
 1

Title: Improving Interactivity of a Parallel and Distributed Immersive Walkthrough Application for
Very Large Datasets with Artificial Neural Network-based Machine Learning

Names: Xinlian Liu, Ashish Sharma, Paul Miller, Wei Zhao, Aiichiro Nakano, Rajiv K. Kalia, Priya
Vashishta

Affiliation: Concurrent Computing Laboratory for Materials Simulations, Department of Computer
Science, Louisiana State University

Postal Address: Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA
70803-4001

EMail: {liuxl, ashish, pmiller, wzhao, nakano, kalia, priyav}@csc.lsu.edu

Telephone: (225) 578-1342
Fax: (225) 578-5855

Presentation: Xinlian Liu

Keywords:

! Parallel and Distributed Computing
! Scientific Visualization
! Interactivity
! CC4 Algorithm
! Instantaneous Learning

 1

Improving Interactivity of a Parallel and Distributed Immersive Walkthrough
Application for Very Large Datasets with Artificial Neural Network-based

Machine Learning

Xinlian Liu, Ashish Sharma, Paul Miller, Wei Zhao, Aiichiro Nakano, Rajiv K. Kalia, Priya Vashishta
Concurrent Computing Laboratory for Materials Simulations, Department of Computer Science,

Louisiana State University
{liuxl, ashish, pmiller, wzhao, nakano, kalia, priyav}@csc.lsu.edu

Abstract
An instantaneously trained artificial neural network
schema is used to improve the interactive speed in very
large scale scientific visualization. An instant learning
algorithm is adopted to reduce the training time for user
behavior analysis in billion-particle walkthrough on an
SGI Onyx2 graphics server connected to a PC cluster.

1. Introduction

Scientific visualization provides a deeper understanding
of information and data generated by large scale
simulations [1]. However, visualization of large datasets
remains to be a challenge [2,3,4,5].

Sharma et al. [6] implemented a parallel and distributed
system that utilizes the computing power of a PC cluster to
perform partial pre-rendering to reduce the dataset flowing
into the graphics engine. In order to overcome the
bottleneck of rather expensive graphics hardware, the
computation is split into two parts. The compute-intensive
preprocessing including viewer-frustum culling and
occlusion culling is performed on the PC cluster, while the
graphics processing intensive rendering is carried out on
the graphic workstation. This system achieved a nearly
interactive rendering speed of about 1 frame per second
for a billion particle configuration.

t1 t2 t3

t1 t2 t3

t1 t2 t3

t1 t2 t3

t1 t2 t3

t1: viewer-frustum culling
t2: occlusion culling
t3: hardware rendering pipeline

Time

Fr
am

e

Figure 1: Pipeline overlapping. View frustum culling
(t1) and occlusion culling (t2) are done on a PC
cluster, while hardware rendering (t3) is done on an
SGI graphics server.

To further improve the system performance, it is an
intuitive idea to have the two stages pipeline overlapped.
For this purpose, there needs to be a mechanism to
determine which part of data should be pre-fetched to the
second stage in the pipeline, which is the graphics
workstation. Figure 1 shows this overlapping scheme.

In order to numerically solve the problem, the target
space is divided into a regular 3D grid. User’s next move
to 26 possible adjacent domains is coded numerically from
1 to 26. Then the problem of predicting next position is
converted to that of predicting the value of a time series
function.

In this paper, we propose an instantaneously trained
neural network schema to improve the interactive speed in
extremely large scale scientific visualization.

2. Time Series Prediction

Time series prediction problem is to predict a future
value based on knowledge of historical data. Some
traditional methods, such as probabilistic method in time
series function prediction was discussed in the book by
Brown [7]. One of the presumptions of these methods is
that the overall distribution of the data conforms to a
known probability distribution. However, as the temporal
sequence considered in this paper represents the trace of
human walking through a 3D space, it is difficult to define
such a pattern.

There are alternative methods for time series function
prediction, such as Monte Carlo methods [8], and artificial
neural networks [9]. Monte Carlo methods usually
involve excessive computations, which is not suitable for
interactive applications. For neural networks, the obstacle
lies in the training time. A prototypical neural network
implementation consists of two separate phases: The
(usually off-line) training phase and the on-line running
phase. The need for off-line training in advance makes
neural network unsuitable for tasks that require instant
learning from streaming data.

 2

One promising method is the quick training algorithm
for radial basis function (RBF) neural networks [10]. It
has no local minima, and it can be trained significantly
faster than backpropagation networks. However, because
of the non-linear shape of the activation function, it is not
sufficiently fast for interactive applications.

3. CC4 Algorithm

Kak [11] suggested a unique instant learning neural
network based on a corner classification (CC) algorithm.
The CC algorithm involves little computation and thus
enables instantaneous training. This algorithm is suitable
for fast classification problems with binary input data.
Several implementations of the CC algorithm have been
suggested. One of which, named CC4 combines learning
and generalization, and is most suitable for our problem.

