
Fast analysis of molecular dynamics trajectories with graphics
processing units—Radial distribution function histogramming

Benjamin G. Levine a,⇑,1, John E. Stone b,1, Axel Kohlmeyer a
a Institute for Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, PA, United States
bBeckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States

a r t i c l e i n f o

Article history:
Received 15 September 2010
Received in revised form 22 January 2011
Accepted 31 January 2011
Available online 26 February 2011

Keywords:
Pair distribution function
Two-point correlation function
GPGPU

a b s t r a c t

The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory
data is a common and computationally expensive analysis task. The rate limiting step in
the calculation of the RDF is building a histogram of the distance between atom pairs in
each trajectory frame. Here we present an implementation of this histogramming scheme
for multiple graphics processing units (GPUs). The algorithm features a tiling scheme to
maximize the reuse of data at the fastest levels of the GPU’s memory hierarchy and
dynamic load balancing to allow high performance on heterogeneous configurations of
GPUs. Several versions of the RDF algorithm are presented, utilizing the specific hardware
features found on different generations of GPUs. We take advantage of larger shared mem-
ory and atomic memory operations available on state-of-the-art GPUs to accelerate the
code significantly. The use of atomic memory operations allows the fast, limited-capacity
on-chip memory to be used much more efficiently, resulting in a fivefold increase in per-
formance compared to the version of the algorithm without atomic operations. The ulti-
mate version of the algorithm running in parallel on four NVIDIA GeForce GTX 480
(Fermi) GPUs was found to be 92 times faster than a multithreaded implementation run-
ning on an Intel Xeon 5550 CPU. On this multi-GPU hardware, the RDF between two selec-
tions of 1,000,000 atoms each can be calculated in 26.9 s per frame. The multi-GPU RDF
algorithms described here are implemented in VMD, a widely used and freely available
software package for molecular dynamics visualization and analysis.

! 2011 Elsevier Inc. All rights reserved.

1. Introduction

The increase in available computing power in recent years has been a boon for computational chemists wishing to sim-
ulate larger systems over longer timescales, but the ability to create massive quantities of molecular dynamics trajectory
data also creates difficulties. Without advanced data analysis software, computationally expensive analysis tasks can become
a bottleneck in the discovery process. One such task is the calculation of the radial distribution function (RDF).

The RDF is an important measure of the structure of condensed matter for several reasons. Radial distribution functions
can be determined both experimentally and from simulation, allowing direct comparison. In addition, all thermodynamic
quantities can be derived from an RDF under the assumption of a pair-wise additive potential energy function [1,2]. The
RDF has long been applied as a descriptor of the structure of liquids such as water [3–6], and though they can be very com-
putationally expensive to calculate, RDFs derived from large-scale molecular dynamics (MD) simulations have been useful in

0021-9991/$ - see front matter ! 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcp.2011.01.048

⇑ Corresponding author.
E-mail addresses: ben.levine@temple.edu (B.G. Levine), johns@ks.uiuc.edu (J.E. Stone), akohlmey@temple.edu (A. Kohlmeyer).

1 B.G.L. and J.E.S. contributed equally to this work.

Journal of Computational Physics 230 (2011) 3556–3569

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp

http://dx.doi.org/10.1016/j.jcp.2011.01.048
mailto:ben.levine@temple.edu
mailto:johns@ks.uiuc.edu
mailto:akohlmey@temple.edu
http://dx.doi.org/10.1016/j.jcp.2011.01.048
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

a wide range of applications. For example, Kadau and coworkers investigated shock wave induced phase transitions in met-
als using radial distribution functions calculated from simulations of systems with eight million atoms [7]. Radial distribu-
tion functions calculated from systems of several hundred thousand to one million atoms have also been useful in studies of
radiation damage in nuclear waste [8] and long-range order in self-assembled alkanethiol monolayers [9]. The RDF is also
widely used in astrophysics, where stars replace atoms and the function is typically known as the two-point correlation
function [10].

Massive molecular dynamics simulations like those cited above were once unusual, but now are becoming common. The
extreme computational expense of data analysis of this type requires that we bring to bear computers as powerful as those
used to run production simulations. Sometimes it is surprising which hardware offers the greatest performance to scientists,
though. The introduction of the Beowulf cluster marked an important change in high performance computing [11]. Unlike
previous high performance computers which were based on expensive, proprietary hardware, Beowulf clusters utilized inex-
pensive personal computers and commodity server hardware in large quantities to perform scientific tasks. Beowulf clusters
soon became the standard in high performance computing because commodity hardware provided more computation per
dollar spent than did the more expensive proprietary alternatives.

Recently the computer game market has driven the development of graphics processing units (GPUs) which provide
much faster floating point performance than a typical CPU at a comparable price. As such they have been receiving a great
deal of attention from scientists wishing to accelerate their applications [12]. Making use of massively parallel processors
and high bandwidth memory systems, GPUs have already been applied to accelerate a wide variety of methods in compu-
tational chemistry and biomolecular simulation [13–34]. The first generation of large scale heterogeneous clusters based on
highly parallel commodity processors are already online—e.g. Los Alamos National Laboratory’s Roadrunner [35], the
National Center for Supercomputer Applications’ Lincoln [36], and Texas Advanced Computing Center’s Longhorn [37]—
and three GPU-based clusters are now among the ten fastest supercomputers in the world, with the top place currently held
by a GPU-based cluster [38]. With additional large-scale GPU-based clusters planned [39], it appears that technology devel-
oped for the gaming market will increase the capability of available scientific computing resources dramatically.

One of the most attractive features of GPUs, however, is that they are already present in a typical desktop workstation
where they accelerate visualization software. As such, it is natural to employ them not only to speed up large scale simula-
tions, but also time consuming data analysis tasks which a scientist would typically perform on their local desktop machine.
By executing such tasks on GPUs one accelerates the discovery process; data analysis that used to require a cluster can be run
on a desktop, and time consuming tasks formerly run only in batch mode can be performed interactively.

One example of a visualization and analysis software package for molecular dynamics (MD) data which has begun to take
advantage of GPU acceleration is VMD [40]. Specifically, a fast implementation of electrostatic and nonbonded force calcu-
lations is used to place ions and calculate time averaged potentials from MD trajectories [28,41].

In this work we have implemented the calculation of the RDF from molecular dynamics trajectory data on NVIDIA GPUs
into VMD using the CUDA parallel programming architecture [42]. The computation time of the task, inherent data parallel-
ism, and opportunity for data reuse make RDF calculation a perfect target for GPU acceleration. However, the calculation of
an RDF requires histogramming, which can be difficult to parallelize. In Section 2 of this paper we define the RDF histogram-
ming problem, describe the difficulties encountered in developing a parallel implementation, and present our GPU-
accelerated solution. In Section 3 we present the results of our optimization and benchmarks that analyze the performance
of our implementation on several generations of NVIDIA GPU hardware. In Section 4 we draw conclusions from our work.

2. Methods

The radial distribution function calculation contains several component algorithm steps. All of the steps can be formu-
lated as data-parallel algorithms, but the histogramming operations are more difficult to adapt to the massively parallel
architecture of GPUs, and are therefore the main focus of the discussion. Below we introduce the mathematical basis for
computing radial distribution functions and describe how this relates to a naive serial implementation. We then describe
high performance data-parallel algorithms for the histogram computation component of RDF calculation on multi-core CPUs
and GPUs and the attributes that affect their performance.

