
Performance Characteristics of Hardware Transactional Memory for Molecular
Dynamics Application on BlueGene/Q: Toward Efficient Multithreading Strategies

for Large-Scale Scientific Applications

Manaschai Kunaseth, Rajiv K. Kalia,
Aiichiro Nakano, Priya Vashishta

Collaboratory for Advanced Computing and Simulations
University of Southern California

Los Angeles, CA USA
{kunaseth,rkalia,anakano,priyav}@usc.edu

David F. Richards, James N. Glosli
Lawrence Livermore National Laboratory

Livermore, CA USA
{richards12,glosli1}@llnl.gov

Abstract—We have investigated the performance
characteristics of hardware transactional memory (HTM) on
the BlueGene/Q computer in comparison with conventional
concurrency control mechanisms, using a molecular dynamics
application as an example. Benchmark tests, along with
overhead-cost and scalability analysis, quantify relative
performance advantages of HTM over other mechanisms. We
found that the bookkeeping cost of HTM is high but that the
rollback cost is low. We propose transaction fusion and
spatially-compact scheduling techniques to reduce the
overhead of HTM with minimal programming. A strong
scalability benchmark shows that the fused HTM has the
shortest runtime among various concurrency control
mechanisms without extra memory. Based on the performance
characterization, we derive a decision tree in the concurrency-
control design space for multithreading application.

Keywords-Hardware transactional memory; molecular
dynamics; BlueGene/Q; multithreading

I. INTRODUCTION
The rapid growth in computing power enables scientists

to address more challenging problems by using high-end
supercomputers [1, 2]. However, improvements in
computing power are now gained using multicore
architectures instead of increased clock speed [3]. The
delivery of Sequoia, a 1.6-million core BlueGene/Q
supercomputer at Lawrence Livermore National Laboratory
(LLNL), marks the end of the free-ride era—legacy parallel
applications can no longer increase performance on a new
chip without substantial modification. Especially with 64
threads per node of BlueGene/Q, most of the existing
distributed-memory parallel algorithms via message-passing
are not suitable for the shared-memory model in multicore
platform. Thus, an efficient multithreading scheme is needed
to exploit the benefits from such large-scale multicore
architectures. However, this is a major challenge due to the
difficulty of handling race conditions.

Traditionally, race conditions in time-sharing processors
and early multicore chips were avoided effectively by
conventional concurrency controls such as locks, atomic
operations, and data privatization. However, the performance
of these techniques tends to be limited on systems with a

large number of concurrent multithreads such as
BlueGene/Q. Furthermore, the fine-grain race conditions
often encountered in real-world applications such as
molecular dynamics (MD) [4-6] further limits the utility of
traditional concurrency controls. Addressing these issues
typically requires extensive coding effort, which limits wide
use of massive multithreading platforms. Hence, alternative
concurrent controls need to be established.

To improve the programmability on its large
multithreading system, BlueGene/Q has become the first
commercial platform with transactional memory (TM)
implemented in hardware [7, 8]. TM is an opportunistic
concurrency control [9], allowing multiple threads to execute
through a critical section concurrently by simply defining a
critical code block. Since software TM usually suffers
considerable overhead [10], hardware TM (HTM) on
BlueGene/Q is expected to significantly reduce runtime
overhead. This makes HTM on BlueGene/Q a viable option
to deal with race conditions effectively in a large
multithreading environment. However, the actual
performance of HTM on BlueGene/Q compared to other
concurrency control mechanisms on real-world applications
has not been widely reported. A study of HTM performance
along with the traditional mechanisms on BlueGene/Q is of
great significance.

In this paper, we characterize the performance of HTM
on BlueGene/Q, along with those of traditional concurrency
control mechanisms using the MD code, ddcMD [2, 11], as
an example application. We also propose transaction fusion
and spatially-compact scheduling techniques to reduce the
overhead of HTM with minimal programming. Based on the
characteristics of concurrency controls, we propose a
decision tree in the concurrency-control design space for
multithreading applications.

This paper is organized as follows. Section II provides
background information on MD and concurrency controls.
Section III characterizes each concurrency control
mechanism based on a cost model. Section IV analyzes the
performance of concurrency controls including HTM for
ddcMD code. Section V proposes a decision tree in the
multithreading concurrency-control design space.
Conclusions are drawn in section VI.

II. BACKGROUND
Section II-A introduces the MD application ddcMD,

which will be used in the benchmark in section IV. Section
II-B describes race condition in MD along with several
conventional concurrency control mechanisms. Section II-C
explains the HTM implemented on BlueGene/Q.

