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Abstract—We have investigated the performance 
characteristics of hardware transactional memory (HTM) on 
the BlueGene/Q computer in comparison with conventional 
concurrency control mechanisms, using a molecular dynamics 
application as an example. Benchmark tests, along with 
overhead-cost and scalability analysis, quantify relative 
performance advantages of HTM over other mechanisms. We 
found that the bookkeeping cost of HTM is high but that the 
rollback cost is low. We propose transaction fusion and 
spatially-compact scheduling techniques to reduce the 
overhead of HTM with minimal programming. A strong 
scalability benchmark shows that the fused HTM has the 
shortest runtime among various concurrency control 
mechanisms without extra memory. Based on the performance 
characterization, we derive a decision tree in the concurrency-
control design space for multithreading application. 

Keywords-Hardware transactional memory; molecular 
dynamics; BlueGene/Q; multithreading  

I.  INTRODUCTION 
The rapid growth in computing power enables scientists 

to address more challenging problems by using high-end 
supercomputers [1, 2]. However, improvements in 
computing power are now gained using multicore 
architectures instead of increased clock speed [3]. The 
delivery of Sequoia, a 1.6-million core BlueGene/Q 
supercomputer at Lawrence Livermore National Laboratory 
(LLNL), marks the end of the free-ride era—legacy parallel 
applications can no longer increase performance on a new 
chip without substantial modification. Especially with 64 
threads per node of BlueGene/Q, most of the existing 
distributed-memory parallel algorithms via message-passing 
are not suitable for the shared-memory model in multicore 
platform. Thus, an efficient multithreading scheme is needed 
to exploit the benefits from such large-scale multicore 
architectures. However, this is a major challenge due to the 
difficulty of handling race conditions.  

Traditionally, race conditions in time-sharing processors 
and early multicore chips were avoided effectively by 
conventional concurrency controls such as locks, atomic 
operations, and data privatization. However, the performance 
of these techniques tends to be limited on systems with a 

large number of concurrent multithreads such as 
BlueGene/Q. Furthermore, the fine-grain race conditions 
often encountered in real-world applications such as 
molecular dynamics (MD) [4-6] further limits the utility of 
traditional concurrency controls. Addressing these issues 
typically requires extensive coding effort, which limits wide 
use of massive multithreading platforms. Hence, alternative 
concurrent controls need to be established. 

To improve the programmability on its large 
multithreading system, BlueGene/Q has become the first 
commercial platform with transactional memory (TM) 
implemented in hardware [7, 8]. TM is an opportunistic 
concurrency control [9], allowing multiple threads to execute 
through a critical section concurrently by simply defining a 
critical code block. Since software TM usually suffers 
considerable overhead [10], hardware TM (HTM) on 
BlueGene/Q is expected to significantly reduce runtime 
overhead. This makes HTM on BlueGene/Q a viable option 
to deal with race conditions effectively in a large 
multithreading environment. However, the actual 
performance of HTM on BlueGene/Q compared to other 
concurrency control mechanisms on real-world applications 
has not been widely reported. A study of HTM performance 
along with the traditional mechanisms on BlueGene/Q is of 
great significance.  

In this paper, we characterize the performance of HTM 
on BlueGene/Q, along with those of traditional concurrency 
control mechanisms using the MD code, ddcMD [2, 11], as 
an example application. We also propose transaction fusion 
and spatially-compact scheduling techniques to reduce the 
overhead of HTM with minimal programming. Based on the 
characteristics of concurrency controls, we propose a 
decision tree in the concurrency-control design space for 
multithreading applications.  

This paper is organized as follows. Section II provides 
background information on MD and concurrency controls. 
Section III characterizes each concurrency control 
mechanism based on a cost model. Section IV analyzes the 
performance of concurrency controls including HTM for 
ddcMD code. Section V proposes a decision tree in the 
multithreading concurrency-control design space. 
Conclusions are drawn in section VI. 



II.  BACKGROUND 
Section II-A introduces the MD application ddcMD, 

which will be used in the benchmark in section IV. Section 
II-B describes race condition in MD along with several 
conventional concurrency control mechanisms. Section II-C 
explains the HTM implemented on BlueGene/Q. 