2.1. RDF math and serial histogramming

The radial distribution function, g(r), is defined,

gðrÞ ¼ lim
dr!0

pðrÞ
4pðNpairs=VÞr2dr

ð1Þ

where r is the distance between a pair of particles, p(r) is the average number of atom pairs found at a distance between r and
r + dr,V is the total volume of the system, and Npairs is the number of unique pairs of atoms where one atom is from each of
two sets (selections), sel1 and sel2. The definition of Npair is given for two special cases by the following equations; the cases
where sel1 = sel2 and where there are no atoms shared between sel1 and sel2 are given in (2) and (3), respectively.

B.G. Levine et al. / Journal of Computational Physics 230 (2011) 3556–3569 3557

Npair ¼ N1ðN1 $ 1Þ ð2Þ
Npair ¼ N1N2 ð3Þ

where N1 and N2 are the number of atoms in sel1 and sel2, respectively. Note that the denominator of (1) is equal to p(r) of an
ideal gas.

In general the average, p(r), is calculated over a thermodynamic ensemble. In the context of MD simulations, a finite num-
ber of frames are chosen from one or more trajectories which sample the thermodynamic ensemble of interest. Thus, this
average takes the form

pðrÞ ¼ 1
Nframe

XNframe

i

X

j2sel1

X

k2sel2 ;k–j

dðr $ rijkÞ ð4Þ

where Nframe is the number of frames, rijk is the distance between atom j and atom k for frame i, and d is the Dirac delta func-
tion. Given that only finite sampling is possible, the continuous function p(r) is replaced with a histogram on a grid:

pðrÞ ¼ 1
Nframe

XNframe

i

X

j2sel1

X

k2sel2 ;k–j

X

allj
djðr; rijkÞ ð5Þ

where j indexes the bins of the histogram and

djðrijkÞ ¼
1=Dr if rj 6 r < rj þ Dr and rj 6 rijk < rj þ Dr
0 otherwise

!
ð6Þ

where Dr is the width of the bins and rj is the minimum distance associated with each bin, given by

rj ¼ r0 þ jDr ð7Þ

where r0 is the lower bound of the histogram. The summation over j in (5) can be thought of as a coarse-grained delta
function.

Note that the calculation of the distance, rijk, is complicated by the use of periodic boundary conditions. Assuming that the
upper bound of our histogram is less than or equal to half of the width of the periodic box, the value of rijk is actually the
distance between atom j and the closest periodic image of atom k. The process of identifying this distance is simplified
by re-imaging all atoms into a single unit cell. The magnitudes of the x component of the shortest vector connecting atom
j to a periodic image atom k, jxijkj can then be identified:

jxijkj ¼
jxk $ xjj if jxk $ xjj 6 a=2
a$ jxk $ xjj otherwise

!
ð8Þ

where xj and xk are x components of the coordinates of atoms j and k and a is the length of the periodic box in the x direction.
The magnitudes of the y and z components of the minimum displacement vector are easily generalized from (8), and to-
gether these three magnitudes allow the calculation of the minimum distance:

rijk ¼
ffi
jxijkj2 þ jyijkj

2 þ jzijkj2
q

ð9Þ

The summation in (5) is the computationally expensive portion of the radial distribution function calculation, as it re-
quires looping over all selected pairs of atoms in all frames. A naive, serial implementation would be based on three nested
loops; at each iteration the distance between a pair of atoms is calculated and the appropriate histogram bin is incremented
(updated).

Note that it is possible to significantly improve on the performance of a naive, serial implementation without resorting to
parallel histogramming. In the RDFSOL module implemented in CHARMM [43], for example, a cutoff and spatial decompo-
sition are employed to reduce the total cost of the calculations. This approach takes advantage of the fact that most liquids
become unstructured beyond some distance, and thus there is no need to calculate the distances between blocks of atoms
that are more than a user defined cutoff distance away from one another. Though we have not employed this strategy in the
current work, we intend to implement this strategy in conjunction with GPU-acceleration in the future, taking advantage of
spatial decomposition techniques previously developed for fast GPU-accelerated electrostatics calculations in VMD [41].

2.2. Parallel RDF histogramming

Many of the difficulties which must be overcome in a parallel RDF implementation arise in implementations for both mul-
ti-core CPUs and GPUs. As described above, a serial RDF implementation involves two main calculations, the computation of
atom pair distances, and the insertion of the computed pair distances into a histogram by incrementing the appropriate his-
togram bin counter for each pair distance. The pair distance computation is inherently parallelizable since each combination
of atom pairs can be considered independently and atomic coordinates may be treated as read-only data that can be shared
or replicated among cooperating processors as needed.

3558 B.G. Levine et al. / Journal of Computational Physics 230 (2011) 3556–3569

The main complication in parallelizing RDF calculation arises in the histogram update step. In a serial implementation,
the histogram bins are usually updated with a simple fetch-increment-store approach, where the counters associated with
each histogram bin are directly incremented as pair distances are processed. Although this approach is trivial to implement
for a serial implementation, the scattered memory updates present problems for parallel implementations due to the poten-
tial for counter update conflicts. In general, such scatter operations are often converted into either some form of data-parallel
atomic increment or scatter-add operation, or gather operations wherein histogram bins gather their counts by reading the
same input values but only incrementing their local counter as appropriate.

Since a single histogram results from the entire RDF computation, a parallel implementation may take one of three main
approaches. The first approach consists of updating a single histogram instance in parallel, through close coordination be-
tween processing units or by updating histogram bin counters with special scatter-add or other atomic update hardware
instructions [44–46]. The second approach, privatization, consists of maintaining multiple independent histogram instances,
each updated by a single processing unit, followed by a parallel reduction of independent histograms into a single resulting
histogram. A third approach uses a hybrid of the first two approaches, wherein tightly-coupled groups of processing units
update a shared histogram, with many such groups independently updating their own histograms followed by a global par-
allel reduction for the final resulting histogram. Of these variations, the specific approach or hybrid that yields the best per-
formance depends greatly on the number of processing units performing the parallel RDF calculation, the availability and
performance of hardware instructions for scatter-add or atomic increment operations, and the speed and capacity of fast
on-chip memory or caches to hold histogram instances.

2.3. CPU parallel RDF histogramming

Before discussing the GPU implementation of the RDF, it is instructive to consider the details of the reference implemen-
tation for multi-core CPUs. Most modern CPUs provide some form of SIMD instruction set extensions for acceleration of data-
parallel workloads associated with interactive graphics and multimedia applications. For example, recent x86 CPUs support
MMX and SSE instructions that operate on four-element vectors of 32-bit integers and single-precision floating point data.
Although these instructions can be effectively employed to improve the performance of the atom pair distance portion of the
RDF computation, they currently do not provide the necessary hardware instructions needed for parallel histogram updates
[45,46].

Given the limited applicability of the x86 CPU SIMD instructions for accelerating the histogram update, the main remain-
ing opportunity for parallelism then comes from the use of multithreading on multi-core processors, and from approaches
based on distributed memory message passing on HPC clusters. Since state-of-the-art CPUs contain a modest number of
cores, an efficient multithreaded RDF implementation can be created by maintaining independent (privatized) histogram in-
stances associated with each CPU worker thread and gathering the independent histogram results into a final histogram at
the end of the calculation. In such an implementation the atom coordinates can be treated as read-only data and shared
among all of the threads, promoting efficient use of CPU caches. In a distributed memory cluster scenario, a similar strategy
may be used, but with atomic coordinate data being replicated as-needed among nodes in the cluster. Individual cluster
nodes may employ multi-core CPUs using the multithreaded approach above for intra-node CPU cores, performing a second
level parallel reduction or gather operation to compute the final histogram from the independent histogram instances com-
puted locally on each node.