A. Hybrid MPI/OpenMP Molecular Dynamics
Molecular dynamics simulation follows the phase-space

trajectories of an N-particle system. The forces between
particles are computed from the gradient of a potential
energy function φ(r1, r2,…, rN), where ri is the position of
the i-th particle. Positions and velocities of all particles are
updated at each MD step by numerically integrating coupled
ordinary differential equations. The dominant computation of
MD simulations is the evaluation of the forces and associated
potential energy function. One model of great physical
importance is the interaction between a collection of point
charges, which is described by the long-range, pair-wise
Coulomb field 1/r (where r is the interparticle distance),
requiring O(N2) operations to evaluate. Many methods exist
to reduce this computational complexity [12-14]. We focus
on the highly efficient particle-particle/particle-mesh
(PPPM) method [12]. In PPPM, the Coulomb potential is
decomposed into two parts: A short-range part that
converges quickly in real space and a long-range part that
converges quickly in reciprocal space. The division of work
between the short-range and long-range part is controlled
through a “screening parameter” α, and computational
complexity for the force calculation is reduced to O(Nlog N).

In this paper, we use a hybrid parallel implementation of
the ddcMD code [11], based on the message-passing
interface (MPI) and OpenMP. In this program, particles are
assigned to nodes using a particle-based domain
decomposition and “ghost-atom” information is exchanged
via MPI. Parallelization across the cores of a node is
accomplished using multithreading via OpenMP, see Fig. 1.
The number of particles in each node is denoted by n = N/P,
where P denotes the number of nodes used in the simulation.
Although both short-range and long-range kernels are
parallelized using OpenMP, we focus on the more
challenging short-range computation.

The short-range kernel of PPPM computes a sum over
pairs: φ = ∑i<j qiqjerfc(αrij)/rij, where qi is the charge of
particle i and rij is the separation between particles i and j.
Though this work is focused on this particular pair function,
much of the work can be readily applied to other pair
functions.

B. Race Conditions and Traditional Concurrency Control
Mechanisms
A race condition is an unsafe situation where program

behavior depends on the relative timing of events. For
example, when two or more threads read from and write to
the same memory address simultaneously, program results
may depend on the order in which the reads and writes are
processed. The code section with this possible memory
conflict is called a conflict region. Memory conflicts can

occur in ddcMD when multiple threads simultaneously
update the force of the same particle. Although there is a
large number of particle pairs that are prone to memory
conflict, the actual occurrence of memory conflict during the
force update is rare.

To handle the race condition, several concurrency control
mechanisms are available. The conventional concurrency
control mechanisms such as lock and atomic operation are
available in the OpenMP framework. Alternative data
privatization schemes require more coding effort, since
automatic array reduction is not yet implemented in general
OpenMP distributions (data privatization only involving a
scalar reduction variable is available in OpenMP). The detail
of these mechanisms is described in the following.

1) OpenMP Critical (OMP-critical): OMP-critical is the
simplest form of concurrency control, where the conflict
region is wrapped by the #pragma omp critical
directive. OMP-critical ensures atomicity of the execution in
the conflict region by serialization, i.e., allowing only one
thread at a time to compute in the conflict region. To
achieve this, OMP-critical uses a single global lock to
enforce serialization. The major advantage of OMP-critical
is its ease of use, but the global lock can cause a severe
bottleneck, resulting in tremendous performance
degradation.

2) OpenMP Atomic (OMP-atomic): Atomic operations
in OpenMP are applied by inserting the #pragma omp
atomic directive before an atomic update. This causes the
compiler to take extra measures to gurantee the atomicity of
the scalar update on the following line of code. This
mechanism is suitable only for conflict regions that consist
solely of a single scalar update.

3) Data Privatization: Data privatization avoids race
conditions completely by performing computation on a
thread-local buffer instead of reading/writing into the global
memory directly. After each thread finishes its computation,
partial results from all the threads are combined into the
global memory, incurring computational overhead. The
main advantage of data privatization is its excellent
scalability. However, data privatization needs much more
memory than other concurrency controls for local buffer
allocation.

Fig. 1. Schematic diagram of hybrid MPI/OpenMP parallelization.

C. Hardware Transactional Memory on BlueGene/Q
TM is an opportunistic concurrency control mechanism.

It avoids memory conflicts by monitoring a transaction, a set
of speculative operations in a defined code section.
Numerous TM algorithms have been proposed [15-19].
BlueGene/Q is the first commercially available platform that
implements TM in the hardware using multi-versioned L2
cache. This hardware feature allows existence of multiple
copies of the same physical memory address. When conflict
is detected by the hardware, the OS kernel is signaled by the
hardware to discard and restart the speculative executions in
the conflicted transaction⎯a process called rollback. If no
memory conflict is detected, the transaction is committed at
the end of the transaction and the change made by the
transaction will be made available to all the threads.

To use the HTM, programmers annotate conflict regions
with the #pragma tm_atomic directive. (This directive
is similar to OMP-critical.) This procedure requires minimal
coding effort while allowing efficient non-blocking
synchronization for multiple threads. However, rollback
possibly undermines the potential benefit from HTM.
Numerous factors such as algorithms, number of threads,
memory layout, and granularity, are likely to influence the
number of rollbacks and hence performance. Earlier
evaluations of HTM performance on BlueGene/Q are
available in [7, 8].