A.  Hybrid MPI/OpenMP Molecular Dynamics 
Molecular dynamics simulation follows the phase-space 

trajectories of an N-particle system. The forces between 
particles are computed from the gradient of a potential 
energy function φ(r1, r2,…, rN), where ri is the position of 
the i-th particle. Positions and velocities of all particles are 
updated at each MD step by numerically integrating coupled 
ordinary differential equations. The dominant computation of 
MD simulations is the evaluation of the forces and associated 
potential energy function. One model of great physical 
importance is the interaction between a collection of point 
charges, which is described by the long-range, pair-wise 
Coulomb field 1/r (where r is the interparticle distance), 
requiring O(N2) operations to evaluate. Many methods exist 
to reduce this computational complexity [12-14]. We focus 
on the highly efficient particle-particle/particle-mesh 
(PPPM) method [12]. In PPPM, the Coulomb potential is 
decomposed into two parts: A short-range part that 
converges quickly in real space and a long-range part that 
converges quickly in reciprocal space. The division of work 
between the short-range and long-range part is controlled 
through a “screening parameter” α, and computational 
complexity for the force calculation is reduced to O(Nlog N).  

In this paper, we use a hybrid parallel implementation of 
the ddcMD code [11], based on the message-passing 
interface (MPI) and OpenMP. In this program, particles are 
assigned to nodes using a particle-based domain 
decomposition and “ghost-atom” information is exchanged 
via MPI. Parallelization across the cores of a node is 
accomplished using multithreading via OpenMP, see Fig. 1. 
The number of particles in each node is denoted by n = N/P, 
where P denotes the number of nodes used in the simulation. 
Although both short-range and long-range kernels are 
parallelized using OpenMP, we focus on the more 
challenging short-range computation.  

The short-range kernel of PPPM computes a sum over 
pairs: φ  = ∑i<j qiqjerfc(αrij)/rij, where qi is the charge of 
particle i and rij is the separation between particles i and j. 
Though this work is focused on this particular pair function, 
much of the work can be readily applied to other pair 
functions. 

B. Race Conditions and Traditional Concurrency Control 
Mechanisms 
A race condition is an unsafe situation where program 

behavior depends on the relative timing of events.  For 
example, when two or more threads read from and write to 
the same memory address simultaneously, program results 
may depend on the order in which the reads and writes are 
processed. The code section with this possible memory 
conflict is called a conflict region. Memory conflicts can 

occur in ddcMD when multiple threads simultaneously 
update the force of the same particle. Although there is a 
large number of particle pairs that are prone to memory 
conflict, the actual occurrence of memory conflict during the 
force update is rare.  

To handle the race condition, several concurrency control 
mechanisms are available. The conventional concurrency 
control mechanisms such as lock and atomic operation are 
available in the OpenMP framework. Alternative data 
privatization schemes require more coding effort, since 
automatic array reduction is not yet implemented in general 
OpenMP distributions (data privatization only involving a 
scalar reduction variable is available in OpenMP). The detail 
of these mechanisms is described in the following. 

1) OpenMP Critical (OMP-critical): OMP-critical is the 
simplest form of concurrency control, where the conflict 
region is wrapped by the #pragma omp critical 
directive. OMP-critical ensures atomicity of the execution in 
the conflict region by serialization, i.e., allowing only one 
thread at a time to compute in the conflict region. To 
achieve this, OMP-critical uses a single global lock to 
enforce serialization. The major advantage of OMP-critical 
is its ease of use, but the global lock can cause a severe 
bottleneck, resulting in tremendous performance 
degradation. 

2) OpenMP Atomic (OMP-atomic): Atomic operations 
in OpenMP are applied by inserting the #pragma omp 
atomic directive before an atomic update. This causes the 
compiler to take extra measures to gurantee the atomicity of 
the scalar update on the following line of code. This 
mechanism is suitable only for conflict regions that consist 
solely of a single scalar update.  

3) Data Privatization: Data privatization avoids race 
conditions completely by performing computation on a 
thread-local buffer instead of reading/writing into the global 
memory directly. After each thread finishes its computation, 
partial results from all the threads are combined into the 
global memory, incurring computational overhead. The 
main advantage of data privatization is its excellent 
scalability. However, data privatization needs much more 
memory than other concurrency controls for local buffer 
allocation. 

 
Fig. 1. Schematic diagram of hybrid MPI/OpenMP parallelization.  