2.4. GPU parallel RDF histogramming

There are a number of competing issues involved in achieving the best performance for GPU-accelerated RDF calculations.
Depending on the parameters of the RDF calculation, the hardware capabilities of the target GPU devices, and the number of
devices to be used, one may employ one of a number of strategies for decomposing the problem and balancing the workload
across the available GPUs. Below we describe the trade-offs involved, and the solutions we employ in each case.

2.4.1. GPU RDF parallel decomposition strategies
The key to achieving maximum performance on the GPU is to decompose the problem into thousands or millions of inde-

pendent threads in such a way as to make efficient use of the GPU’s many multiprocessors. A CUDA kernel is executed by a
large number of threads. These threads are grouped into user defined thread blockswhich share a fast, on-chip memory space
known as shared memory. Though each thread in the block accesses the same shared memory, a full block of threads does not
run concurrently; instead, blocks are divided into warps, each of which contains 32 threads that run concurrently.

The GPU is composed of several multiprocessors. Each multiprocessor can process one or two instructions for one warp at
a time. However, each multiprocessor is occupied by several warps simultaneously. A single warp will run until it reaches a
point where an access to the slow, off-chip global device memory is required. At this point the data is requested from device
memory and the multiprocessor switches to process another warp while the data is retrieved. The multiprocessor is idle only
if all warps assigned to it are waiting for data from device memory at the same time. Thus, reducing the number of accesses
to device memory reduces the probability that a multiprocessor is idle waiting on memory accesses, and therefore increases
performance.

B.G. Levine et al. / Journal of Computational Physics 230 (2011) 3556–3569 3559

In the case of our RDF algorithm (the performance-critical portion of which is represented in Fig. 1), this is achieved by
maximizing the reuse of data in fast, on-chip memory. Our strategy is similar in spirit to the cache- [47–49] and register-
level [50] tiling schemes employed in the optimization of other algorithms that benefit from data reuse, such as matrix–ma-
trix multiplication.

Before considering the algorithm itself we describe how atom coordinates and histogram bin counters are divided into
tiles, and which GPU memory system they are stored in. The distribution of sel1, sel2, and histogram data is illustrated in
Fig. 2. To calculate each histogram point (an element of the summation in (5)) we need access to the Cartesian coordinates
of one atom from sel1 and one from sel2. We use two different tiers of the GPUmemory hierarchy tominimize the cost of load-
ing this data from devicememory. We choose to store sel1 in constant memory. Constant memory is a segment of devicemem-
orywhich is associated with a fast, read-only on-chip cache. Reading from constantmemory is as fast as from registers so long
as the requested data is in cache and all threads in the warp access the same address. Constant memory is limited, so wemust
divide the coordinate data of sel1 into tiles of Nconst atoms which approximately fill it (Nconst & 5000 for the standard 64 kB of
constant memory) and operate on these tiles one at a time. By accessing sel1 contiguously we make optimal use of the cache
and therefore must read from device memory only once per cache line. Because constant memory is read-only from the point
of view of the compute kernel, control must be returned to the CPU to reload constantmemory after each tile is processed. The
most recent Fermi generation of NVIDIA GPUs provide an L1 cache for both read and write accesses to global memory. The
Fermi L1 cache could in principle be used in a manner similar to our use of constant memory above, but without the need
for the host to load individual tiles. This approach could be advantageous in cases where the host CPU is otherwise occupied
or constant memory is needed for another purpose such as storage of spatial decomposition lookup tables [41].

Fig. 1. This pseudocode describes the performance-critical portion of the RDF code. The code of the various GPU kernels is shaded light blue. The remaining
code is executed by the CPU. The chosen loop structure and distribution of the data to different portions of memory allows maximum reuse of data between
accesses to device memory. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. This illustration depicts the way our implementation of RDF histogramming makes use of the memory hierarchy of the GPU to store geometric (sel1
and sel2) and histogram data. Main memory (off-GPU) is shaded red. Constant memory and the constant cache are shaded dark and light green, respectively.
Global and shared memory are shaded dark and light blue, respectively. The number of atoms or histogram bins stored at each level of memory is marked
on each piece of memory. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3560 B.G. Levine et al. / Journal of Computational Physics 230 (2011) 3556–3569

We handle sel2 differently, but the goal is the same—to minimize accesses to slow off-chip device memory. Before build-
ing the histograms, sel2 is loaded in its entirety into global memory, the slow device memory space which on all but the most
recent GPU devices is not associated with a cache. Rather than relying on a cache, the atoms in sel2 are divided into tiles
which are loaded into fast on-chip shared memory. Data in a shared memory can be accessed close to the speed of registers
so long as there are no bank conflicts. Shared memory bank conflicts are trivially avoided in our implementation. Each tile
contains Nblock atoms, where Nblock is a parameter defining the number of threads in a thread block. For each such tile the
algorithm will loop over all Nconst elements in the current tile of sel1. Thus, NconstNblock atom pairs can be processed after only
a single load operation from global memory for sel2.

A second, higher, level of tiling is also used for sel2. This second tiling scheme is not intended to improve performance, but
instead to avoid integer overflow of histogram bins when a large number of atoms (over 60,000 in the current implemen-
tation) are present. These larger tiles are termed overflow tiles in Fig. 1. The size of the overflow tiles is selected such that
a bin will not overflow even if all atom pairs in the selection fall into the same bin. It is important to note that these overflow
tiles do not reflect a separate location in memory, but are reflected in the loop structure of the code. The possibility of a his-
togram bin overflow is eliminated by processing only a single overflow tile at a time.

Because histogram data is accessed at each iteration it is also advantageous to store it in fast on-chip memory. Thus each
histogram bin is stored in shared memory as a 32-bit unsigned integer. The limited shared memory capacity and large num-
ber of processor cores make it impossible for each thread to maintain its own instance of the histogram, as was described
above for the parallel CPU implementation. Instead, a hybrid approach is employed where groups of threads cooperatively
operate on shared histogram instances, and the histogram instances produced by different groups are summed at the end of
the calculation to produce the final result. In addition, it is only possible to store a segment of Nbin histogram bins in shared
memory at one time. If a histogram larger than Nbin is requested by the user, multiple passes over all atom pairs are done to
build the histogram Nbin at a time, using a gather approach.

One must take note that each multiprocessor has only a small amount of shared memory, and therefore the number of
thread blocks occupying each multiprocessor depends inversely on the shared memory requirement of each thread block. To
achieve optimal performance, a delicate balance must be reached between data reuse and the efficient use of limited re-
sources. As such, below we will describe how we empirically optimized the various parameters defining the memory usage
of our algorithm.

Having described the partitioning of the data to different levels of the GPU memory hierarchy, it is now possible to de-
scribe how the algorithm is structured. For each tile of sel1 the RDF computation proceeds as follows (Fig. 1): The atom coor-
dinate data for the current tile is loaded into constant memory and a grid of Ngrid thread blocks are launched. Each thread
block loops over a set of tiles of sel2, such that each tile is assigned to one and only one thread block. At each iteration
the coordinates of the atoms in sel2 are loaded into shared memory. Each thread is assigned its own atom from the tile in
shared memory, and it then loops over all atoms in constant memory, calculating distances and updating the histogram
as necessary. By looping over all atoms in sel1 contiguously, we minimize cache misses and therefore must read from device
memory only once per cache line.