Our HTM benchmarks are performed on Sequoia, the
BlueGene/Q cluster at LLNL. The cluster and compiler
specifications used in the benchmark are summarized in
Table 1. The -qtm compiler option is used to enable HTM
features. HTM statistics such as numbers of transactions and
rollbacks are obtained from HTM-runtime generated report.
Details of BlueGene/Q architecture can be found in [20].

TABLE I. SPECIFICATION OF BLUEGENE/Q AT LLNL.

Processor PowerPC A2
Clock speed 1.6 GHz
Physical cores
per node

16

Hardware
threads per
core

4

Instruction
unit

1 integer/load/store OP + 1 floating
point OP per clock cycle

L1 data cache 16 KB (per core)
L2 data cache 32 MB (shared by all cores)
Memory per
node

16 GB DDR3

Networking 5D torus
Number of
nodes/cores

98,304 nodes/1,572,864 cores

Compiler IBM XLC/C++ version 12.1:
mpixlc_r

III. PERFORMANCE CHARACTERIZATION OF
CONCURRENCY CONTROL MECHANISMS

In this section, the characteristics of four concurrency-
control mechanisms—OMP-critical, OMP-atomic, data
privatization, and HTM—are analyzed using a micro
benchmark running a single thread on a single core to obtain
a cost model.

A. Concurrency-Control Cost Modeling
Consider a computational kernel, where a conflict region

consists of several atomic updates placed inside a loop
structure, see Fig. 2(a). The total overhead cost of a control
mechanism is estimated from:

 tβ = tcontrol − tserial (β ∈ {critical,atomic,HTM}) , (1)

where tcontrol is the running time of the kernel with
concurrency control, tserial is the running time of the serial
kernel. The cost model for each concurrency control
mechanism is:

OMP-critical: Here the cost mainly comes from the
process of obtaining a single global lock at the beginning of
the critical section, and releasing the lock at the end. Since
the lock/unlock process is not involved in any calculation
inside the conflict region, tcritical is independent of the size of
calculation within the conflict region. Therefore, the cost
model of OMP-critical reads

 tcritical =mclock+unlock , (2)

where m denotes the number of iterations of the for loop in
the benchmark kernel, and clock+unlock denotes the overhead
cost of each OMP-critical.

OMP-atomic: The cost is associated with an atomic
load/store hardware instruction, which is more costly than
the ordinary load/store instruction. In BlueGene/Q, high-
performance atomic operations are implemented as part of
L2 cache access [20]. Since OMP-atomic can only avoid
conflict in one atomic update, the cost model of OMP-atomic
depends on the number of atomic updates inside the conflict
region. The atomic operation cost model reads

 tatomic =mµcatomic , (3)

where µ is the number of atomic updates enforced with
OMP-atomic, and catomic is the overhead cost of each OMP-
atomic.

HTM: Each memory address involved in a transaction
needs to be monitored for conflict during runtime. This
requires additional steps to prepare each transaction in case
of rollback. This process incurs a bookkeeping cost (i.e.,
register check-pointing, operation confinement [7])
associated with every transaction. Furthermore, all
speculative executions occur in L2 cache, which incurs
considerable latency for L2 accesses. Therefore, the cost of

each transaction also depends on the size of conflict region.
Hence, the HTM cost model reads:

 tHTM =m(cHTM_overhead +µcHTM_update) , (4)

where cHTM_overhead denotes the bookkeeping overhead per
transaction, and cHTM_update denotes extra cost per atomic
update within the transaction. Since the benchmark only
involves a single thread, no rollback occurs and thus the cost
of rollback is not included in the model in this section.

Data Privatization: The computational overhead is
caused by reduction operation in the combining phase. Since
the reduction cost is independent of the number of iterations,
the cost of data privatization is often negligible compared to
the large amount of time spent in the loop. The reduction
cost is not applicable to the single thread cost model in this
section, and will be included in the ddcMD benchmark in
section IV.

B. Model Parameter Fitting Using Microbenchmark
Figure 2(a) shows the serial code as a reference. The

serial kernel consists of a loop, in which each iteration
contains 8 atomic updates. Figure 2(b) shows an example of
HTM-control benchmark codes. To identify the cost
parameters depending on the number of atomic updates, we
vary the number of atomic updates subjected to concurrency
controls. For example in Fig. 2(b), HTM is applied to 4
atomic updates. The benchmark is executed using a single
thread on a single core.

Figure 3 shows the average overhead cost of OMP-
atomic and HTM per iteration. Benchmark results reveal that
the cost of OMP-atomic and HTM mechanisms increase as
the number of controlled updates increase. The average cost
of OMP-atomic per update catomic is 393.9 cycles, while the
average cost of HTM per update cHTM_update is 139.4 cycles.
The HTM has additional bookkeeping overhead, cHTM_overhead
= 970.9 cycles per transaction. The plot shows that OMP-
atomic has less overhead than HTM for small number of
updates (≤ 4), while HTM has less overhead for larger
number of updates. HTM has a large bookkeeping overhead,
which is absent in OMP-atomic. However, the cost per

update is smaller for HTM than OMP-atomic. This results in
the observed crossover of the relative performance advantage
between OMP-atomic and HTM.