 



C. Hardware Transactional Memory on BlueGene/Q 
TM is an opportunistic concurrency control mechanism. 

It avoids memory conflicts by monitoring a transaction, a set 
of speculative operations in a defined code section. 
Numerous TM algorithms have been proposed [15-19]. 
BlueGene/Q is the first commercially available platform that 
implements TM in the hardware using multi-versioned L2 
cache. This hardware feature allows existence of multiple 
copies of the same physical memory address. When conflict 
is detected by the hardware, the OS kernel is signaled by the 
hardware to discard and restart the speculative executions in 
the conflicted transaction⎯a process called rollback. If no 
memory conflict is detected, the transaction is committed at 
the end of the transaction and the change made by the 
transaction will be made available to all the threads.  

To use the HTM, programmers annotate conflict regions 
with the #pragma tm_atomic directive. (This directive 
is similar to OMP-critical.) This procedure requires minimal 
coding effort while allowing efficient non-blocking 
synchronization for multiple threads. However, rollback 
possibly undermines the potential benefit from HTM. 
Numerous factors such as algorithms, number of threads, 
memory layout, and granularity, are likely to influence the 
number of rollbacks and hence performance. Earlier 
evaluations of HTM performance on BlueGene/Q are 
available in [7, 8]. 

Our HTM benchmarks are performed on Sequoia, the 
BlueGene/Q cluster at LLNL. The cluster and compiler 
specifications used in the benchmark are summarized in 
Table 1. The -qtm compiler option is used to enable HTM 
features. HTM statistics such as numbers of transactions and 
rollbacks are obtained from HTM-runtime generated report. 
Details of BlueGene/Q architecture can be found in [20].  

TABLE I.  SPECIFICATION OF BLUEGENE/Q AT LLNL. 

Processor PowerPC A2 
Clock speed 1.6 GHz 
Physical cores 
per node 

16 

Hardware 
threads per 
core 

4 

Instruction 
unit 

1 integer/load/store OP + 1 floating 
point OP per clock cycle 

L1 data cache 16 KB (per core) 
L2 data cache 32 MB (shared by all cores) 
Memory per 
node 

16 GB DDR3 

Networking 5D torus 
Number of 
nodes/cores 

98,304 nodes/1,572,864 cores 

Compiler IBM XLC/C++ version 12.1: 
mpixlc_r  

 

III. PERFORMANCE CHARACTERIZATION OF 
CONCURRENCY CONTROL MECHANISMS 

In this section, the characteristics of four concurrency-
control mechanisms—OMP-critical, OMP-atomic, data 
privatization, and HTM—are analyzed using a micro 
benchmark running a single thread on a single core to obtain 
a cost model. 

A. Concurrency-Control Cost Modeling  
Consider a computational kernel, where a conflict region 

consists of several atomic updates placed inside a loop 
structure, see Fig. 2(a). The total overhead cost of a control 
mechanism is estimated from: 

 tβ = tcontrol − tserial (β ∈ {critical,atomic,HTM}) , (1) 

where tcontrol is the running time of the kernel with 
concurrency control, tserial is the running time of the serial 
kernel. The cost model for each concurrency control 
mechanism is: 

OMP-critical: Here the cost mainly comes from the 
process of obtaining a single global lock at the beginning of 
the critical section, and releasing the lock at the end. Since 
the lock/unlock process is not involved in any calculation 
inside the conflict region, tcritical is independent of the size of 
calculation within the conflict region. Therefore, the cost 
model of OMP-critical reads 

 tcritical =mclock+unlock , (2) 

where m denotes the number of iterations of the for loop in 
the benchmark kernel, and clock+unlock denotes the overhead 
cost of each OMP-critical.  

OMP-atomic: The cost is associated with an atomic 
load/store hardware instruction, which is more costly than 
the ordinary load/store instruction. In BlueGene/Q, high-
performance atomic operations are implemented as part of 
L2 cache access [20]. Since OMP-atomic can only avoid 
conflict in one atomic update, the cost model of OMP-atomic 
depends on the number of atomic updates inside the conflict 
region. The atomic operation cost model reads 

 tatomic =mµcatomic , (3) 

where µ is the number of atomic updates enforced with 
OMP-atomic, and catomic is the overhead cost of each OMP-
atomic. 

HTM: Each memory address involved in a transaction 
needs to be monitored for conflict during runtime. This 
requires additional steps to prepare each transaction in case 
of rollback. This process incurs a bookkeeping cost (i.e., 
register check-pointing, operation confinement [7]) 
associated with every transaction. Furthermore, all 
speculative executions occur in L2 cache, which incurs 
considerable latency for L2 accesses. Therefore, the cost of 



each transaction also depends on the size of conflict region. 
Hence, the HTM cost model reads: 

 tHTM =m(cHTM_overhead +µcHTM_update ) , (4) 

where cHTM_overhead denotes the bookkeeping overhead per 
transaction, and cHTM_update denotes extra cost per atomic 
update within the transaction. Since the benchmark only 
involves a single thread, no rollback occurs and thus the cost 
of rollback is not included in the model in this section. 

