smoke, or
particles in a fluid. This strong relation has become even stronger
in the era of computer data generation and analysis. Today, com-
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putational fluid dynamics (CFD) research is almost impossible
without computer-generated visualizations of the very large
amounts of data resulting from numerical simulations.
Although good techniques now exist for analysis of scalar
data, most existing techniques for the visualization of vector
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Figure 1. Hyper'srtreamlines'completé]y encode tensor data along
continuous trajectories.® They are surfaces built around curves tangent
to one of the eigenvectors of the tensor field. The cross section

locally the two eigenvectors orthogonal to the trajectory. In

fields—the predominant data type in CFD—meet only part of
what is required. Common techniques such as arrow plots,
streamlines, and particles work well for 2D applications, but
for 3D data sets they often lead to cluttered displays. The main
reason for this difficulty is a fundamental one: There is no in-
tuitive and psychologically meaningful method to visualize 3D
flows. We can represent a single vector by an arrow, but no
such physical metaphor exists for a field of vectors. For ten-
sors, which are much more complex and abstract entities, the
problem is even more severe.

This situation presents an interesting challenge to the visu-
alization community. There is a real need for visualization, but
there are no simple solutions. In the past five years many re-
searchers have recognized this challenge and developed new
techniques. We have given overviews elsewhere,!? so we re-
strict ourselves here to open research issues.

We proceed in three ways. First, we propose a classification
of existing vector and tensor field visualization techniques based
on work by Delmarcelle and Hesselink'> and point out research
gaps in this classification scheme. Second, we discuss feature-
based visualization, which shows higher level descriptions de-
rived from elementary data. Third, we consider the role of
visualization in the research process, again revealing gaps in
our current know-how concerning visualization of vector and
tensor fields.

Classification and research issues

We can classify vector and tensor field visualization tech-
niques in different ways. The simplest distinction is by the or-
der of the data we wish to visualize: scalar, vector, and tensor
data. Next, we can distinguish by the spatial domain dimen-
sionality of the visualization objects: points, lines or curves, sur-
faces, and volumes. The next distinction is more subtle: the
information level. The information shown at a certain point can
refer to only the elementary data at that single point, or it can
indicate gradient values in a region of space, and it can extend
this region into larger areas—up to the full domain of data sup-
port. The corresponding three information levels are elemen-
tary, local, and global.

Table 1 classifies some existing visualization techniques ac-
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Table 1. Classification of some existing
visualization techniques.

Technique Order of Data Domain Level
Volume ray casting Scalar Volume Elementary
Isosurface Scalar Surface Elementary
Arrow plot Vector Point Elementary
Stream surface Vector Surface Elementary
Particle animation Vector Point Elementary‘
Tensor probe® Vector Point Local ure 1.
Vector field topology® [ Vector Volume Global -
Hyperstreamlines'? Tensor Line Elementary

the figure, the traj , and color of the
hyperstreamlines encode the velocity direction, pressure, and kinetic

Y, € tion di:

energy density, respectively.

Table 2. Possible new vector field visualization techniques.
Technique Order of Data Domain Level
Extensions of

volume rendering Vector Volume Elementary
Stream surfaces

with gradient cues Vector Surface Local
Area glyphs Vector Point Global

cording to order, domain, and information level.

The complete 3D classification has 36 cells, many of which are
still (almost) empty. Not all cells are equally meaningful, but we
need new techniques for many of them. This need is particularly
pressing for local and global visualization of tensor fields, for
which only a few techniques are available (see Figure 1).

But even for vector fields we need new techniques. Table 2
presents three examples: extension of direct volume rendering
for vector fields, stream surfaces with additional cues on the
gradients perpendicular to the surface, and glyphs that sum-
marize the characteristics over an area of a vector field. The
table classifies these combinations in the same way Table 1 clas-
sifies existing techniques, thereby filling in some of the empty
spaces in the original classification.

