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Immersive & Interactive Visualization
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Locality in Data Compression 

Scalable encoding:
• Store relative positions on spacefilling curve: O(NlogN) ® O(N)
Result:
• Data size, 50 Bytes/atom ® 6 Bytes/atom
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Challenge: Massive data transfer via wide area network:
75GB/step of data for 1.5 billion-atom MD!
® Solution: Compressed software pipeline



Data Compression for Scalable I/O 

Scalable encoding:
• Spacefilling curve based on octree index

Challenge: Massive data transfer via OC-3 (155 Mbps)
75 GB/frame of data for a 1.5-billion-atom MD!
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3D ® list map preserves spatial proximity



Spacefilling-Curve Data Compression 
Algorithm:
1. Sort particles along the spacefilling curve
2. Store relative positions: O(NlogN) ® O(N)
• Adaptive variable-length encoding to handle outliers
• User-controlled error bound

Result:
• An order-of-magnitude reduction  
 of I/O size: 50 ® 6 Bytes/atom

https://aiichironakano.github.io/Omelchenko-DataCmp-CPC00.pdf

https://aiichironakano.github.io/Omelchenko-DataCmp-CPC00.pdf


Data Locality in Visualization
• Octree-based fast view-frustum 

culling
• Probabilistic occlusion culling
• Parallel/distributed processing 
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• Interactive visualization of 
a billion-atom dataset in 
immersive environment 



Hierarchical Abstraction 
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• Larger clusters for longer distances
• Recursively subdivide the 3D space
 to form an octree

2D example Use of an octree 



Visibility Culling
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Octree-based View-Frustum Culling

• Use the octree data structure to 
efficiently select only visible 
atoms

• Complexity
 Insertion into octree: O(N)
 Data extraction: O(logN)



Probabilistic Occlusion Culling
• Remove atoms that are occluded by other atoms closer to the viewer
• Regions farther away from the viewer is more likely to be occluded 

than one in front of the viewer

• Draw fewer atoms per region as the
 distance of a region from the viewer increases: 
 visibility value v(x) for region x

• Recurrence along the view line

• Run-time adaptation



Results of Probabilistic Occlusion Culling

68% fewer objects
3´ frame rate

Original Probabilistic Difference



Multiresolution Culling & Rendering

 

.94fps - 90,000 particles

 

3.2fps - 4,500 particles

Without multiresolution With multiresolution

Outflow pathways of optic nerves from the 
retina of a rabbit eye

(Experimental data by C. Burgoyne & R. 
Beuerman, LSU Eye Center)

• Per-octree node operations:
 —Frustum culling
 —Probabilistic occlusion culling
• Per-atom operations
 —Multiple levels-of-detail
 —Occlusion culling (per-object, per-octree node)

Use less # of polygons for farther atoms

fps: frames rendered per second



Distributed Architecture

OCTREE BASED DATA 
EXTRACTION MODULE

PROBABALISTIC OCCLUSION 
CULLING MODULE

RENDERING 
SYSTEM

PER-ATOM 
OCCLUDER

RENDERING & VISUALIZATION MODULE

USER POSITION NEAR COMPLETE LIST OF
VIEWABLE ATOMS

REGIONS OF INTEREST

TCP/IP SOCKET

Graphics server

PC cluster



Parallel Octree Extraction

PC Cluster Nodes

Bounding Shells of Equal Volume

• Individual copies of the octree with each computing node
• Spatial decomposition using concentric shells of equal volume
• Load balancing due to the equal use of each processor for extraction



Latency Hiding
• Individual modules are multithreaded to reduce network or module 

latency; cf. OpenMP
• Minimize latency due to inter-modular dependencies by overlapping 

the inter-module communication and module computation;
 cf. computation-communication overlap by MPI_Irecv

• Instantaneously trained neural network (CC4 [Tang & Kak, CSSP’98]) 
predicts the user’s next position [Liu et al., PDPTA’02]

https://aiichironakano.github.io/cs596/Liu-VizNN-PDPTA02.pdf

https://aiichironakano.github.io/cs596/Liu-VizNN-PDPTA02.pdf


Parallel & Distributed Atomsviewer
Real-time walkthrough for a billion atoms on an SGI Onyx2  (2 ´ 
MIPS R10K, 4GB RAM) connected to a PC cluster (4 ´ 800MHz P3)

IEEE Virtual Reality Best Paper
https://aiichironakano.github.io/cs596/Sharma-Viz-Presence03.pdf

https://aiichironakano.github.io/cs596/Sharma-Viz-Presence03.pdf


In Situ Parallel Rendering

• Parallel rendering of spatially 
distributed data: hybrid sort-
first/sort-last (who does what)

• Scalable depth buffer by 
domain-level distributed 
visibility ordering

• On-the-fly visualization of 
parallel simulation without data 
migration

• Parallel efficiency 0.98 on 1,024 
processors for 16.8 million-atom 
molecular-dynamics simulation

CSCI 596 final project



Atomsviewer Code

• Programming language
 >C++ 
• Graphics
 > OpenGL
 > CAVE Library (optional) 
• Platforms
 > Windows
 > Macintosh OS X 
 > SGI Irix 



Atomsviewer System



Atomsviewer Commands



Atomsviewer Code Dissemination
Computer Physics Communications Program Library

https://aiichironakano.github.io/cs596/Sharma-viz-CPC04.pdf

Submit your code/paper to CPC!

https://aiichironakano.github.io/cs596/Sharma-viz-CPC04.pdf