Data Privatization: The computational overhead is 
caused by reduction operation in the combining phase. Since 
the reduction cost is independent of the number of iterations, 
the cost of data privatization is often negligible compared to 
the large amount of time spent in the loop. The reduction 
cost is not applicable to the single thread cost model in this 
section, and will be included in the ddcMD benchmark in 
section IV. 

B. Model Parameter Fitting Using Microbenchmark 
Figure 2(a) shows the serial code as a reference. The 

serial kernel consists of a loop, in which each iteration 
contains 8 atomic updates. Figure 2(b) shows an example of 
HTM-control benchmark codes. To identify the cost 
parameters depending on the number of atomic updates, we 
vary the number of atomic updates subjected to concurrency 
controls. For example in Fig. 2(b), HTM is applied to 4 
atomic updates. The benchmark is executed using a single 
thread on a single core.  

Figure 3 shows the average overhead cost of OMP-
atomic and HTM per iteration. Benchmark results reveal that 
the cost of OMP-atomic and HTM mechanisms increase as 
the number of controlled updates increase. The average cost 
of OMP-atomic per update catomic is 393.9 cycles, while the 
average cost of HTM per update cHTM_update is 139.4 cycles. 
The HTM has additional bookkeeping overhead, cHTM_overhead 
= 970.9 cycles per transaction. The plot shows that OMP-
atomic has less overhead than HTM for small number of 
updates (≤ 4), while HTM has less overhead for larger 
number of updates. HTM has a large bookkeeping overhead, 
which is absent in OMP-atomic. However, the cost per 

update is smaller for HTM than OMP-atomic. This results in 
the observed crossover of the relative performance advantage 
between OMP-atomic and HTM.  

For OMP-critical, the fitted cost of lock+unlock clock+unlock 
is 418.0 cycles. This cost is independent of the number of 
atomic updates. 

 

 
Fig. 3. Overhead cost comparison of OMP-atomic and HTM. The graph 
indicates a crossover point at μ ~ 4 updates. Error bars for OMP-atomic is 
too small to be visible. 

IV.  MOLECULAR DYNAMICS BENCHMARK  
To evaluate the performance of concurrency control 

mechanisms in an actual application, we focus on the race 
conditions in the force update routine of ddcMD. Figure 4 
shows the kernel of the ddcMD force update routine, where 
memory conflict may occur. The code has two conflict 
regions: (1) the force update in array fB[j] in line 28-33; 
and (2) the force update in array fA[0] in line 36-41 in 
Fig. 4. Concurrency control needs to be applied to these two 
regions.  

Here, we define the baseline code as a reference, in 
which no concurrency control is used (i.e., the best-possible 
execution time but the result is likely wrong). For OMP-
critical or HTM controlled concurrency, the corresponding 
compiler directive (i.e., #pragma omp critical or 
#pragma tm_atomic) substitutes the comments in lines 

1 double x[SIZE]; 
2 for (int i = 0;i < niter;i++) 
3 { 
4    for (int j=0;j<=SIZE-8;j+=8*stride) 
5    { 
6       x[j         ]+=i*j; 
7       x[j+  stride]+=i*(j+1); 
8       x[j+2*stride]+=i*(j+2); 
9       x[j+3*stride]+=i*(j+3); 
10       x[j+4*stride]+=i*(j+4); 
11       x[j+5*stride]+=i*(j+5); 
12       x[j+6*stride]+=i*(j+6); 
13       x[j+7*stride]+=i*(j+7); 
14    } 
15 } 
 

1 double x[SIZE]; 
2 for (int i = 0;i < niter;i++) 
3 { 
4    for (int j=0;j<=SIZE-8;j+=8*stride) 
5    { 
6       #pragma tm_atomic 
7       { 
8          x[j         ]+=i*j; 
9          x[j+  stride]+=i*(j+1); 
10          x[j+2*stride]+=i*(j+2); 
11          x[j+3*stride]+=i*(j+3); 
12       } 
13       x[j+4*stride]+=i*(j+4); 
14       x[j+5*stride]+=i*(j+5); 
15       x[j+6*stride]+=i*(j+6); 
16       x[j+7*stride]+=i*(j+7); 
17    } 
18 } 

Fig. 2. The benchmark kernel: (a) serial code without concurrency control; and (b) HTM control over 4 updates. 