The development of these techniques is based on an under-
lying philosophy: On the one hand, we need techniques that
show all data at an elementary level for the whole domain, and
on the other hand we need techniques to summarize data over
a larger area at a single point. Feature visualization offers new
possibilities for this.

Feature visualization

We define a feature as anything contained in a data set that
might be of interest for interpretation. The vagueness of the def-
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inition is deliberate, as the nature and type of features vary
strongly with the application area, the measurement or simulation
methods, the phenomena studied, and the aim of the research. A
feature-based data representation is a high-level data description
that can replace the original representation in a more compact,
clear, and meaningful manner. Important characteristics are ex-
tracted for further analysis and for emphasis in visualization. The
goals are to reduce complexity, to increase information content,
and to match the concepts of the application area.

In medical imaging, much work has been done on feature ex-
traction from scalar fields. Segmentation techniques are used to
classify tissue types and extract the features of human anatomy
from computed tomography (CT) or nuclear magnetic reso-
nance (NMR) scan data.

Several researchers have also worked on feature-based vi-
sualization of vector and tensor data (for a brief survey, see
Post and Van Wijk?). We can distinguish several types of fea-
tures. First, a feature can be a part of the data that satisfies some
user-specified criterion of interest. This criterion is used to fil-
ter the data and extract the items of interest. A second type of
feature is a region of interest, found as a result of a decompo-
sition of the study domain (spatial or temporal). A third class
consists of characteristic patterns, such as critical points and
their local configurations, or meaningful physical “objects” such
as vortices or shock waves.

There are several ways to visualize features. When a numer-
ical simulation generates separate feature data, the features are
already explicit in the raw data for visualization. An example is
a simulation of turbulent flow,* which generates a mean veloc-
ity field and an extra turbulence intensity field. Visualization in-
volves a reconstruction of the features (in this case turbulent
motions) in the mean flow (see Figure 2).

The opposite approach is to visualize the data containing the
features directly and to select a visualization mapping in such a
way that features emerge from the displayed images. The viewer
detects such implicit features through eye-brain processing. An
example from CFD research is the visualization of hairpin vor-
tices in turbulent flows, using isosurfaces of low-pressure or
high-vorticity magnitude.®

Finally, we can extract features from the data for further anal-
ysis and interpretation. The extraction can occur separately
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Figure 2. Explicit feature
visualization: a turbulent
channel flow.* In the flow
simulation, two separate data
fields were computed: a mean
velocity field and a turbulence
intensity field. For visualization,
particle motion is used to
reconstruct the turbulent fluid
motions. At each step of the
particle path, a stochastic
perturbation is determined from
local turbulence intensity and
added to local velocity. This
results in erratic particle
motions, reflecting turbulent
dynamics.

from the data-generation phase of the visualization process by
applying feature-extraction algorithms during the data-
enhancement phase. Examples are the vector field topology
techniques of Helman and Hesselink,® and other techniques
from image processing and mathematical morphology.”™®

A general scheme for feature extraction and visualization
consists of a sequence of steps. First, the user must specify the
characteristics of the features of interest. Such a specification
might merely define a combination of attributes, such as local
extrema or global threshold data values. But the specified fea-
ture might also be a physical phenomenon or a persistent pat-
tern that behaves like an object. It is the task of the feature
extractor to derive from this specification an appropriate gen-
eral extraction technique. In the latter case, the feature defini-
tion is likely to be more application dependent. To derive an
extraction technique, a visualization system might contain do-
main-specific knowledge or intelligence that allows high-level
interactive feature specification.

Next, algorithms must extract these features from the data
and store them in a high-level form. To visualize these features,
the system maps them to icons that are finally displayed on the
screen. Representation by icons is very important for feature vi-
sualization. In this context, an icon is any geometric object that
represents data by geometric attributes, such as size and shape,
or other visible attributes, such as color or opacity. Icons range
from simple objects (curves and surfaces) to abstract symbolic
objects (glyphs).