For OMP-critical, the fitted cost of lock+unlock clock+unlock
is 418.0 cycles. This cost is independent of the number of
atomic updates.

Fig. 3. Overhead cost comparison of OMP-atomic and HTM. The graph
indicates a crossover point at μ ~ 4 updates. Error bars for OMP-atomic is
too small to be visible.

IV. MOLECULAR DYNAMICS BENCHMARK
To evaluate the performance of concurrency control

mechanisms in an actual application, we focus on the race
conditions in the force update routine of ddcMD. Figure 4
shows the kernel of the ddcMD force update routine, where
memory conflict may occur. The code has two conflict
regions: (1) the force update in array fB[j] in line 28-33;
and (2) the force update in array fA[0] in line 36-41 in
Fig. 4. Concurrency control needs to be applied to these two
regions.

Here, we define the baseline code as a reference, in
which no concurrency control is used (i.e., the best-possible
execution time but the result is likely wrong). For OMP-
critical or HTM controlled concurrency, the corresponding
compiler directive (i.e., #pragma omp critical or
#pragma tm_atomic) substitutes the comments in lines

1 double x[SIZE];
2 for (int i = 0;i < niter;i++)
3 {
4 for (int j=0;j<=SIZE-8;j+=8*stride)
5 {
6 x[j]+=i*j;
7 x[j+ stride]+=i*(j+1);
8 x[j+2*stride]+=i*(j+2);
9 x[j+3*stride]+=i*(j+3);
10 x[j+4*stride]+=i*(j+4);
11 x[j+5*stride]+=i*(j+5);
12 x[j+6*stride]+=i*(j+6);
13 x[j+7*stride]+=i*(j+7);
14 }
15 }

1 double x[SIZE];
2 for (int i = 0;i < niter;i++)
3 {
4 for (int j=0;j<=SIZE-8;j+=8*stride)
5 {
6 #pragma tm_atomic
7 {
8 x[j]+=i*j;
9 x[j+ stride]+=i*(j+1);
10 x[j+2*stride]+=i*(j+2);
11 x[j+3*stride]+=i*(j+3);
12 }
13 x[j+4*stride]+=i*(j+4);
14 x[j+5*stride]+=i*(j+5);
15 x[j+6*stride]+=i*(j+6);
16 x[j+7*stride]+=i*(j+7);
17 }
18 }

Fig. 2. The benchmark kernel: (a) serial code without concurrency control; and (b) HTM control over 4 updates.

1 FOUR_VECTOR ftmp;
2 ftmp.v = ftmp.x = ftmp.y = ftmp.z = 0.0;
3 double rA0x, rA0y, rA0z;
4 double qA0 = qA[0];
5
6 rA0x = rA[0].x;
7 rA0y = rA[0].y;
8 rA0z = rA[0].z;
9
10 for (int k=0;k<nPList;k++)
11 {
12 double fs,vij,fxij,fyij,fzij;
13 int j=list[k];
14 double complex ff = fv[k];
15 vij= creal(ff);
16 fs = cimag(ff);
17 fxij=fs*(rA0x - rB[j].x);
18 fyij=fs*(rA0y - rB[j].y);
19 fzij=fs*(rA0z - rB[j].z);
20
21 double qBj = qB[j];
22 ftmp.v += qBj*vij;
23 ftmp.x += qBj*fxij;
24 ftmp.y += qBj*fyij;
25 ftmp.z += qBj*fzij;
26
27 //conflict region #1 in fB[j]
28 {
29 fB[j].v += qA0*vij;
30 fB[j].x -= qA0*fxij;
31 fB[j].y -= qA0*fyij;
32 fB[j].z -= qA0*fzij;
33 }
34 }//end nPList loop
35 //conflict region #2 in fA[0]
36 {
37 fA[0].v += ftmp.v;
38 fA[0].x += ftmp.x;
39 fA[0].y += ftmp.y;
40 fA[0].z += ftmp.z;
41 }

Fig. 4. Code fragment from the force update routine in ddcMD code,
which has potential memory conflicts.

27 and 35. In case of OMP-atomic, the directive #pragma
omp atomic is inserted before every statement in both
conflict regions.

A. Performance Comparison of Concurrency Controls
In this subsection, we perform a strong-scaling

benchmark of ddcMD on 64 BlueGene/Q nodes. The total
number of particles used in the benchmark is fixed at
1,024,000, where the particles are uniformly distributed.

Figure 5(a) shows the average runtime per MD step for
each concurrency control mechanism as a function of the
number of threads per node p from 1 to 64. The baseline
result (black dashed line) exhibits an excellent scalability
with 15.7-fold speedup over a single thread performance for
16 threads. This result is unsurprising since each thread runs
on 1 of the 16 physical cores on a BlueGene/Q node.
However, the speedup of the baseline code increases to 26.5
when the number of threads is increased to 32 threads. The
increased performance from 16 to 32 threads comes from the
double-instruction units of the PowerPC A2 processor of
BlueGene/Q. We observe further increase of speedup to 40.0
for 64 threads. This additional speedup likely arises from
latency hiding enabled by hardware multithreading. These
special hardware features on BlueGene/Q thus enable
multithreading speedup larger than the number of physical
cores. Since the baseline code does not guarantee the
correctness of the result, this speedup should be regarded as
the upper limit of the actual speedup with concurrency
controls.