A CC4 neural network consists of three layers of binary
neurons: The input layer, a hidden layer, and the output
layer. The number of input neurons is equal to the length
of the input vector plus one bias neuron, which always has
the value of 1. The number of hidden neurons is equal to
the number of training samples, where each hidden neuron
corresponds to one training sample. The activation
function of CC4 is: The output neuron outputs 1 when the
sum of all weighted inputs is greater than 0 and outputs 0
otherwise. Input layer weights are assigned as:

"
#
$

%&'
&'&
'

' 1,
11

11
srw

x
x

w bias
i

i
j

For each training vector, if an input neuron receives a 1
)1('ix , its weights to all hidden neurons are set to 1;

otherwise, they are set to -1. The weights from the bias
neuron to the hidden layer neurons are equal to the radius
of generalization r minus the summation of ‘1’s in the
training vectors plus 1. Output layer weights are assigned
as follows: If the training vector produces a 1 at an output
neuron, the weight from its hidden neuron to that output
neuron is set to 1; otherwise, it is set to -1. Fig. 2 shows
the architecture of a general CC4 network.

Hidden
 layerInput

layer Output
 layerx1

x2

xn

bias=1

y1

y2

ym

Figure 2: A general CC4 network architecture

A pseudo code for the CC4 training algorithm is given
below:
// w: input layer weight matrix;
// u: output layer
assign r an appropriate value,i.e. r=2;
for each training vector j do
 begin
 s = 0;
 for each input vector i do
 begin
 if training vector j gets ‘1’
 then s = s + 1;
 Set wi[j];
 end;
 wbias[j] := r – s + 1;
 set u[j];
 end;

CC4 algorithm can be used when instant learning is
desired, such as on-line intelligent search engine [12], or
short term predictions such as daytrade stock values.

4. Billion-Particle Interactive Walkthrough

We have incorporated the CC4 algorithm into the
interactive walkthrough system discussed in Sec. 1.

Figure 3: A Scientist is investigating a fracture in a
ceramic fiber composite material rendered on an
ImmersaDesk virtual environment [13].

In order to improve the average response time, CC4
algorithm is used to predict the next move of the user
based on recent previous positions during walkthrough.
Using the predicted next move, the program pre-fetches
required data while the current scene is being rendered.
Therefore, on the next time step, the graphics pipeline can
begin rendering immediately without waiting for the data
to be fetched through the network. A formal rephrase of
the problem is:

"
#
$

'
'

&%&%&

%&&%

),,...,(
),,...,,(

12,1

111

ttstst

wtttt

rrrrIH
HrrrGr
!!!!

!!!!

 3

The predicted position, 1%tr
!

, is determined by the current

)(tr
!

and 1&w previous positions,),...,(11 %&& wtt rr !!
, and

knowledge of the walking pattern, H, which is obtained by
examining the history of s previous positions. The width
of testing window, w, and the number of training samples,
s, are parameters to be chosen at the training stage to
conform to a particular problem.

The entire space is covered with a regular 3D grid, and
the smallest unit of this grid forms a cell. The user’s
position is discretized with the cell. Also, instead of
recording absolute positions, relative positions are used,
which are represented by directional numerical values as
show in Fig. 4. All movements are represented by relative
positions with cell 14 being the reference point. For
example, number 1 represents a move from position 14 to
position 1. A path goes from cell A to cell B
(A!C!D!E!F!B) as shown in Fig. 4 will be
encoded as a sequence, (15,10,11,23,23), as the path
shown as shadow.

7

6

8

5

9

4

1 2 3

12

13

11

14

10

15

16 17 18

27

22

26

23

25

24

21 20 19

B

D
A

F

C
D

E

B

Figure 4: Illustration of the spatial grid. All
movements are represented relative to the starting
position (cell 14 is the reference cell). A path from
A!C!D!E!F!B is represented as a sequence,
(15,10,11,23,23).

This predictive pre-fetching acts as ‘traffic control’,
which is similar to the cache management mechanism. It
requests future data from the previous culling procedure to
feed the graphics rendering pipeline. Before generating a
new frame, the rendering pipeline will run a test to check
whether the required datasets reside in the memory. If the
datasets exist, it will go ahead and perform the rendering.
Otherwise, a ‘page fault’ generates a request for new data.

Because neural network learns by accumulated
knowledge over a period of past history, it does not
function well until it reaches the point when the historic
data is sufficient for extracting such knowledge. We
propose a hybrid system, in which heuristic rules are used
for prediction in the first few hundred steps and after that,
the neural network prediction kicks in. The heuristic rule
assumes that the user obeys Newton’s laws, which mean it
will continue its current moving status, i.e., if moving in
one direction, he/she will continue the move in the same

direction in the next time step; if the user has been turning,
the turning will be continued in the same direction with
same speed. A diagram of this hybrid system is shown in
Fig. 5.