The RDF histogramming kernel described above scales as O(N1 ⁄ N2), making it the most computationally costly portion of
the RDF calculation (see Supplementary Table 1 for details). However, we have written GPU kernels to perform several re-
quired pre- and post-processing tasks to ensure maximum performance. Specifically, we initialize the values of all histogram
bins to zero, re-image all atomic coordinates into a single unit cell, and sum the many histogram instances into the final his-
togram in parallel on the GPU, ensuring that these computationally inexpensive tasks do not become the performance deter-
mining step in extreme cases.

2.4.2. Multi-GPU decomposition and load balancing
The GPU algorithm described above can be extended to enable concurrent execution on multiple GPUs by assigning com-

binations of tiles from sel1 and histogram regions to different GPUs. A straightforward decomposition across multiple GPUs
using only tiles from sel1 frequently results in an insufficient number of independent work units to effectively utilize and
load balance multiple GPUs. By decomposing over both tiles of sel1 and histogram regions, a much larger number of work
units are available for scheduling. This is particularly helpful in the case where the pool of available GPUs contain devices
with significantly different performance characteristics. Since each GPU independently computes its own partial histogram,
the final histogram is produced by summing the contributions from each of the independently computed histograms at the
end of the computation.

One of the challenges that arises with the use of multiple GPUs in parallel is additional overhead associated with per-
host-thread CUDA context creation and GPU device binding. When a host CPU thread first creates a CUDA context and binds
to a specific GPU device, a small 0.1 second delay occurs when binding the host thread to the device. There is also a poten-
tially much more significant delay—approaching one second—that can occur when the GPU hardware is brought fully online,
particularly in the case of cluster nodes where no windowing system or other processes are keeping the GPU in a ‘‘ready’’
state. These delays are cumulative per-GPU, and are most noticeable on multi-GPU systems that do not have a windowing
system running. In the case of a four-GPU system with no windowing system running, the time to create a group of four new
host threads and attach them to their respective GPUs can take between 3 and 7 s depending on whether the GPU kernel
drivers are fully loaded and the GPUs are in a ready state or not. Subsequent calculations launching new host threads incur

B.G. Levine et al. / Journal of Computational Physics 230 (2011) 3556–3569 3561

less delay, but the overhead can still be as high as 2–3 s each time a newly created group of host threads attaches to the
GPUs.

The potential for significant multi-GPU initialization delays on certain hardware configurations has had a significant im-
pact on the design of the multi-GPU algorithm. Overhead can be eliminated for all multi-GPU calculations by creating a per-
sistent pool of host CPU worker threads that remain attached to their respective GPUs for the entire program run. When host
CPU worker threads become idle, they are put to sleep using an efficient barrier synchronization primitive based on condi-
tion variables provided by the POSIX threads programming interface. Waking the pool of CPU worker threads sleeping on the
barrier synchronization primitive and causing them to begin execution of a new calculation takes less than 10 ls, many or-
ders of magnitude faster than creating a fresh group of host threads and having them attach to their respective GPUs. The
CUDA GPUmanagement framework implemented in VMD creates a persistent pool of CPU worker threads and attaches them
to their respective GPUs when the program starts. This pool of worker threads is retained and reused repeatedly until the
program exits. Each execution of the multi-GPU RDF algorithmwakes the thread pool and launches a new calculation, avoid-
ing all of the overheads associated with initializing and binding to GPU devices. As soon as the RDF calculation is complete,
the CPU worker threads sleep on the synchronization barrier until they are awoken again, thereby minimizing idle processor
load and idle CPU and GPU power consumption.

2.4.3. GPU parallel histogram updating techniques
The histogram update (the summation of each histogram point into the histogram) must be implemented carefully. With

hundreds of threads simultaneously calculating histogram points, there is no guarantee that multiple threads will not at-
tempt to increment the same histogram bin at the same time. Precautions need to be taken to ensure that these collisions
do not result in incorrect results. In addition, the update must be implemented efficiently because it is usually performed by
every thread for every iteration.

We have implemented the histogram update in two different ways: a general implementation that runs on any CUDA-
capable GPU hardware, and an implementation that takes advantage of atomic operations to shared memory which are
available only on CUDA devices of compute capability 1.2 (cc1.2) and above.

We will first describe the general implementation, which is based on the method for simulating atomic updates devel-
oped by Shams and Kennedy [51]. Example histogram codes using this algorithm are available in the CUDA SDK [42]. In this
implementation, each warp is associated with its own copy of the histogram in shared memory. By doing so we ensure that
any two threads that attempt to increment the same bin at the same time are in the same warp, and therefore are executing
the update concurrently.

Absent the availability of an atomic addition operation, we must mimic the functionality of this hardware feature to pre-
vent data loss. To this end, a thread incrementing a histogram bin does so in the following steps:

1. The value of the histogram bin is loaded into a register which is local to that thread.
2. The register is incremented.
3. A tag, which is unique to each thread of the warp, is written to the most significant bits of the register.
4. The thread writes the value of the register, including the tag, back to the histogram bin in shared memory from which it

came. If multiple threads attempt to write to the same bin at the same time only a single thread will succeed.
5. Each thread reads the value of the histogram bin again. If the value of the histogram bin matches the value of the register

then the update was successful and the thread is done with the update. If not, the thread returns to step 1 and tries again.

In this way the code loops until all threads have successfully updated the histogram bin.
The compute capability 1.2 implementation is much simpler. In CUDA devices of capability 1.2 and higher an atomic add

instruction is available. This instruction adds directly to shared memory in an atomic fashion, thus eliminating the need for
the complicated update scheme described above. In addition, it allows us to reduce our total shared memory usage by cre-
ating a single copy of the histogram in shared memory per thread block, rather than per warp as is required by the general
scheme.

2.5. Performance analysis and parameter optimization

Below we present an analysis of the performance of the RDF histogramming code as a function of the problem size (sel1,
sel2, and Nhist). In all cases an equilibrated water box containing 4,741,632 water molecules is used as the test case. Smaller
test cases are created by selecting a subset of these water molecules. These selections are chosen such that the molecules are
physically near one another to ensure that the measured performance corresponds to that of a dense system. The reported
times correspond to the entire RDF histogramming procedure, including the initial transfer of data to the GPU from main
memory and the retrieval of the final result from the GPU to main memory.

The tiling scheme involves four parameters which can be tuned to achieve optimum performance—Nblock, Nbin, Nconst, and
Ngrid — all of which are described above. A number of four-dimensional scans over a wide range of possible values for these
parameters were performed in order to identify optimal parameter sets for a variety of hardware configurations and problem
sizes. In addition, we have analyzed the performance of the code as a function of these tiling parameters. The full range of
these scans is described in the Supplementary information.

3562 B.G. Levine et al. / Journal of Computational Physics 230 (2011) 3556–3569

A number of hardware configurations were employed in our testing:

1. Two NVIDIA Tesla GPU processors (S1070) on a single node of NCSA’s Lincoln GPU-accelerated cluster [36]. Compiled
with CUDA 3.0. (Hereafter this configuration is referred to as ‘‘2 ' Tesla’’.)

2. A heterogeneous configuration of five NVIDIA Tesla processors (4 from a single S1070 + 1 C1060) and a GTX 285. Com-
piled with CUDA 3.0. (Hereafter this configuration is referred to as ‘‘5 ' Tesla + GTX 285’’ or ‘‘6 ' G200’’.)

3. Four NVIDIA C2050 (Fermi) GPU processors. Compiled with CUDA 3.0. (Hereafter this configuration is referred to as
‘‘4 ' C2050’’.)