1 FOUR_VECTOR ftmp; 
2 ftmp.v = ftmp.x = ftmp.y = ftmp.z = 0.0; 
3 double rA0x, rA0y, rA0z; 
4 double qA0 = qA[0]; 
5  
6 rA0x = rA[0].x; 
7 rA0y = rA[0].y; 
8 rA0z = rA[0].z; 
9  
10 for (int k=0;k<nPList;k++) 
11 { 
12    double fs,vij,fxij,fyij,fzij; 
13    int j=list[k]; 
14    double complex ff = fv[k]; 
15    vij= creal(ff); 
16    fs = cimag(ff); 
17    fxij=fs*(rA0x  - rB[j].x); 
18    fyij=fs*(rA0y  - rB[j].y); 
19    fzij=fs*(rA0z  - rB[j].z); 
20  
21    double qBj = qB[j]; 
22    ftmp.v +=  qBj*vij; 
23    ftmp.x +=  qBj*fxij; 
24    ftmp.y +=  qBj*fyij; 
25    ftmp.z +=  qBj*fzij; 
26  
27    //conflict region #1 in fB[j] 
28    { 
29       fB[j].v +=  qA0*vij; 
30       fB[j].x -=  qA0*fxij; 
31       fB[j].y -=  qA0*fyij; 
32       fB[j].z -=  qA0*fzij; 
33    } 
34 }//end nPList loop 
35 //conflict region #2 in fA[0] 
36 { 
37    fA[0].v += ftmp.v; 
38    fA[0].x += ftmp.x; 
39    fA[0].y += ftmp.y; 
40    fA[0].z += ftmp.z; 
41 } 

Fig. 4. Code fragment from the force update routine in ddcMD code, 
which has potential memory conflicts. 

27 and 35. In case of OMP-atomic, the directive #pragma 
omp atomic is inserted before every statement in both 
conflict regions.  

A. Performance Comparison of Concurrency Controls  
In this subsection, we perform a strong-scaling 

benchmark of ddcMD on 64 BlueGene/Q nodes. The total 
number of particles used in the benchmark is fixed at 
1,024,000, where the particles are uniformly distributed.  

Figure 5(a) shows the average runtime per MD step for 
each concurrency control mechanism as a function of the 
number of threads per node p from 1 to 64. The baseline 
result (black dashed line) exhibits an excellent scalability 
with 15.7-fold speedup over a single thread performance for 
16 threads. This result is unsurprising since each thread runs 
on 1 of the 16 physical cores on a BlueGene/Q node. 
However, the speedup of the baseline code increases to 26.5 
when the number of threads is increased to 32 threads. The 
increased performance from 16 to 32 threads comes from the 
double-instruction units of the PowerPC A2 processor of 
BlueGene/Q. We observe further increase of speedup to 40.0 
for 64 threads. This additional speedup likely arises from 
latency hiding enabled by hardware multithreading. These 
special hardware features on BlueGene/Q thus enable 
multithreading speedup larger than the number of physical 
cores. Since the baseline code does not guarantee the 
correctness of the result, this speedup should be regarded as 
the upper limit of the actual speedup with concurrency 
controls.  

The data privatization code (blue squares) achieves 
nearly ideal speedup (i.e., almost the same runtime as the 
baseline that does not guarantee correctness). The measured 
speedup is 15.7, 26.5, and 38.9 for 16, 32, and 64 threads, 
respectively. It is worth mentioning that the data 
privatization implemented in ddcMD employs spatially-
compact scheduling technique, which will be discussed in 
subsection IV-C. This technique significantly reduces the 
memory footprint, i.e., memory reduction of a factor 64/5.04 
~ 12.7 compared with naïve data privatization for 64 threads 
[11].  

The OMP-critical runtime (orange open squares) is not 
monotonically decreasing, but instead starts to increase 
above 16 threads. This is due to the serialization in the OMP-
critical mechanism, which limits the parallel speedup for 
larger numbers of threads according to Amdahl’s law. Thus, 
OMP-critical is only suitable for a small number of threads. 
The best speedup that OMP-critical mechanism achieved is 
6.3 for 16 threads.  

The runtime of OMP-atomic (red circles) is high 
compared to the baseline. However, it still exhibits an 
excellent scalability, i.e. 40.7-fold speedup for 64 threads.  

