Least Square Fit of a Line **Problem:** Given a set of N pairs of numbers, $\{(x_i, y_i) \mid i = 1,..., N\}$, what is the best linear fit, y = ax + b, in the sense that it minimizes the square error, $$S = \sum_{i=1}^{N} \left(\underbrace{ax_i + b}_{\text{prediction}} - \underbrace{y_i}_{\text{measured}} \right)^2 ?$$ b **Answer**: S is a quadratic function of both a and b, and it becomes $+\infty$ for $a \to \pm \infty$ or $b \to \pm \infty$. There is a unique combination of a and b, at which S takes the minimum value and its derivatives with respect to a and b are zero, i.e., $$\begin{cases} \frac{\partial S}{\partial a} = 2 \sum_{i=1}^{N} (ax_i + b - y_i) x_i = 0 \\ \frac{\partial S}{\partial b} = 2 \sum_{i=1}^{N} (ax_i + b - y_i) = 0 \end{cases}$$ This is a set of linear equations. $$\left\{ \left(\sum_{i=1}^{N} x_i^2\right) a + \left(\sum_{i=1}^{N} x_i\right) b = \sum_{i=1}^{N} x_i y_i \right.$$ $$\left(\sum_{i=1}^{N} x_i\right) a + Nb = \sum_{i=1}^{N} y_i$$ which, in the matrix notation, becomes $$\begin{bmatrix} \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} x_i \\ \sum_{i=1}^{N} x_i & N \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} x_i y_i \\ \sum_{i=1}^{N} y_i \end{bmatrix}$$ The solution is $$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} x_i \\ \sum_{i=1}^{N} x_i & N \end{bmatrix}^{-1} \begin{bmatrix} \sum_{i=1}^{N} x_i y_i \\ \sum_{i=1}^{N} y_i \end{bmatrix} = \frac{1}{\sum_{i=1}^{N} x_i^2 N - (\sum_{i=1}^{N} x_i)^2} \begin{bmatrix} N & -\sum_{i=1}^{N} x_i \\ -\sum_{i=1}^{N} x_i & \sum_{i=1}^{N} x_i^2 \end{bmatrix} \begin{bmatrix} \sum_{i=1}^{N} x_i y_i \\ \sum_{i=1}^{N} y_i \end{bmatrix}$$ $$= \frac{1}{\sum_{i=1}^{N} x_i^2 N - (\sum_{i=1}^{N} x_i)^2} \begin{bmatrix} N \sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} y_i \\ -\sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i y_i + \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} y_i \end{bmatrix}$$ or $$\begin{cases} a = \frac{N \sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} y_i}{\sum_{i=1}^{N} x_i^2 N - (\sum_{i=1}^{N} x_i)^2} \\ b = \frac{-\sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} y_i}{\sum_{i=1}^{N} x_i^2 N - (\sum_{i=1}^{N} x_i)^2} \end{cases}$$