4. Four NVIDIA GTX480 (Fermi) GPU processors. Compiled with CUDA 3.0. (Hereafter this configuration is referred to as
‘‘4 ' GTX480’’.)

We will hereafter use the term Tesla to refer to a single C1060 card or a single processor of a S1070, since their technical
specifications are equivalent. All other processors will be referred to by their model number or by the more general desig-
nations G200 for Tesla and GTX 285 cards and G400 for the C2050 and GTX480.

3. Results and discussion

Below we provide a discussion of performance results scanning over a wide range of tiling parameters, and the variation
in performance according to problem size and algorithm on several GPU hardware generations. Finally, we present perfor-
mance results for multiple-GPU calculations, and analyze the effectiveness of our dynamic load balancing technique on mul-
tiple GPU hardware generations.

3.1. Tiling parameter optimization and analysis

Four tiling parameter sets were developed to provide optimal performance under different conditions. These conditions
are presented in Table 1. The tiling parameter sets themselves are presented in Table 2. Three sets (cc1.0_8192,
cc1.2_8192_a, and cc1.2_1024_a) were optimized on the 2 ' Tesla hardware configuration for use with G200 and older gen-
erations of GPUs, while the remaining was optimized on the 4 ' C2050 machine for use with G400 series GPUs. The optimi-
zation of these sets were performed with different histogram sizes (either 8192 or 1024 bins) and taking advantage of
different hardware features (size of shared memory, atomic operations). The abbreviations of the parameter sets indicate
the compute capability required to provide the features used in their optimization (ccx (y) followed by the number of his-
togram bins for which these parameters are optimal. The _a suffix is appended if atomic memory operations where used.

The dependence of the performance of the code on Nblock and Nbin is shown in Fig. 3. Fig. 3(a) and (b) show the perfor-
mance over a range of values of Nblock (keeping all other parameters constant at their optimized values). As described above,
the size of the thread block is defined by Nblock; in addition the amount of shared memory allocated to store histogram and
atom coordinate data is related to Nblock. Remember that for the general (non-atomic) histogramming algorithm, which is
employed in cc1.0_8192 but not the other three sets, one instance of the histogram must be stored in shared memory for
every warp in the thread block. Thus for cc1.0_8192 the amount of shared memory required per block scales dramatically
with the increase in Nblock. In fact, there is not enough shared memory to run with Nblock > 96. The optimum balance between
data reuse and efficient use of shared memory occurs at Nblock = 32, with Nblock = 96 providing similar performance.

The situation is different when atomic operations are used, as in cc1.2_8192_a, because only a single instance of the
histogram need be stored in shared memory for the entire thread block. Thus, the scaling of the required shared memory
with Nblock is much less severe. As such, the best performance is achieved at a much larger value of Nblock, 320, above which
there is not enough shared memory to accommodate both the histogram and a tile of coordinate data. Notice that each block
requires 15.75 kB of shared memory in this case, which is nearly the full 16 kB available.

Table 1
The conditions for which the four tiling parameter sets were optimized are shown below. One general
parameter set was optimized which is capable of running on any NVIDIA GPU hardware (cc1.0_8192).
Two sets were optimized for compute capability 1.2 hardware, taking advantage of atomic memory
operations (Atom. Op.). These parameter sets differ in that their performance was optimized for
different numbers of histogram bins (Nhist). Finally, a parameter set was optimized for compute
capability 2.0 hardware, taking advantage of both atomic memory operations and a larger shared
memory (Sh. Mem.) space.

Set Nhist Atom. Op. Sh. Mem. (kB)

cc1.0_8192 8192 No 16
cc1.2_8192_a 8192 Yes 16
cc1.2_1024_a 1024 Yes 16
cc2.0_8192_a 8192 Yes 48

B.G. Levine et al. / Journal of Computational Physics 230 (2011) 3556–3569 3563

Compute capability 2.0 GPUs differ from the previous generation in a number of ways. Of particular interest for our appli-
cation is that a cc2.0 GPU has three times more shared memory available per multiprocessor than does a cc1.2 GPU. Given
the monotonic increase in performance with Nblock seen above for cc1.2_8192_a, it is not surprising to see that the cc2.0 opti-
mized parameter sets make use of more shared memory than their cc1.2 counterparts. In fact, optimum performance is
reached at Nblock = 896, a number too large to be used with the limited shared memory of cc1.2 hardware. This improves per-
formance on cc2.0 hardware by 31 percent compared to Nblock = 320, the optimum value on cc1.2 hardware. It should be
noted that Nblock is limited to 1024 not by the size of shared memory but instead by the hard limit of 1024 threads per block
enforced by the CUDA cc2.0 standard.

Table 2
These tiling parameter sets were found to provide optimum performance under the conditions described in Table 1. Also
presented is the amount of shared memory used per block (Mem./B.) for each set.

Set Nblock Nbin Nconst Ngrid Mem./B (kB)

cc1.0_8192 32 1024 5440 256 4.38
cc1.2_8192_a 320 3072 5440 256 15.75
cc1.2_1024_a 256 1024 5440 512 7.00
cc2.0_8192_a 896 8192 5440 256 42.50

Fig. 3. Performance as a function of tiling parameters. Selections of 1,000,000 atoms were processed on the cc2.0 hardware, while a 200,000 atom test case
was used in the other two cases. All tiling parameters besides the dependent variable are kept constant at their optimized values. Red, purple, and cyan lines
represent the behavior around the cc2.0_8192_a, cc1.2_8192_a, and cc1.0_8192 parameter sets, respectively. This data was recorded on the machine on
which these parameters were optimized. (a) and (b) The performance as a function of Nblock. When atomic operations are used the performance benefits
greatly from increasing Nblock. (c) and (d) The performance as a function of Nbin. In the cases where atomic operations are used performance increases
linearly with Nbin because increasing Nbin decreases the number of passes the code must make over all atom pairs. In both scans it can be seen that the need
to store more instances of the histogram data in shared memory in the absence of atomic operations severely limits performance. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

3564 B.G. Levine et al. / Journal of Computational Physics 230 (2011) 3556–3569

Plots of the performance as a function of Nbin are shown in Fig. 3(c) and (d). The size of the histogram segment stored in
shared memory is defined by Nbin. If Nbin is less than Nhist then multiple passes through the atom pairs are required to cal-
culate the full histogram, and the cost of the calculation increases proportional to the number of passes. However, a large
value of Nbin results in a greater shared memory requirement, which can in turn decrease occupancy and degrade perfor-
mance. In the case without atomic operations (cc1.0_8192) the optimal balance is achieved at a relatively low value of
1,024, though performance does not decrease dramatically at larger values. For cc1.2_8192_a, where atomic operations
are used, a larger value of 3072 is optimal. This is the largest value for which the there is enough shared memory to store
the histogram. A much larger value of 8192 is found to be optimal for cc2.0 hardware. This yields a factor of 2.35 improve-
ment in performance compared to the cc1.2 optimized value (3072) run on cc2.0 hardware.

Values of Nconst and Ngrid which give optimum performance are given in Table 2, but in all cases the performance is rel-
atively insensitive to the choice of these parameters in the range we investigated (see Supplementary information). Unlike
Nblock and Nbin, the amount of shared memory required per block does not depend on the choice of Nconst and Ngrid, nor does
the number of accesses to global memory. As such, it is not surprising that their effect on the performance is small compared
to Nblock and Nbin.