The data privatization code (blue squares) achieves
nearly ideal speedup (i.e., almost the same runtime as the
baseline that does not guarantee correctness). The measured
speedup is 15.7, 26.5, and 38.9 for 16, 32, and 64 threads,
respectively. It is worth mentioning that the data
privatization implemented in ddcMD employs spatially-
compact scheduling technique, which will be discussed in
subsection IV-C. This technique significantly reduces the
memory footprint, i.e., memory reduction of a factor 64/5.04
~ 12.7 compared with naïve data privatization for 64 threads
[11].

The OMP-critical runtime (orange open squares) is not
monotonically decreasing, but instead starts to increase
above 16 threads. This is due to the serialization in the OMP-
critical mechanism, which limits the parallel speedup for
larger numbers of threads according to Amdahl’s law. Thus,
OMP-critical is only suitable for a small number of threads.
The best speedup that OMP-critical mechanism achieved is
6.3 for 16 threads.

The runtime of OMP-atomic (red circles) is high
compared to the baseline. However, it still exhibits an
excellent scalability, i.e. 40.7-fold speedup for 64 threads.

The HTM result (green diamonds) shows the highest
overhead cost among all the tested methods. Nevertheless,
the scalability of HTM is still high: the measured speedup is
14.9, 24.1, and 33.5 for 16, 32, and 64 threads, respectively.
The slightly reduced scalability above 32 threads likely
originates from the rollback cost due to increased frequency
of conflict.

To improve the performance of HTM, we aim to reduce
the overhead cost by fusing multiple transactions into a
single transaction, so that the number of transactions is
reduced. According to Eq. (4), this will reduce the
bookkeeping cost mcHTM_overhead, though the update cost
mµcHTM_update will be unchanged. To do this, the entire
NPList loop, along with the second conflict region (line
10-41 in Fig. 4) is wrapped by #pragma tm_atomic
instead of the conflict regions in the loop. Runtime of fused
HTM (purple triangles) is significantly decreased from naïve
HTM and becomes even smaller than OMP-critical and
OMP-atomic. The speedup of fused HTM is 14.7, 26.1, and
38.2 for 16, 32, and 64 threads, respectively. HTM runtime
report shows that the number of committed transactions is
reduced by a factor of 5.9 by the transaction fusion
technique. Although HTM fusion is a useful technique to
reduce the overhead cost, it should be noted that the
hardware limitation (e.g. L2 cache capacity) poses an upper
bound for the size of the fused transaction.

Figure 5(b) shows the runtime of each mechanism
normalized by that of the baseline for different numbers of

threads, p. The numeral for each set mechanism in the graph
indicates the normalized runtime averaged over p: 1.772,
3.126, 1.003, 2.202, and 1.435 for OMP-atomic, OMP-
critical, data privatization, naïve HTM, and fused HTM,
respectively. Although the runtime of data privatization is
the smallest, it incurs a large memory overhead (5.04 times
more). Among the concurrency controls without extra
memory overhead (OMP-critical, OMP-atomic, naïve HTM,
and fused HTM), the fused HTM exhibits the smallest
runtime.

B. Rollback Penalty
To quantify the cost penalty and frequency of rollback,

we first define the rollback ratio, frb = nrb/ntransaction, where nrb
and ntransaction denote the total number of rollbacks and that of
committed transactions, respectively. These two quantities
can be obtained from the HTM-runtime generated report.

Measuring rollback cost is challenging since we need to
compare runtime of two HTM codes with/without the race
condition, which have almost the same computational
pattern. To achieve this, we quantify the rollback cost by
measuring runtime difference between normal HTM code
(i.e., fused HTM from subsection IV-A) and non-conflict
HTM code. The non-conflict HTM code is constructed by
combining data privatization and HTM mechanisms within a
single run. In particular, the force computation is performed
in the conflict-free local buffer of each thread. Then, the
HTM is applied on top of the local buffers. This still involves
the HTM overhead cost but without memory conflict.

In this benchmark, 1,024,000 particles are simulated on
64 nodes of BlueGene/Q using fused HTM code and data
privatization/HTM combined code. The number of threads
on each node p varies from 1 to 64. In each run, extra
runtime from non-conflict code compared to the normal
HTM runtime are measured for different numbers of threads.
Figure 6 shows the extra runtime as a function of rollback
ratio. The total number of committed transactions in all 64
nodes is ntransaction = 9.85×107 per MD step, in all test cases.
We observe a linear relation between the increased runtime
and the rollback ratio. From the slope of the plot, we

estimate that the runtime increases by 0.69% per 1% increase
of rollback ratio. This indicates insignificant performance
penalty caused by rollback in MD. Typical rollback ratio in
ddcMD is less than 8% according to the HTM runtime
report.

