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Abstract 
An instantaneously trained artificial neural network 
schema is used to improve the interactive speed in very 
large scale scientific visualization.  An instant learning 
algorithm is adopted to reduce the training time for user 
behavior analysis in billion-particle walkthrough on an 
SGI Onyx2 graphics server connected to a PC cluster. 
 
 
1. Introduction 
 

Scientific visualization provides a deeper understanding 
of information and data generated by large scale 
simulations [1].  However, visualization of large datasets 
remains to be a challenge [2,3,4,5]. 

Sharma et al. [6] implemented a parallel and distributed 
system that utilizes the computing power of a PC cluster to 
perform partial pre-rendering to reduce the dataset flowing 
into the graphics engine.  In order to overcome the 
bottleneck of rather expensive graphics hardware, the 
computation is split into two parts.  The compute-intensive 
preprocessing including viewer-frustum culling and 
occlusion culling is performed on the PC cluster, while the 
graphics processing intensive rendering is carried out on 
the graphic workstation.  This system achieved a nearly 
interactive rendering speed of about 1 frame per second 
for a billion particle configuration. 
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Figure 1: Pipeline overlapping.  View frustum culling 
(t1) and occlusion culling (t2) are done on a PC 
cluster, while hardware rendering (t3) is done on an 
SGI graphics server. 

To further improve the system performance, it is an 
intuitive idea to have the two stages pipeline overlapped.  
For this purpose, there needs to be a mechanism to 
determine which part of data should be pre-fetched to the 
second stage in the pipeline, which is the graphics 
workstation.  Figure 1 shows this overlapping scheme. 

In order to numerically solve the problem, the target 
space is divided into a regular 3D grid.  User’s next move 
to 26 possible adjacent domains is coded numerically from 
1 to 26.  Then the problem of predicting next position is 
converted to that of predicting the value of a time series 
function. 

In this paper, we propose an instantaneously trained 
neural network schema to improve the interactive speed in 
extremely large scale scientific visualization. 
 
2. Time Series Prediction 
 

Time series prediction problem is to predict a future 
value based on knowledge of historical data.  Some 
traditional methods, such as probabilistic method in time 
series function prediction was discussed in the book by 
Brown [7].  One of the presumptions of these methods is 
that the overall distribution of the data conforms to a 
known probability distribution.  However, as the temporal 
sequence considered in this paper represents the trace of 
human walking through a 3D space, it is difficult to define 
such a pattern. 

There are alternative methods for time series function 
prediction, such as Monte Carlo methods [8], and artificial 
neural networks [9].  Monte Carlo methods usually 
involve excessive computations, which is not suitable for 
interactive applications.  For neural networks, the obstacle 
lies in the training time.  A prototypical neural network 
implementation consists of two separate phases: The 
(usually off-line) training phase and the on-line running 
phase.  The need for off-line training in advance makes 
neural network unsuitable for tasks that require instant 
learning from streaming data.   
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One promising method is the quick training algorithm 
for radial basis function (RBF) neural networks [10].  It 
has no local minima, and it can be trained significantly 
faster than backpropagation networks.  However, because 
of the non-linear shape of the activation function, it is not 
sufficiently fast for interactive applications. 

 
3. CC4 Algorithm 
 

Kak [11] suggested a unique instant learning neural 
network based on a corner classification (CC) algorithm.  
The CC algorithm involves little computation and thus 
enables instantaneous training.  This algorithm is suitable 
for fast classification problems with binary input data.  
Several implementations of the CC algorithm have been 
suggested.  One of which, named CC4 combines learning 
and generalization, and is most suitable for our problem. 

A CC4 neural network consists of three layers of binary 
neurons: The input layer, a hidden layer, and the output 
layer.  The number of input neurons is equal to the length 
of the input vector plus one bias neuron, which always has 
the value of 1.  The number of hidden neurons is equal to 
the number of training samples, where each hidden neuron 
corresponds to one training sample.  The activation 
function of CC4 is: The output neuron outputs 1 when the 
sum of all weighted inputs is greater than 0 and outputs 0 
otherwise.  Input layer weights are assigned as: 

"
#
$

%&'
&'&
'

' 1,
11

11
srw

x
x

w bias
i

i
j  

For each training vector, if an input neuron receives a 1 
)1( 'ix , its weights to all hidden neurons are set to 1; 

otherwise, they are set to -1.  The weights from the bias 
neuron to the hidden layer neurons are equal to the radius 
of generalization r minus the summation of ‘1’s in the 
training vectors plus 1.  Output layer weights are assigned 
as follows: If the training vector produces a 1 at an output 
neuron, the weight from its hidden neuron to that output 
neuron is set to 1; otherwise, it is set to -1.  Fig. 2 shows 
the architecture of a general CC4 network. 
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Figure 2: A general CC4 network architecture 

A pseudo code for the CC4 training algorithm is given 
below: 
// w: input layer weight matrix; 
// u: output layer 
assign r an appropriate value,i.e. r=2; 
for each training vector j do 
  begin 
    s = 0; 
    for each input vector i do 
      begin 
        if training vector j gets ‘1’ 
    then s = s + 1; 
        Set wi[j]; 
      end; 
    wbias[j] := r – s + 1; 
    set u[j]; 
  end; 
 

CC4 algorithm can be used when instant learning is 
desired, such as on-line intelligent search engine [12], or 
short term predictions such as daytrade stock values. 