The analysis presented here underlines the importance of the efficient use of shared memory in achieving good perfor-
mance on the GPU, and that reoptimization of shared memory usage is a key strategy for porting applications to the new
G400 series GPUs.

3.2. Performance benchmarks

The performance of the RDF histogramming code as a function of the number of atoms in sel1 and sel2 on a variety of hard-
ware configurations is shown in Fig. 4. When not otherwise noted the optimal parameter sets for the 8192 bin histogram
were used (cc1.2_8192_a on G200 or cc2.0_8192_a on G400). For comparison we also present the performance of the mul-
tithreaded CPU implementation of RDF histogramming from VMD. The CPU data was collect on a single Intel X5550
quad-core CPU running at 2.67 GHz. Eight threads were launched to take advantage of the CPU’s hyperthreading feature.

Five GPU results are presented. The four hardware configurations described above with their optimal parameter set
(cc1.2_8192_a in the case of the G200 hardware and cc2.0_8192_a for the G400) are presented, as are results for the
2 ' Tesla hardware configuration without the benefit of atomic operations (using parameter set cc1.0_8192).

All four GPU configurations are significantly faster than the CPU. Eighty percent of peak performance is achieved on all
four configurations for selections of 200,000 or more atoms. Note that many of the plotted system sizes were chosen to
not be multiples of Nblock or Nconst to demonstrate that the this implementation handles the edges of the problem gracefully.
The fastest Tesla configuration (6 ' G200) produces RDFs at a rate of 16.34 billion atom pairs per second (hereafter abbre-
viated bapps) for the largest test problem (4,741,632 atoms). This is a factor of 39 faster than the fastest performance

Fig. 4. The performance of the RDF histogramming code as a function of the number of atoms in sel1 and sel2. A variety of hardware was tested: Orange, red,
purple, and blue lines show the performance of the 4 ' GTX480, 4 ' C2050, 6 ' G200, and 2 ' Tesla machines, respectively, with optimal tiling parameters.
The cyan line shows the performance of the 2 ' Tesla machine without the benefit of atomic memory operations. For comparison, the gray line indicates the
performance of the highly optimized multithreaded implementation of RDF histogramming in VMD, running 8 threads on a single quad-core Intel Xeon
X5550 processor at 2.67 GHz with hyperthreading enabled. In the 4 ' GTX480 case, the performance is a factor of 92 faster than the CPU for large selections.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

B.G. Levine et al. / Journal of Computational Physics 230 (2011) 3556–3569 3565

recorded on the CPU (0.42 bapps). The 2 ' Tesla configuration runs at 5.91 bapps, a factor of 14 faster than the fastest CPU
performance.

As discussed above, the absence of atomic operations results in the inefficient use of shared memory which in turn leads
to relatively poor performance. Still, when the 2 ' Tesla configuration is run without atomic operations the maximum per-
formance is 1.04 bapps, twofold better performance than the CPU. However, this is a factor of 5.7 slower than the same hard-
ware configuration when atomic operations are used.

At 38.47 bapps, the 4 ' GTX480 hardware configuration provided the fastest results we observed, with the 4 ' C2050
hardware just slightly slower at 29.62 bapps. The peak performance result for the GTX480 hardware is 92 times faster than
the CPU result and more than double the speed of the 6 ' G200 configuration.

The performance of the various hardware configurations as a function of Nhist (the length of the desired histogram) is
shown in Fig. 5. Note that the performance degrades most slowly for the 4 ' C2050 configuration where the largest amount
of shared memory is allocated to histogram storage, and therefore the smallest number of passes over all coordinate data are
required. In fact the performance degrades by only a factor of 7.5 over the range 1000–50,000 bins compared to 17.6 for the
2 ' Tesla configuration with the use of atomic memory operations. The performance decreases by a factor of 48.7 over this
range in the case where the least shared memory is applied to store histogram data: the 2 ' Tesla case where no atomic
operation are used.

The cc1.2_1024_a parameter set, which was optimized for smaller histograms, was also tested in this context. As seen in
Fig. 5, the performance is comparable to cc1.2_8192_a for the small histograms for which it was optimized. However the
performance degrades very quickly with an increasing number of histogram bins. Despite the fact that a 8192-bin histogram
is larger than is needed for most applications (histograms with hundreds of bins are typical), there seems to be little benefit
to optimizing the tiling parameters for a smaller number of bins. As cc1.2_1024_a produces performance which is effectively
equivalent to cc1.2_8192_a in the best case and much worse in other cases, we concluded that the parameter sets optimized
for longer histograms are suitable for all histogram lengths.

The scaling of performance with respect to the number of GPUs employed is shown in Fig. 6. Fig. 6(a) shows the scaling on
the 6 ' G200 machine, measured for the full 4,741,632 atom system. Nearly perfect linear scaling with the number of pro-
cessors is observed when between 1 and 5 Tesla processors are employed.

To test the dynamic load balancing feature of our code we used a set of heterogeneous GPU configurations incorporating a
single GTX 285 GPU with between zero and five Tesla processors. Note that a single GTX 285 outperforms a single Tesla pro-
cessor by .37 bapps. This increase in performance is maintained as additional Tesla processors are employed in parallel with
the GTX 285. In fact, for up to 5 GPUs total, performance is increased by between .37 and .38 bapps when a single Tesla is
replaced by the GTX 285.

The parallel scaling on the 4 ' C2050 machine operating on the full 4,741,632 atom system is shown in Fig. 6(b). Again,
nearly perfect linear scaling is observed.

Fig. 5. The performance of the RDF histogramming code as a function of the number of histogram bins requested by the user. Performance of the 4 ' C2050
and 2 ' Tesla machines with optimal tiling parameters are shown in red and purple, respectively. Performance of the 2 ' Tesla machine using the
cc1.2_1024_a and cc1.0_8192 tiling parameters are shown in blue and cyan, respectively. Selections of 1,000,000 atoms were processed in all cases. The
performance decreases with increasing histogram length in all cases. The rate of the decrease is inversely proportional to the value of Nbin, with performance
of the 4 ' C2050 machine declining the most slowly. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

3566 B.G. Levine et al. / Journal of Computational Physics 230 (2011) 3556–3569

The parallel efficiency as a function of system size can be seen in Fig. 6(c). Three cases are shown: running on all five Tesla
GPUs of the 6 ' G200 machine, running on only two Tesla GPUs of the same machine, and running on the entire 4 ' C2050
machine. When only two Teslas are employed, greater than 90% parallel efficiency is achieved down to the 16,000 atom sys-
tem. In the 5 ' Tesla and 4 ' C2050 cases peak performance is approached more slowly, with 90% parallel efficiency sur-
passed at approximately 100,000 and 130,000 atoms, respectively.

4. Conclusions

The large quantity of molecular dynamics data which can be produced on today’s supercomputers demands that data
analysis be performed using optimized software on high-performance machines as well. In this paper we have presented
an implementation of radial distribution function histogramming for multiple NVIDIA GPUs. The high performance of this
code compared to existing CPU implementations will accelerate the discovery process by allowing scientists to perform pre-
viously cumbersome data analysis tasks in seconds.

This implementation runs on multiple GPUs via a threading scheme with dynamic load balancing. Near perfect parallel
efficiency is observed for both homogeneous and heterogeneous multi-GPU configurations.

Two different histogramming schemes were employed in our implementations: one that takes advantage of atomic mem-
ory operations, which are available only on NVIDIA GPUs of compute capability 1.2 or higher, and one which is compatible
with all CUDA-capable GPUs. The scheme based on atomic operations allows a more efficient distribution of shared memory
than does the more general scheme, leading to a factor of 5.7 speedup.