Fig. 6. Impact of rollback on runtime, indicating linear correlation between

runtime overhead and rollback ratio.

C. Effect of Scheduling Algorithms on Rollback
In ddcMD, particles assigned to each node are sorted into

cubic cells with side length of rc (the cutoff radius of the
short-range interactions) based on their spatial coordinate.
This reduces the complexity of short-range force
computation from O(N2) to O(N). Here, the cells in each
node are assigned to threads by the load-balance scheduler.
In each scheduling step, scheduler picks a cell from the
unassigned-cell pool and assigns it to the least-loaded thread
to maintain load balance. This scheduling algorithm works
well in most cases. However, the choice of the selected cell
in each scheduling iteration affects the number of particle
pairs with potential memory conflict, which in turn
influences the rollback ratio of HTM. Here, we propose a
spatially-compact scheduling algorithm, which minimizes
the number of rollbacks by preserving the spatial proximity
of the cells assigned to each thread. The cell-selection

	 	
Fig. 5. (a) Strong-scaling runtime of ddcMD comparing the performance of concurrency control mechanisms. (b) Runtime overhead of each concurrency

controls normalized by the baseline runtime.

algorithms used in ddcMD (including the proposed one) are
described in the following.

Baseline scheduling sweeps cell indices in the x, y, and z
directions in turn. This scheduling algorithm has similar
characteristic to the naïve #pragma omp parallel
for with dynamic scheduling. It considerably increases
memory conflicts since each thread is likely overlapping
with at least two other threads that are assigned nearest-
neighbor cells.

Random scheduling picks a cell from the unassigned-cell
pool randomly. Compared to the baseline scheduling, this
reduces the chance that two or more threads are assigned
nearest-neighbor cells; see Fig. 7(a).

Spatially-compact scheduling assigns each cell to the
least-loaded thread, while preserving the spatial proximity of
the cells assigned to each thread, see Fig. 7(b). This reduces
the surface area of the cluster of cells assigned to each
thread, which is prone to memory conflicts. More
information on the spatially-compact scheduling for MD can
be found in [11].

Fig. 7. Workload distribution in a physical space, where cells assigned to

different threads are distinguished by different colors. (a) Random
scheduling; and (b) Spatially-compact scheduling.

To quantify the effect of scheduling algorithms on the

number of rollbacks, we perform a strong-scaling benchmark
involving 8-million particles on 64 BlueGene/Q nodes using
fused HTM. Here, the cell-selection algorithm used in the
thread-level scheduling is varied between baseline, random,
and spatially-compact algorithms. Due to the decreasing
thread granularity in strong-scaling benchmark, higher
rollback ratio is expected for larger numbers of threads.

Figure 8(a) shows the rollback ratio as a function of the
number of threads p. The graph shows that the rollback ratios
of all scheduling algorithms increase almost linearly with p.
The rollback ratios for baseline, random, and compact
schedulings are 32.9%, 11.4%, and 7.3%, respectively for 64
threads. Figure. 8(b) shows the increase of the runtime as a
function of p, corresponding to the rollback profiles in Fig.
8(a). Here, the extra runtime of baseline scheduling is much
higher than the random and compact schedulings, which is in
accord with their rollback characteristics. For 64 threads, the
extra runtimes of 21.4%, 8.9%, and 5.4% are observed for
baseline, random, and compact schedulings, respectively.
The ratio of extra runtime in Fig. 8(b) and the rollback ratio
in Fig. 8(a) is consistent with that in subsection IV-B. This
result demonstrates the importance of thread scheduling in
MD when HTM is used. The number of rollbacks can be

reduced by the proposed spatially-compact scheduling
algorithm.

Fig. 8. Rollback ratio (a) and the runtime overhead (b) as a function of the

number of threads for the three scheduling algorithms.

V. DESIGN SPACE FOR CONCURRENCY CONTROLS
Although the implementation of HTM on BlueGene/Q

provides more options to deal with race conditions in
massive-multicore multithread programming, choosing the
optimal concurrency control mechanism for a particular
application is still a difficult issue. In this section, we
propose a concurrency-control decision tree to handle race
condition in multithread programming, based on the
performance characteristics from the previous sections.

To discuss the concurrency-control design space, we
introduce several parameters that are associated with
program runtime and conflicts. First, we describe parameters
that are obtained from pre-profiling of the serial code. Figure
9 shows a typical program structure of loop-oriented
applications such as MD. Let conflict region (CR) be a part
with a race condition in the target loop (TL) for
multithreading. Pre-profiling is performed to obtain the
following parameters: (1) the total time in serial code spent
in target loop tTL; and (2) the total time spent in the conflict
region tCR. Based on these parameters, we define the fraction
of time spent in the conflict region as

 fCR =
tCR
tTL

. (5)

In addition to the pre-profiling parameters, we define the
number of threads p and the number of atomic updates inside
the conflict region µ. The user specifies p, while µ can be
obtained easily from code inspection. Mavail is the memory
available for data privatization.