The HTM result (green diamonds) shows the highest 
overhead cost among all the tested methods. Nevertheless, 
the scalability of HTM is still high: the measured speedup is 
14.9, 24.1, and 33.5 for 16, 32, and 64 threads, respectively. 
The slightly reduced scalability above 32 threads likely 
originates from the rollback cost due to increased frequency 
of conflict.  

To improve the performance of HTM, we aim to reduce 
the overhead cost by fusing multiple transactions into a 
single transaction, so that the number of transactions is 
reduced. According to Eq. (4), this will reduce the 
bookkeeping cost mcHTM_overhead, though the update cost 
mµcHTM_update will be unchanged. To do this, the entire 
NPList loop, along with the second conflict region (line 
10-41 in Fig. 4) is wrapped by #pragma tm_atomic 
instead of the conflict regions in the loop. Runtime of fused 
HTM (purple triangles) is significantly decreased from naïve 
HTM and becomes even smaller than OMP-critical and 
OMP-atomic. The speedup of fused HTM is 14.7, 26.1, and 
38.2 for 16, 32, and 64 threads, respectively. HTM runtime 
report shows that the number of committed transactions is 
reduced by a factor of 5.9 by the transaction fusion 
technique. Although HTM fusion is a useful technique to 
reduce the overhead cost, it should be noted that the 
hardware limitation (e.g. L2 cache capacity) poses an upper 
bound for the size of the fused transaction. 

Figure 5(b) shows the runtime of each mechanism 
normalized by that of the baseline for different numbers of 



threads, p. The numeral for each set mechanism in the graph 
indicates the normalized runtime averaged over p: 1.772, 
3.126, 1.003, 2.202, and 1.435 for OMP-atomic, OMP-
critical, data privatization, naïve HTM, and fused HTM, 
respectively. Although the runtime of data privatization is 
the smallest, it incurs a large memory overhead (5.04 times 
more). Among the concurrency controls without extra 
memory overhead (OMP-critical, OMP-atomic, naïve HTM, 
and fused HTM), the fused HTM exhibits the smallest 
runtime. 

B. Rollback Penalty 
To quantify the cost penalty and frequency of rollback, 

we first define the rollback ratio, frb = nrb/ntransaction, where nrb 
and ntransaction denote the total number of rollbacks and that of 
committed transactions, respectively. These two quantities 
can be obtained from the HTM-runtime generated report. 

Measuring rollback cost is challenging since we need to 
compare runtime of two HTM codes with/without the race 
condition, which have almost the same computational 
pattern. To achieve this, we quantify the rollback cost by 
measuring runtime difference between normal HTM code 
(i.e., fused HTM from subsection IV-A) and non-conflict 
HTM code. The non-conflict HTM code is constructed by 
combining data privatization and HTM mechanisms within a 
single run. In particular, the force computation is performed 
in the conflict-free local buffer of each thread. Then, the 
HTM is applied on top of the local buffers. This still involves 
the HTM overhead cost but without memory conflict. 

In this benchmark, 1,024,000 particles are simulated on 
64 nodes of BlueGene/Q using fused HTM code and data 
privatization/HTM combined code. The number of threads 
on each node p varies from 1 to 64. In each run, extra 
runtime from non-conflict code compared to the normal 
HTM runtime are measured for different numbers of threads. 
Figure 6 shows the extra runtime as a function of rollback 
ratio. The total number of committed transactions in all 64 
nodes is ntransaction = 9.85×107 per MD step, in all test cases. 
We observe a linear relation between the increased runtime 
and the rollback ratio. From the slope of the plot, we 

estimate that the runtime increases by 0.69% per 1% increase 
of rollback ratio. This indicates insignificant performance 
penalty caused by rollback in MD. Typical rollback ratio in 
ddcMD is less than 8% according to the HTM runtime 
report. 

 
Fig. 6. Impact of rollback on runtime, indicating linear correlation between 

runtime overhead and rollback ratio. 