A tiling scheme is employed to maximize the reuse of data in the fast shared memory of the GPU. The parameters of this
tiling scheme are optimized empirically for both NVIDIA G200 (Tesla) and G400 (Fermi) GPUs. The threefold larger shared
memory space of the G400 generation of GPUs allows for a significant performance increase when compared with G200.
When running on four GTX480 GPUs in parallel we are able to achieve performance a factor of 92 better than can be achieved
by a highly optimized multithreaded implementation running on four cores of an Intel X5550 CPU. The comparison of the
performance of G400 to G200 and the analysis of the relationship between the tiling parameters and performance suggest
that the hardware parameter limiting the performance of this histogramming algorithm is the size of the shared memory
space.

Acknowledgments

This work was supported by the National Institutes of Health under Grant P41-RR005969 and by the National Science
Foundation under Grant CHE 09-46358. Performance experiments were made possible by a generous hardware donation

Fig. 6. (a) and (b) The performance of the RDF histogramming code as a function of the number of GPU processors employed. In all calculations the full
4,741,632 atom test case was run. (a) The performance of various combinations of processors on the 6 ' G200 machine. Homogeneous combinations of
Tesla processors are shown in cyan while those configurations containing a single, faster GTX 285 processor are shown in purple. Note that nearly perfect
linear scaling is achieved in both cases. The GTX 285 performance is.37 bapps faster than that of a Tesla. Dynamic load balancing allows this performance
gain to persist even when the GTX 285 is run in parallel with five Tesla processors. (b) The performance on the 4 ' C2050 system is shown in red. Again,
nearly perfect linear scaling is observed. (c) The parallel efficiency as a function of the selection size for five Tesla GPUs of the 6 ' G200 machine (purple),
2 ' Tesla GPUs of the same machine (cyan), and the 4 ' C2050 machine (red). Greater than 90 percent efficiency is achieved for selection of 100,000 atoms
in the 5 Tesla case, 16,000 atoms in the 2 ' Tesla case, and 130,000 in the 4 ' C2050 case. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

B.G. Levine et al. / Journal of Computational Physics 230 (2011) 3556–3569 3567

by NVIDIA and by the National Science Foundation through TeraGrid resources provided by the National Center for Super-
computer Applications under Grant No. TG-MCA93S020. We are very grateful to Michael Klein and Klaus Schulten for guid-
ance and to David LeBard for many useful discussion.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jcp.2011.01.048.

References

[1] C.G. Gray, K.E. Gubbins, Theory of Molecular Fluids, Oxford University Press, New York, NY, 1984.
[2] D.A. McQuarrie, Statistical Mechanics, University Science Books, Sausalito, CA, 2000.
[3] L. Dang, J. Rice, J. Caldwell, P. Kollman, Ion solvation in polarizable water – molecular-dynamics simulations, J. Am. Chem. Soc. 113 (1991) 2481–2486.
[4] I. Svishchev, P. Kusalik, Structure in liquid water – a study of spatial-distribution functions, J. Chem. Phys. 99 (1993) 3049–3058.
[5] A. Kohlmeyer, W. Witschel, E. Spohr, Long-range structures in bulk water. A molecular dynamics study, Z. Naturforsch. 52a (1997) 432–434.
[6] P. Mark, L. Nilsson, Structure and dynamics of the TIP3P, SPC, and SPC/E water models, J. Phys. Chem. 105A (2001) 9954–9960.
[7] K. Kadau, T.C. Germann, P.S. Lomdahl, B.L. Holian, Microscopic view of structural phase transitions induced by shock waves, Science 296 (2002) 1681–

1684.
[8] A.E. Ismail, J.A. Greathouse, P.S. Crozier, S.M. Foiles, Electron-ion coupling effects on simulations of radiation damage in pyrochlore waste forms, J.

Phys.: Condens. Mat. 22 (2010) 225405.
[9] S. Vemparala, B.B. Karki, R.K. Kalia, A. Nakano, P. Vashishta, Large-scale molecular dynamics simulations of alkanethiol self-assembled monolayers, J.

Chem. Phys. 121 (2004) 4323–4330.
[10] R.L. Liboff, Correlation functions in statistical mechanics and astrophysics, Phys. Rev. A 39 (1989) 4098–4102.
[11] T. Sterling, D.J. Becker, D. Savarese, J.E. Dorband, U.A. Ranawake, C.V. Packer, Beowulf: a parallel workstation for scientific computation, in: Proceedings

of the 24th International Conference on Parallel Processing, CRC Press, Inc., Boca Raton, FL, USA, 1995, pp. 11–14.
[12] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, J.C. Phillips, GPU computing, Proc. IEEE 96 (2008) 879–899.
[13] A.G. Anderson, I. Goddard, W.A.P. Schroder, Quantum Monte Carlo on graphical processing units, Comput. Phys. Commun. 177 (2007) 298–306.
[14] J.A. Anderson, C.D. Lorenz, A. Travesset, General purpose molecular dynamics simulations fully implemented on graphics processing units, J. Comput.

Sci. 227 (2008) 5342–5359.
[15] A. Asadchev, V. Allada, J. Felder, B.M. Bode, M.S. Gordon, T.L. Windus, Uncontracted Rys quadrature implementation of up to g functions on graphical

processing units, J. Chem. Theory Comput. 6 (2010) 696–704.
[16] B.A. Bauer, J.E. Davis, M. Taufer, S. Patel, Molecular dynamics simulations of aqueous ions at the liquid–vapor interface accelerated using graphics

processors, J. Comput. Chem. 32 (2011) 375–385.
[17] P. Brown, C. Woods, S. McIntosh-Smith, F.R. Manby, Massively multicore parallelization of Kohn-Sham theory, J. Chem. Theory Comput. 4 (2008) 1620–

1626.
[18] P. Eastman, V.S. Pande, Constant constraint matrix approximation: a robust, parallelizable constraint method for molecular simulations, J. Chem.

Theory Comput. 6 (2010) 434–437.
[19] E. Elsen, M. Houston, V. Vishal, E. Darve, P. Hanrahan, V. Pande, N-body simulations on GPUs, in: Proc. of the 2006 ACM/IEEE Conference on

Supercomputing, IEEE Press, Piscataway, NJ, USA, 2006.
[20] M.S. Friedricks, P. Eastman, V. Vaidyanathan, M. Houston, S. LeGrand, A.L. Beberg, D.L. Ensign, C.M. Brums, V.S. Pande, Accelerating molecular dynamics

simulations on graphics processing units, J. Comput. Chem. 30 (2009) 864–872.
[21] M.J. Harvey, G. Giupponi, G. De Fabritiis, ACEMD: accelerating biomolecular dynamics in the microsecond time scale, J. Chem. Theory Comput. 5 (2009)

1632–1639.
[22] M.J. Harvey, G. De Fabritiis, An implementation of the smooth particle mesh ewald method on gpu hardware, J. Chem. Theory Comput. 5 (2009) 2371–

2377.
[23] T. Narumi, K. Yasuoka, M. Taiji, S. Hoefinger, Current performance gains from utilizing the GPU of the ASIC MDGRAPE-3 within an enhanced Poisson

Boltzmann approach, J. Comput. Chem. 30 (2009) 2351–2357.
[24] R. Olivares-Amaya, M.A. Watson, R.G. Edgar, L. Vogt, Y. Shao, A. Aspuru-Guzik, Accelerating correlated quantum chemistry calculations using graphical

processing units and a mixed precision matrix multiplication library, J. Chem. Theory Comput. 6 (2010) 135–144.
[25] L. Peng, K. Nomura, T. Oyakawa, R.K. Kalia, A. Nakano, P. Vashishta, Parallel lattice Boltzmann flow simulation on emerging multi-core platforms, in:

14th International Euro-Par Conference, Springer-Verlag, Berlin, Germany, 2008, pp. 763–777.
[26] J.C. Phillips, J.E. Stone, K. Schulten, Adapting a message-driven parallel application to GPU-accelerated clusters, in: Proceedings of the 2008 ACM/IEEE

Conference on Supercomputing, IEEE Press, Piscataway, NJ, USA, 2008.
[27] J.E. Stone, J. Saam, D.J. Hardy, K.L. Vandivort, W.-M.W. Hwu, K. Schulten, High performance computation and interactive display of molecular orbitals

on GPUs and multi-core CPUs, in: Proceedings of the 2nd Workshop on General-Purpose Processing on Graphics Processing Units, ACM International
Conference Proceeding Series, vol. 383, ACM, Washington, DC, USA, 2009, pp. 9–18.