Given the number of possible movements that can be
made during a walkthrough, it is difficult to predict the
correct movement every time. In order to speed up overall
system performance while tolerate missed predictions, we
propose a latency hiding scheme, in which rendering is
only performed when the pre-fetching is successful. With
this scheme, not all scenes are shown while the user is
moving around; however the system performance is
improved by taking advantage of the full speed of the
graphics rendering hardware.

having enough
historical data?

heuristic rules neural network
prediction

request data from
previous stages of

the pipeline

Is required data
in memory?

next step

yesno

 yes

no

TIME

t

t+1

Figure 5: The hybrid predictive pre-fetching scheme.

5. Results

The billion-particle interactive walkthrough project has
been implemented on a parallel/distributed platform
consisting of an ImmersaDesk virtual environment, an SGI
graphics server, and a PC cluster. The ImmersaDesk
consists of a pivotal screen, an Electrohome Marquee
stereoscopic projector, a head-tracking system, and
eyewear kit, IR emitters and a wand with a tracking sensor
and a tracking I/O subsystem. A programmable wand
with three buttons and a joystick are the primary user
interactive devices, which allow interactions between the
views and simulated objects. The rendering system is an
SGI Onyx2 with two R10000 processors (300 MHz), 4 GB
system RAM, and an InfinityReality2 graphics pipeline.
The PC cluster used for the pre-processing stage is made
of four PCs running Linux 6.2 each with an 800 MHz
Pentium III processor and 512 MB RAM.

A scalability test of the system has involved up to a
billon atoms. The time to extract and render one scene is
nearly a constant function of the number of atoms.

By employing CC4 neural network scheme, the system
is more responsive to users’ input. Figure 6 shows that the
average prediction hit ratio is 34%, which is much higher

 4

than that of an alternative heuristic method, 24%. This
indicates that in one third of times, the user feels
significantly improved system response. Combined with
the proposed latency hiding scheme, the system will only
render on average about 1 frame per three frames, but the
user will experience apparent performance gain in terms of
interactivity.

24
34

0
5

10
15
20
25
30
35
40

heuristic CC4

In
 p

er
ce

nt
ag

e

Figure 6: Hit-ratio (in percentage) comparison of
CC4 algorithm and heuristic method

6. Summary

We have developed a novel method for interactive
control in very large-scale scientific visualization
applications. This method uses an instantaneous training
neural network CC4 algorithm to track and analyze user
behavior and use this information to improve system
responding speed. Experimental results show that this
method returns better results than guessing or heuristic
methods.

7. References

[1] B.H. McCormick, et al., Visualization in Scientific
Computing, Computer Graphics, 21: 1-14

[2] P.H. Smith and J.V. Rosendale, eds. Data Visualization
Corridors: Report on the 1998 DVC Workshop Series, 1998

[3] C. Bajaj and S. Cutchin, Web based collaborative
visualization of distributed and paralle simulation, IEEE Parallel
Visualization and Graphics Symposium, 1999, San Fransciso

[4] K.L. Ma and D.M. Camp, High Performance Visualization of
Time-Varying Volume Data over a Wide-Area Network, High
Performance Networking and Computing Conference, 2000,
Dallas, TX

[5] D. Aliaga, et al., A Framework for the Real-Time
Walkthrough of Massive Models, 1998, University of North
Carolina: Chapel Hill

[6] A. Sharma, et al., Immersive and Interactive Exploration of
Billion-Atom System, IEEE virtual Reality 2002 Conference,
2002, Orlando, FL

[7] R.G. Brown, Smoothing, Forecasting and Prediction of
Discrete Time Series, Management and Quantitative Methods
Series, 1963, Englewood Cliffs, NJ: Prentice-Hall

[8] S. Thrun and L. Langford, Monte Carlo Hidden Markov
Models, 1998, CMU-CS-98-179, Carnegie Mellon University:
Pittsburgh, PA

[9] M.C. Mozer, Neural Net Architectures for Temporal
Sequence Processing, Predicting the Future and Understanding
the Past, A. Weigend and N. Gershenfeld, eds. 1994, Addison-
Wesley Publishing: Redwood City, CA

[10] L. Fu, Neural Networks in Computer Intelligence, 1994,
New York: McGraw-Hill

[11] K.W. Tang and S.C. Kak, A new corner classification
approach to neural network training, Circuits Systems Signal
Processing, 1998, 17(4): p.459-469

[12] B. Shu and S.C. Kak, A neural network based intelligent
metasearch engine, Information Sciences, 1999, 120: p. 1-11

[13] A. Nakano, et al., Multiscale Simulation of Nanosystems,
IEEE/AIP Computing in Science and Engineering 3(4), 2001, pp.
56-66