C. Effect of Scheduling Algorithms on Rollback 
In ddcMD, particles assigned to each node are sorted into 

cubic cells with side length of rc (the cutoff radius of the 
short-range interactions) based on their spatial coordinate. 
This reduces the complexity of short-range force 
computation from O(N2) to O(N). Here, the cells in each 
node are assigned to threads by the load-balance scheduler. 
In each scheduling step, scheduler picks a cell from the 
unassigned-cell pool and assigns it to the least-loaded thread 
to maintain load balance. This scheduling algorithm works 
well in most cases. However, the choice of the selected cell 
in each scheduling iteration affects the number of particle 
pairs with potential memory conflict, which in turn 
influences the rollback ratio of HTM. Here, we propose a 
spatially-compact scheduling algorithm, which minimizes 
the number of rollbacks by preserving the spatial proximity 
of the cells assigned to each thread. The cell-selection 

	   	  
Fig. 5. (a) Strong-scaling runtime of ddcMD comparing the performance of concurrency control mechanisms. (b) Runtime overhead of each concurrency 

controls normalized by the baseline runtime. 



algorithms used in ddcMD (including the proposed one) are 
described in the following. 

Baseline scheduling sweeps cell indices in the x, y, and z 
directions in turn. This scheduling algorithm has similar 
characteristic to the naïve #pragma omp parallel 
for with dynamic scheduling. It considerably increases 
memory conflicts since each thread is likely overlapping 
with at least two other threads that are assigned nearest-
neighbor cells. 

Random scheduling picks a cell from the unassigned-cell 
pool randomly. Compared to the baseline scheduling, this 
reduces the chance that two or more threads are assigned 
nearest-neighbor cells; see Fig. 7(a). 

Spatially-compact scheduling assigns each cell to the 
least-loaded thread, while preserving the spatial proximity of 
the cells assigned to each thread, see Fig. 7(b). This reduces 
the surface area of the cluster of cells assigned to each 
thread, which is prone to memory conflicts. More 
information on the spatially-compact scheduling for MD can 
be found in [11]. 
 

  
Fig. 7. Workload distribution in a physical space, where cells assigned to 

different threads are distinguished by different colors. (a) Random 
scheduling; and (b) Spatially-compact scheduling.  

 
To quantify the effect of scheduling algorithms on the 

number of rollbacks, we perform a strong-scaling benchmark 
involving 8-million particles on 64 BlueGene/Q nodes using 
fused HTM. Here, the cell-selection algorithm used in the 
thread-level scheduling is varied between baseline, random, 
and spatially-compact algorithms. Due to the decreasing 
thread granularity in strong-scaling benchmark, higher 
rollback ratio is expected for larger numbers of threads. 

Figure 8(a) shows the rollback ratio as a function of the 
number of threads p. The graph shows that the rollback ratios 
of all scheduling algorithms increase almost linearly with p. 
The rollback ratios for baseline, random, and compact 
schedulings are 32.9%, 11.4%, and 7.3%, respectively for 64 
threads. Figure. 8(b) shows the increase of the runtime as a 
function of p, corresponding to the rollback profiles in Fig. 
8(a). Here, the extra runtime of baseline scheduling is much 
higher than the random and compact schedulings, which is in 
accord with their rollback characteristics. For 64 threads, the 
extra runtimes of 21.4%, 8.9%, and 5.4% are observed for 
baseline, random, and compact schedulings, respectively. 
The ratio of extra runtime in Fig. 8(b) and the rollback ratio 
in Fig. 8(a) is consistent with that in subsection IV-B. This 
result demonstrates the importance of thread scheduling in 
MD when HTM is used. The number of rollbacks can be 

reduced by the proposed spatially-compact scheduling 
algorithm. 

 

 
Fig. 8. Rollback ratio (a) and the runtime overhead (b) as a function of the 

number of threads for the three scheduling algorithms. 

V. DESIGN SPACE FOR CONCURRENCY CONTROLS 
Although the implementation of HTM on BlueGene/Q 

provides more options to deal with race conditions in 
massive-multicore multithread programming, choosing the 
optimal concurrency control mechanism for a particular 
application is still a difficult issue. In this section, we 
propose a concurrency-control decision tree to handle race 
condition in multithread programming, based on the 
performance characteristics from the previous sections.  

To discuss the concurrency-control design space, we 
introduce several parameters that are associated with 
program runtime and conflicts. First, we describe parameters 
that are obtained from pre-profiling of the serial code. Figure 
9 shows a typical program structure of loop-oriented 
applications such as MD. Let conflict region (CR) be a part 
with a race condition in the target loop (TL) for 
multithreading. Pre-profiling is performed to obtain the 
following parameters: (1) the total time in serial code spent 
in target loop tTL; and (2) the total time spent in the conflict 
region tCR. Based on these parameters, we define the fraction 
of time spent in the conflict region as 

 fCR =
tCR
tTL

. (5) 



In addition to the pre-profiling parameters, we define the 
number of threads p and the number of atomic updates inside 
the conflict region µ. The user specifies p, while µ can be 
obtained easily from code inspection. Mavail is the memory 
available for data privatization. 