[28] J.E. Stone, J.C. Phillips, P.L. Freddolino, D.J. Hardy, L.G. Trabuco, K. Schulten, Accelerating molecular modeling application with graphics processors, J.
Comput. Chem. 28 (2007) 2618–2640.

[29] B. Sukhwani, M.C. Herbordt, GPU acceleration of a production molecular docking code, in: Proceedings of the 2nd Workshop on General Purpose
Processing on Graphics Processing Units, ACM, Washington, DC, USA, 2009, pp. 19–27.

[30] I.S. Ufimtsev, T.J. Martinez, Graphical processing units for quantum chemistry, Comput. Sci. Eng. 10 (2008) 26–34.
[31] I.S. Ufimtsev, T.J. Martinez, Quantum chemistry on graphical processing units. 2. Direct self-consistent field implementation, J. Chem. Theory Comput. 5

(2009) 1004–1015.
[32] L. Vogt, R. Olivares-Amaya, S. Kermes, Y. Shao, C. Amador-Bedolla, A. Aspuru-Guzik, Accelerating resolution-of-the-identity second-order Moller-

Plesset quantum chemistry calculations with graphical processing units, J. Phys. Chem. 112A (2008) 2049–2057.
[33] M.A. Watson, R. Olivares-Amaya, R.G. Edgar, A. Aspuru-Guzik, Accelerating correlated quantum chemistry calculations using graphical processing

units, Comput. Sci. Eng. 12 (2010) 40–51.
[34] K. Yasuda, Accelerating density functional calculations with graphics processing unit, J. Chem. Theory Comput. 4 (2008) 1230–1236.
[35] K.J. Barker, K. Davis, A. Hoisie, D.J. Kerbyson, M. Lang, S. Pakin, J.C. Sancho, Entering the petaflop era: the architecture and performance of Roadrunner,

in: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, ACM, Austin, TX, USA, 2008, pp. 1–11.
[36] Intel 64 Tesla linux cluster Lincoln, 2010. <http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware/Intel64TeslaCluster/>.
[37] Texas Advanced Computing Center: Visualization, 2010. <http://www.tacc.utexas.edu/resources/visualization/>.
[38] June 2010 TOP500 Supercomputing Sites, 2010. <http://www.top500.org/lists/2010/06>.
[39] Keeneland, 2010. <http://keeneland.gatech.edu/>.
[40] W. Humphrey, A. Dalke, K. Schulten, VMD – visual molecular dynamics, J. Mol. Graph. 14 (1996) 33–38.

3568 B.G. Levine et al. / Journal of Computational Physics 230 (2011) 3556–3569

http://dx.doi.org/10.1016/j.jcp.2011.01.048
http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware/Intel64TeslaCluster/
http://www.tacc.utexas.edu/resources/visualization/
http://www.top500.org/lists/2010/06
http://keeneland.gatech.edu/

[41] C.I. Rodrigues, D.J. Hardy, J.E. Stone, K. Schulten, W.-M.W. Hwu, GPU acceleration of cutoff pair potentials for molecular modeling applications, in:
Proceedings of the 2008 Conference on Computing Frontiers, ACM, New York, NY, USA, 2008.

[42] CUDA Zone, 2010. <http://www.nvidia.com/object/cuda_home.html>.
[43] B.R. Brooks, C.L. Brooks III, A.D. Mackerell Jr., L. Nilsson, R.J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A.R.

Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R.W. Pastor, C.B. Post, J.Z. Pu, M. Schaefer, B.
Tidor, R.M. Venable, H.L. Woodcock, X. Wu, W. Yang, D.M. York, M. Karplus, CHARMM: the biomolecular simulation program, J. Comput. Chem. 30
(2009) 1545–1614.

[44] J.H. Ahn, M. Erez, W.J. Dally, Scatter-add in data parallel architectures, in: HPCA ’05: Proceedings of the 11th International Symposium on High-
Performance Computer Architecture, IEEE Computer Society, Washington, DC, USA, 2005, pp. 132–142.

[45] A. Shahbahrami, B.H.H. Juurlink, Simd vectorization of histogram functions, in: Proceedings of the 18th IEEE International Conference on Application-
Specific Systems, Architectures and Processors (ASAP07), IEEE Press, Piscataway, NJ, USA, 2007, pp. 174–179.

[46] S. Kumar, D. Kim, M. Smelyanskiy, Y.-K. Chen, J. Chhugani, C.J. Hughes, C. Kim, V.W. Lee, A.D. Nguyen, Atomic vector operations on chip
multiprocessors, in: ISCA ’08: Proceedings of the 35th Annual International Symposium on Computer Architecture, IEEE Computer Society,
Washington, DC, USA, 2008, pp. 441–452.

[47] M. Wolfe, Iteration space tiling for memory hierarchies, in: Proceedings of the 1989 ACM/IEEE Conference on Supercomputing, ACM, New York, NY,
USA, 1987, pp. 655–664.

[48] P. Boulet, A. Darte, T. Risset, Y. Robert, (Pen)-ultimate tiling?, Integration 17 (1994) 33–51
[49] S. Coleman, K.S. McKinley, Tile size selection using cache organization and data layout, in: Proceedings of the Conference on Programming Language

Design and Implementation, ACM Press, La Jolla, CA, USA, 1995.
[50] R. Allan, K. Kennedy, Optimizing Compilers for Modern Architectures, Morgan Kaufmann Publishers, San Francisco, CA, USA, 2002.
[51] R. Shams, R.A. Kennedy, Efficient histogram algorithms for NVIDIA CUDA compatible devices, in: Proceedings of the International Conference on Signal

Processing and Communications Systems, IEEE, Gold Coast, Australia, 2007, pp. 418–422.

B.G. Levine et al. / Journal of Computational Physics 230 (2011) 3556–3569 3569

http://www.nvidia.com/object/cuda_home.html

	Fast analysis of molecular dynamics trajectories with graphics processing units—Radial distribution function histogramming
	Introduction
	Methods
	RDF math and serial histogramming
	Parallel RDF histogramming
	CPU parallel RDF histogramming
	GPU parallel RDF histogramming
	GPU RDF parallel decomposition strategies
	Multi-GPU decomposition and load balancing
	GPU parallel histogram updating techniques

	Performance analysis and parameter optimization

	Results and discussion
	Tiling parameter optimization and analysis
	Performance benchmarks

	Conclusions
	Acknowledgments
	Supplementary data
	References