 Figure 10 shows the decision tree to choose the optimal
concurrency control mechanism among OMP-critical, OMP-
atomic, HTM, and data privatization. The decision tree
focuses on providing the best performance, i.e., high
scalability and low overhead cost, based on the analysis and
benchmark results in the previous sections. In the following,
we elaborate the reasoning for each decision.

Data Privatization: According to the benchmark result in
section IV, data privatization has the best performance.
Namely, it has the smallest overhead among all mechanisms
and the decent thread scalability up to 64 threads. Thus, data
privatization is the first choice to be considered. Although
data privatization includes the reduction overhead (e.g.
O(nlog p) for hypercube reduction), it is usually negligible.
The major condition that restricts the use of data
privatization is the available memory, since the simple
application of data privatization could require up to p times
more memory. If the available memory is not enough for
data privatization, we should consider the other mechanisms
that do not require extra memory.

OMP-critical: The low overhead cost and the simplicity
are the main advantages of OMP-critical. However, its
scalability degrades significantly when p is large. Thus,
OMP-critical is only suitable for small p (e.g. p ≤ 8 in Figs.
5(a) and 5(b)). The critical number of threads pcrit = 1/fCR
denotes the largest number of threads that can theoretically
run concurrently without a lock contention for the serialized
fraction of fCR. In the decision tree, we recommend p < pcrit/2
to ensure reasonable scalability.

OMP-atomic and HTM: Simplicity without
compromising scalability is the major advantage of OMP-
atomic and HTM. To choose between these two
mechanisms, we use the cost models in section III to find the
one with the lower overhead. If OMP-atomic is applicable
(i.e., only atomic updates are present in the conflict region)
and the OMP-atomic cost is lower, then OMP-atomic should
be used. Otherwise, the decision depends on conflict rate frb.

If the conflict rate is low, HTM should be used. (Note that
the overhead cost of HTM can be further reduced by using
HTM fusion technique.) According to Schindewolf et al. [8],
the threshold for the usability of HTM is frb ≤ 1. For frb > 1,
OMP-critical can be used to avoid memory conflicts
although it has high penalty. We found that in some cases,
minor code structural change could improve the performance
of concurrency controls.

Once the decision of concurrency control mechanism is
made, we can estimate the theoretical parallel efficiency for
each mechanism. Table 2 summarizes the parallel efficiency
estimate based on the profiling parameters. In Table 2, ttotal is
the total runtime of the serial code and creduction denotes the
reduction cost per particle per hypercube dimension. Figure
11 summarizes the advantages/disadvantages of the
concurrency control mechanisms considered in this paper.

TABLE II. PARALLEL EFFICIENCY ESTIMATE RESULTING FROM THE
DECISION TREE.

Concurrency control
mechanism Parallel efficiency

OMP-critical e =min(1
pfCR

,1)

OMP-atomic e = ttotal
ttotal +mµcatomic

Data privatization e = ttotal
ttotal + creductionn log p

HTM e = ttotal
ttotal +m(cHTM_overhead +µcHTM_update)

Fig. 9. Typical program structure of loop-oriented applications

Fig. 10. Decision tree for concurrency-control design space. We should
note that OMP-critical at the bottom has very high performance penalty.

VI. CONCLUSION AND DISCUSSION
 We have investigated the performance of HTM and

conventional concurrency control mechanisms on
BlueGene/Q using microbenchmarks and the MD application
ddcMD. The microbenchmark indicates the overhead cost of
HTM is smaller than OMP-atomic for a large number of
threads. The strong scaling benchmark shows excellent
scalability of HTM as well as OMP-atomic and data
privatization. The proposed fused-HTM and spatially-
compact scheduling techniques have sped up naïve HTM by
a factor of 1.53. An analysis of rollback penalty showed
minor impact of rollback on the performance of ddcMD.
Finally, we have derived a decision tree in the concurrency-
control design space for multithreading application. This will
help application developers choose the concurrency control
mechanism with the best performance for their applications.

 ACKNOWLEDGMENT
This work was performed under the auspices of the U.S.

Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344 (LLNL-
CONF-585958). The work at USC was partially supported by
DOE BES/EFRC/SciDAC/SciDAC-e/INCITE, NSF
PetaApps/CDI, and ONR.

REFERENCES
[1] D. E. Shaw, R. O. Dror, J. K. Salmon, J. P. Grossman, K.

M. Mackenzie, J. A. Bank, C. Young, M. M. Deneroff, B.
Batson, K. J. Bowers, E. Chow, M. P. Eastwood, D. J.
Ierardi, J. L. Klepeis, J. S. Kuskin, R. H. Larson, K.
Lindorff-Larsen, P. Maragakis, M. A. Moraes, S. Piana,
Y. Shan, and B. Towles, "Millisecond-scale molecular
dynamics simulations on Anton," in Proceedings of
Supercomputing (SC09), Portland, Oregon, 2009.

