
Massive Dataset Visualization

Goal: Visualize billion atoms in real time

Aiichiro Nakano
Collaboratory for Advanced Computing & Simulations

Department of Computer Science
Department of Physics & Astronomy

Department of Quantitative & Computational Biology
University of Southern California

Email: anakano@usc.edu

Immersive & Interactive Visualization

PC
cluster

W
A
N
D User

position
Graphics

server
ImmersaDesk

Reduced data

Billion-atom walkthrough

Parallel & distributed Atomsviewer

Locality in Data Compression

Scalable encoding:
• Store relative positions on spacefilling curve: O(NlogN) ® O(N)
Result:
• Data size, 50 Bytes/atom ® 6 Bytes/atom

1
9

8
7

65

4

3

2

14 13

12
11

10

Challenge: Massive data transfer via wide area network:
75GB/step of data for 1.5 billion-atom MD!
® Solution: Compressed software pipeline

Data Compression for Scalable I/O

Scalable encoding:
• Spacefilling curve based on octree index

Challenge: Massive data transfer via OC-3 (155 Mbps)
75 GB/frame of data for a 1.5-billion-atom MD!

x = 1 1 0
y = 0 0 0
z = 1 0 0
R = 101 001 000

x

yz

3D ® list map preserves spatial proximity

Spacefilling-Curve Data Compression
Algorithm:
1. Sort particles along the spacefilling curve
2. Store relative positions: O(NlogN) ® O(N)
• Adaptive variable-length encoding to handle outliers
• User-controlled error bound

Result:
• An order-of-magnitude reduction
 of I/O size: 50 ® 6 Bytes/atom

https://aiichironakano.github.io/Omelchenko-DataCmp-CPC00.pdf

https://aiichironakano.github.io/Omelchenko-DataCmp-CPC00.pdf

Data Locality in Visualization
• Octree-based fast view-frustum

culling
• Probabilistic occlusion culling
• Parallel/distributed processing

PC
cluster

W
A
N
D User

position
Graphics

server
ImmersaDesk

Reduced data

• Interactive visualization of
a billion-atom dataset in
immersive environment

Hierarchical Abstraction

l = 1

l = 2

l = 3

l = 0

• Larger clusters for longer distances
• Recursively subdivide the 3D space
 to form an octree

2D example Use of an octree

Visibility Culling

Viewpoint

Higher Depth
View frustum
culling

Occlusion
culling

Remove atoms
outside of the view
frustum

Remove atoms
hidden by other atoms

Octree-based View-Frustum Culling

• Use the octree data structure to
efficiently select only visible
atoms

• Complexity
 Insertion into octree: O(N)
 Data extraction: O(logN)

Probabilistic Occlusion Culling
• Remove atoms that are occluded by other atoms closer to the viewer
• Regions farther away from the viewer is more likely to be occluded

than one in front of the viewer

• Draw fewer atoms per region as the
 distance of a region from the viewer increases:
 visibility value v(x) for region x

• Recurrence along the view line

• Run-time adaptation

Results of Probabilistic Occlusion Culling

68% fewer objects
3´ frame rate

Original Probabilistic Difference

Multiresolution Culling & Rendering

.94fps - 90,000 particles

3.2fps - 4,500 particles

Without multiresolution With multiresolution

Outflow pathways of optic nerves from the
retina of a rabbit eye

(Experimental data by C. Burgoyne & R.
Beuerman, LSU Eye Center)

• Per-octree node operations:
 —Frustum culling
 —Probabilistic occlusion culling
• Per-atom operations
 —Multiple levels-of-detail
 —Occlusion culling (per-object, per-octree node)

Use less # of polygons for farther atoms

fps: frames rendered per second

Distributed Architecture

OCTREE BASED DATA
EXTRACTION MODULE

PROBABALISTIC OCCLUSION
CULLING MODULE

RENDERING
SYSTEM

PER-ATOM
OCCLUDER

RENDERING & VISUALIZATION MODULE

USER POSITION NEAR COMPLETE LIST OF
VIEWABLE ATOMS

REGIONS OF INTEREST

TCP/IP SOCKET

Graphics server

PC cluster

Parallel Octree Extraction

PC Cluster Nodes

Bounding Shells of Equal Volume

• Individual copies of the octree with each computing node
• Spatial decomposition using concentric shells of equal volume
• Load balancing due to the equal use of each processor for extraction

Latency Hiding
• Individual modules are multithreaded to reduce network or module

latency; cf. OpenMP
• Minimize latency due to inter-modular dependencies by overlapping

the inter-module communication and module computation;
 cf. computation-communication overlap by MPI_Irecv

• Instantaneously trained neural network (CC4 [Tang & Kak, CSSP’98])
predicts the user’s next position [Liu et al., PDPTA’02]

https://aiichironakano.github.io/cs596/Liu-VizNN-PDPTA02.pdf

https://aiichironakano.github.io/cs596/Liu-VizNN-PDPTA02.pdf

Parallel & Distributed Atomsviewer
Real-time walkthrough for a billion atoms on an SGI Onyx2 (2 ´
MIPS R10K, 4GB RAM) connected to a PC cluster (4 ´ 800MHz P3)

IEEE Virtual Reality Best Paper
https://aiichironakano.github.io/cs596/Sharma-Viz-Presence03.pdf

https://aiichironakano.github.io/cs596/Sharma-Viz-Presence03.pdf

In Situ Parallel Rendering

• Parallel rendering of spatially
distributed data: hybrid sort-
first/sort-last (who does what)

• Scalable depth buffer by
domain-level distributed
visibility ordering

• On-the-fly visualization of
parallel simulation without data
migration

• Parallel efficiency 0.98 on 1,024
processors for 16.8 million-atom
molecular-dynamics simulation

CSCI 596 final project

Atomsviewer Code

• Programming language
 >C++
• Graphics
 > OpenGL
 > CAVE Library (optional)
• Platforms
 > Windows
 > Macintosh OS X
 > SGI Irix

Atomsviewer System

Atomsviewer Commands

Atomsviewer Code Dissemination
Computer Physics Communications Program Library

https://aiichironakano.github.io/cs596/Sharma-viz-CPC04.pdf

Submit your code/paper to CPC!

https://aiichironakano.github.io/cs596/Sharma-viz-CPC04.pdf