Hesselink and Delmarcelle'? have discussed vector and ten-
sor data visualization techniques in terms of iconic representa-
tions. Most existing icons represent the data on a low level of
abstraction. Feature-based visualization requires the develop-
ment of new icon types to encode high-level concepts. This icon
type has been used for representing critical points and their
classification.® Another example is the icon used for visualizing
local velocity and velocity gradients.® This icon was designed as
a probing device for interactive data exploration (see Figure
3). The design of multivariable icons is a separate area of study,
as is the identification of “natural” mappings of data quantities
to such icon attributes as shape and color.

By definition, feature visualization concerns the meaning of
data, thus the techniques are always liable to be application-
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Figure 3. A probe for the local inspection of flow fields.” This is a fypical
example of a technique that shows data for a point at a local level. Not
only the velocity vector but also the local variation of the velocity are
visnalized in a glyph. The tensor that describes this variation is
decomposed into five components (curvature, acceleration, shear,
convergence, and twist), which are mapped onto geometric primitives.

specific. In visualization research we must develop generic tech-
niques and allow users to specify their features or selection cri-
teria according to the application area and the purpose of
analysis. It is too early to determine to what extent this is pos-
sible, but a wider application of analysis techniques from image
processing and mathematical morphology, and of techniques
and concepts from the mathematics of vector and tensor fields,
may be very fruitful.

In our view, the main thrust of vector and tensor field visu-
alization research should be in this area. We base this view on
the observation that currently known techniques show highly
promising results. '

Visualization and research practice

Visualization is embedded in the scientific and engineering
research process. This process uses both experimental and
mathematical modeling and simulation methods, often in com-
bination. In this section, we consider problems that arise from
the use of visualization as part of the research process and sug-
gest some research topics to improve its effectiveness. Most of
these remarks apply to scientific visualization in general, rather
than specifically to vector and tensor fields.

An important but little-investigated problem is the compar-
ison of multivariate data sets from different sources. An obvi-
ous need is the validation of numerical simulation models by
comparison with numerically generated and measured data.
This type of comparison is becoming feasible through experi-
mental techniques that produce data sets with the same infor-
mation content as numerical simulations (for example, particle
image velocimetry in fluid dynamics). In the simplest form, we
can compare images by looking at them side by side or super-
imposed on each other. More advanced approaches require the
development of common high-level representations (such as
feature-based representations), metrics, and special visualiza-
tion tools for comparing data. Initial results from these devel-
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opments are urgently needed and should become available in
the next three to five years.

A related issue is the development of indicators of accuracy
and reliability in visualization. In most experimental sciences,
documenting errors is standard practice, but it is not yet so for
computer-generated visualizations. Possibly these indicators
should be an integrated part of the whole visualization process,
from measurement or numerical simulation to the visualization
itself. As a minimum, we should provide visual clues to pro-
mote error awareness.

Related to these issues, the visualization techniques them-
selves must be validated and evaluated. Important aspects are
correctness (error measure) and usefulness and effectiveness
(psychological meaningfulness) in generating insight and knowl-
edge. These all depend on the human capacity to perceive and
understand not only structural relations (shape, spatial order-
ing, patterns) but also quantitative relations in the spatial and
temporal domain (relative and absolute values, and rates of
change). Only field testing or laboratory research with human
subjects can support this type of evaluation. It should be an on-
going activity in the visualization research community, pro-
ducing results in the next five years.

A final remark

Extensive efforts by a large number of researchers have re-
sulted in many colorful, and sometimes even beautiful visual-
izations. In spite of this, we have seen that many problems in
vector and tensor field visualization still await solutions. The
reason, we suggest, is intrinsic: Vector and especially tensor
fields are complex data describing complex physical phenomena,
which are themselves often poorly understood. Visualization of
these data is an interesting and challenging research area. [
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