[2] J. N. Glosli, D. F. Richards, K. J. Caspersen, R. E. Rudd,
J. A. Gunnels, and F. H. Streitz, "Extending stability
beyond CPU millennium: a micron-scale atomistic
simulation of Kelvin-Helmholtz instability," in
Proceedings of Supercomputing (SC07), Reno, Nevada,
2007.

[3] S. H. Fuller and L. I. Millett, "Computing performance:
game over or next level?," Computer, vol. 44, pp. 31-38,
2011.

[4] C. Mei, Y. Sun, G. Zheng, E. J. Bohm, L. V. Kale, J. C.
Phillips, and C. Harrison, "Enabling and scaling
biomolecular simulations of 100 million atoms on
petascale machines with a multicore-optimized message-
driven runtime," in Proceedings of Supercomputing
(SC11), Seattle, Washington, 2011.

[5] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl,
"GROMACS 4: Algorithms for highly efficient, load-
balanced, and scalable molecular simulation," Journal of
Chemical Theory and Computation, vol. 4, pp. 435-447,
2008.

[6] K. Nomura, H. Dursun, R. Seymour, W. Wang, R. K.
Kalia, A. Nakano, P. Vashishta, F. Shimojo, and L. H.
Yang, "A metascalable computing framework for large
spatiotemporal-scale atomistic simulations," in
International Parallel and Distributed Processing
Symposium (IPDPS09), Rome, Italy, 2009.

[7] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht,
C. Barton, R. Silvera, and M. Michael, "Evaluation of
Blue Gene/Q hardware support for transactional
memories," in Procceeding of Conference on Parallel
Architectures and Compilation Techniques, Minneapolis,
Minnesota, 2012.

[8] M. Schindewolf, B. Bihari, J. Gyllenhaal, M. Schulz, A.
Wang, and W. Karl, "What Scientific Applications can
Benefit from Hardware Transactional Memory?," in
Proceedings of Supercomputing (SC12), Salt Lake City,
Utah, 2012.

[9] M. Herlihy and J. E. B. Moss, "Transactional memory -
architectural support for lock-free data-structures,"
Proceedings of International Symposium on Computer
Architecture, pp. 289-300, 1993.

[10] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P.
Wu, S. Chiras, and S. Chatterjee, "Software transactional
memory: Why is it only a research toy?,"
Communications of the ACM vol. 51, pp. 40-46, 2008.

[11] M. Kunaseth, D. F. Richards, J. N. Glosli, R. K. Kalia, A.
Nakano, and P. Vashishta, "Scalable data-privatization
threading for hybrid MPI/OpenMP parallelization of
molecular dynamics," in International Conference on
Parallel and Distributed Processing Techniques and
Applications, Las Vegas, Nevada, 2011.

[12] D. York and W. Yang, "The fast Fourier Poisson method
for calculating Ewald sums," The Journal of Chemical
Physics, vol. 101, pp. 3298-3300, 1994.

[13] R. Hockney and J. Eastwood, Computer simulation using
particles. New York: McGraw-Hill, 1981.

[14] T. Darden, D. York, and L. Pedersen, "Particle mesh
Ewald: An N log(N) method for Ewald sums in large
systems," The Journal of Chemical Physics, vol. 98, pp.
10089-10092, 1993.

[15] N. Njoroge, J. Casper, S. Wee, Y. Teslyar, D. Ge, C.
Kozyrakis, and K. Olukotun, "ATLAS: A chip-
multiprocessor with Transactional memory support,"
Design, Automation & Test in Europe Conference &
Exhibition, vol. 1-3, pp. 3-8, 2007.

[16] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A.
Landin, S. Yip, H. Zeffer, and M. Tremblay, "Rock: A
high-performance sparc CMT processor," IEEE Micro,
vol. 29, pp. 6-16, 2009.

[17] J. T. Wamhoff, T. Riegel, C. Fetzer, and P. Felber,
"RobuSTM: A robust software transactional memory,"

Fig. 11. Analysis of four concurrency control mechanisms. Circles and

triangles denote strong and weak advantages, respectively, while crosses
denote disadvantage.

Stabilization, Safety, and Security of Distributed Systems,
vol. 6366, pp. 388-404, 2010.

[18] P. Felber, C. Fetzer, P. Marlier, and T. Riegel, "Time-
based software transactional memory," IEEE
Transactions on Parallel and Distributed Systems, vol.
21, pp. 1793-1807, 2010.

[19] T. Riegel, M. Nowack, C. Fetzer, P. Marlier, and P.
Felber, "Optimizing hybrid transactional memory: The
importance of nonspeculative operations," Proceedings of
Symposium on Parallelism in Algorithms and
Architectures, pp. 53-64, 2011.

[20] R. A. Haring, M. Ohmacht, T. W. Fox, M. K. Gschwind,
D. L. Satterfield, K. Sugavanam, P. W. Coteus, P.
Heidelberger, M. A. Blumrich, R. W. Wisniewski, A.
Gara, G. L. T. Chiu, P. A. Boyle, N. H. Christ, and C.
Kim, "The IBM Blue Gene/Q compute chip," IEEE
Micro, vol. 32, pp. 48-60, 2012.