 
4. Billion-Particle Interactive Walkthrough 
 

We have incorporated the CC4 algorithm into the 
interactive walkthrough system discussed in Sec. 1. 

 

   
Figure 3: A Scientist is investigating a fracture in a 
ceramic fiber composite material rendered on an 
ImmersaDesk virtual environment [13]. 

In order to improve the average response time, CC4 
algorithm is used to predict the next move of the user 
based on recent previous positions during walkthrough.  
Using the predicted next move, the program pre-fetches 
required data while the current scene is being rendered.  
Therefore, on the next time step, the graphics pipeline can 
begin rendering immediately without waiting for the data 
to be fetched through the network.  A formal rephrase of 
the problem is: 
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The predicted position, 1%tr
!

, is determined by the current  

)( tr
!

and 1&w  previous positions, ),...,( 11 %&& wtt rr !!
, and 

knowledge of the walking pattern, H, which is obtained by 
examining the history of s previous positions.  The width 
of testing window, w, and the number of training samples, 
s, are parameters to be chosen at the training stage to 
conform to a particular problem. 

The entire space is covered with a regular 3D grid, and 
the smallest unit of this grid forms a cell.  The user’s 
position is discretized with the cell.  Also, instead of 
recording absolute positions, relative positions are used, 
which are represented by directional numerical values as 
show in Fig. 4. All movements are represented by relative 
positions with cell 14 being the reference point.  For 
example, number 1 represents a move from position 14 to 
position 1.  A path goes from cell A to cell B 
(A!C!D!E!F!B) as shown in Fig. 4 will be 
encoded as a sequence, (15,10,11,23,23), as the path 
shown as shadow. 
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Figure 4: Illustration of the spatial grid.  All 
movements are represented relative to the starting 
position (cell 14 is the reference cell).  A path from 
A!C!D!E!F!B is represented as a sequence, 
(15,10,11,23,23). 

This predictive pre-fetching acts as ‘traffic control’, 
which is similar to the cache management mechanism.  It 
requests future data from the previous culling procedure to 
feed the graphics rendering pipeline.  Before generating a 
new frame, the rendering pipeline will run a test to check 
whether the required datasets reside in the memory.  If the 
datasets exist, it will go ahead and perform the rendering.  
Otherwise, a ‘page fault’ generates a request for new data. 

Because neural network learns by accumulated 
knowledge over a period of past history, it does not 
function well until it reaches the point when the historic 
data is sufficient for extracting such knowledge.  We 
propose a hybrid system, in which heuristic rules are used 
for prediction in the first few hundred steps and after that, 
the neural network prediction kicks in.  The heuristic rule 
assumes that the user obeys Newton’s laws, which mean it 
will continue its current moving status, i.e., if moving in 
one direction, he/she will continue the move in the same 

direction in the next time step; if the user has been turning, 
the turning will be continued in the same direction with 
same speed.  A diagram of this hybrid system is shown in 
Fig. 5. 

Given the number of possible movements that can be 
made during a walkthrough, it is difficult to predict the 
correct movement every time.  In order to speed up overall 
system performance while tolerate missed predictions, we 
propose a latency hiding scheme, in which rendering is 
only performed when the pre-fetching is successful.  With 
this scheme, not all scenes are shown while the user is 
moving around; however the system performance is 
improved by taking advantage of the full speed of the 
graphics rendering hardware. 
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Figure 5: The hybrid predictive pre-fetching scheme. 

 
5. Results 
 

The billion-particle interactive walkthrough project has 
been implemented on a parallel/distributed platform 
consisting of an ImmersaDesk virtual environment, an SGI 
graphics server, and a PC cluster.  The ImmersaDesk 
consists of a pivotal screen, an Electrohome Marquee 
stereoscopic projector, a head-tracking system, and 
eyewear kit, IR emitters and a wand with a tracking sensor 
and a tracking I/O subsystem.  A programmable wand 
with three buttons and a joystick are the primary user 
interactive devices, which allow interactions between the 
views and simulated objects.  The rendering system is an 
SGI Onyx2 with two R10000 processors (300 MHz), 4 GB 
system RAM, and an InfinityReality2 graphics pipeline.  
The PC cluster used for the pre-processing stage is made 
of four PCs running Linux 6.2 each with an 800 MHz 
Pentium III processor and 512 MB RAM. 

A scalability test of the system has involved up to a 
billon atoms.  The time to extract and render one scene is 
nearly a constant function of the number of atoms. 

By employing CC4 neural network scheme, the system 
is more responsive to users’ input.  Figure 6 shows that the 
average prediction hit ratio is 34%, which is much higher 
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than that of an alternative heuristic method, 24%.  This 
indicates that in one third of times, the user feels 
significantly improved system response.  Combined with 
the proposed latency hiding scheme, the system will only 
render on average about 1 frame per three frames, but the 
user will experience apparent performance gain in terms of 
interactivity. 
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Figure 6: Hit-ratio (in percentage) comparison of 
CC4 algorithm and heuristic method 

6. Summary 
 

We have developed a novel method for interactive 
control in very large-scale scientific visualization 
applications.  This method uses an instantaneous training 
neural network CC4 algorithm to track and analyze user 
behavior and use this information to improve system 
responding speed.  Experimental results show that this 
method returns better results than guessing or heuristic 
methods. 
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