 Figure 10 shows the decision tree to choose the optimal 
concurrency control mechanism among OMP-critical, OMP-
atomic, HTM, and data privatization. The decision tree 
focuses on providing the best performance, i.e., high 
scalability and low overhead cost, based on the analysis and 
benchmark results in the previous sections. In the following, 
we elaborate the reasoning for each decision. 

Data Privatization: According to the benchmark result in 
section IV, data privatization has the best performance. 
Namely, it has the smallest overhead among all mechanisms 
and the decent thread scalability up to 64 threads. Thus, data 
privatization is the first choice to be considered. Although 
data privatization includes the reduction overhead (e.g. 
O(nlog p) for hypercube reduction), it is usually negligible. 
The major condition that restricts the use of data 
privatization is the available memory, since the simple 
application of data privatization could require up to p times 
more memory. If the available memory is not enough for 
data privatization, we should consider the other mechanisms 
that do not require extra memory. 

OMP-critical: The low overhead cost and the simplicity 
are the main advantages of OMP-critical. However, its 
scalability degrades significantly when p is large. Thus, 
OMP-critical is only suitable for small p (e.g. p ≤ 8 in Figs. 
5(a) and 5(b)). The critical number of threads pcrit = 1/fCR 
denotes the largest number of threads that can theoretically 
run concurrently without a lock contention for the serialized 
fraction of fCR. In the decision tree, we recommend p < pcrit/2 
to ensure reasonable scalability. 

OMP-atomic and HTM: Simplicity without 
compromising scalability is the major advantage of OMP-
atomic and HTM. To choose between these two 
mechanisms, we use the cost models in section III to find the 
one with the lower overhead. If OMP-atomic is applicable 
(i.e., only atomic updates are present in the conflict region) 
and the OMP-atomic cost is lower, then OMP-atomic should 
be used. Otherwise, the decision depends on conflict rate frb. 

If the conflict rate is low, HTM should be used. (Note that 
the overhead cost of HTM can be further reduced by using 
HTM fusion technique.) According to Schindewolf et al. [8], 
the threshold for the usability of HTM is frb ≤ 1. For frb > 1, 
OMP-critical can be used to avoid memory conflicts 
although it has high penalty. We found that in some cases, 
minor code structural change could improve the performance 
of concurrency controls. 

Once the decision of concurrency control mechanism is 
made, we can estimate the theoretical parallel efficiency for 
each mechanism. Table 2 summarizes the parallel efficiency 
estimate based on the profiling parameters. In Table 2, ttotal is 
the total runtime of the serial code and creduction denotes the 
reduction cost per particle per hypercube dimension. Figure 
11 summarizes the advantages/disadvantages of the 
concurrency control mechanisms considered in this paper.  

TABLE II.  PARALLEL EFFICIENCY ESTIMATE RESULTING FROM THE 
DECISION TREE.  

Concurrency control 
mechanism  Parallel efficiency 

OMP-critical e =min( 1
pfCR

,1)
 

OMP-atomic e = ttotal
ttotal +mµcatomic  

Data privatization e = ttotal
ttotal + creductionn log p

 

HTM e = ttotal
ttotal +m(cHTM_overhead +µcHTM_update )

 

  

Fig. 9. Typical program structure of loop-oriented applications 

  

Fig. 10. Decision tree for concurrency-control design space. We should 
note that OMP-critical at the bottom has very high performance penalty. 



VI.  CONCLUSION AND DISCUSSION 
 We have investigated the performance of HTM and 

conventional concurrency control mechanisms on 
BlueGene/Q using microbenchmarks and the MD application 
ddcMD. The microbenchmark indicates the overhead cost of 
HTM is smaller than OMP-atomic for a large number of 
threads. The strong scaling benchmark shows excellent 
scalability of HTM as well as OMP-atomic and data 
privatization. The proposed fused-HTM and spatially-
compact scheduling techniques have sped up naïve HTM by 
a factor of 1.53. An analysis of rollback penalty showed 
minor impact of rollback on the performance of ddcMD. 
Finally, we have derived a decision tree in the concurrency-
control design space for multithreading application. This will 
help application developers choose the concurrency control 
mechanism with the best performance for their applications. 
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