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ABSTRACT 
We propose an extension of the divide-and-conquer (DC) 
algorithmic paradigm called divide-conquer-recombine (DCR) in 
order to develop O(N) applications that will continue to scale on 
future parallel supercomputing, i.e., making them metascalable (or 
“design once, scale on new architectures”). In DCR, the DC phase 
constructs globally informed local solutions, which in the 
recombine phase are synthesized into a global solution. Innovative 
recombination algorithms allow the synthesis of a variety of 
global properties in broad applications. To enable large spatial-
scale molecular dynamics (MD) simulations, DCR-in-space is 
empowered by globally scalable and locally fast (GSLF) hybrid 
solvers based on spatial locality. In addition, DCR-in-time is used 
to predict long-time dynamics based on temporal locality, while 
utilizing space-time-ensemble parallelism (STEP). We have used 
DCR to perform quantum molecular dynamics (QMD) and 
reactive molecular dynamics (RMD) simulations that encompass 
unprecedented spatiotemporal scales. Our 50.3 million-atom 
QMD benchmark achieved a parallel efficiency of 0.984 and 
50.5% of the peak floating-point performance on 786,432 IBM 
Blue Gene/Q cores. Production QMD simulation involving 16,661 
atoms for 21,140 time steps (or 129,208 self-consistent-field 
iterations) revealed a novel nanostructural design for on-demand 
hydrogen production from water, advancing renewable energy 
technologies. Nonadiabatic QMD simulation of photoexcitation 
dynamics involving 6,400 atoms reached the experimental time 
scales, elucidating molecular mechanisms of a novel singlet-
fission phenomenon to realize low-cost, high-efficiency solar cells. 
Our billion-atom RMD simulation revealed the role of focused 
nanojet for the damage of solid surface caused by shock-induced 
collapse of nanobubbles in water, and suggested how to mitigate 
the damage by filling the bubble with inert gas. 
 

1. INTRODUCTION 
There is a growing need for scalable applications to keep pace 
with the ever-increasing degree of parallelism in high-end parallel 
supercomputers [1]. A fundamental question is: Is there a class of 
applications that will continue to scale on future supercomputers, 
i.e., are there “metascalable” (or “design once, scale on new 
architectures”) algorithms [2, 3]? 

Divide-and-conquer (DC) is a highly scalable and versatile 
algorithmic paradigm, which has been applied successfully to 
design linear-scaling algorithms for broad computational 
problems ranging from the formally O(N2) N-body problem [4-7], 
to the O(N3) eigenvalue problem [8, 9] and linear systems [10], to 
the exponentially complex quantum N-body problem [11-17]. Our 
own research has focused on molecular dynamics (MD) 
simulations, which follow the trajectories of all atoms to study 
material properties and processes [18]. These include reactive 
molecular dynamics (RMD) simulations to study chemical 
reactions [19], and quantum molecular dynamics (QMD) 
simulations in which interatomic interaction is described quantum 
mechanically from first principles [3]. 

To extend the applicability of DC to even broader problems, we 
have recently proposed its extension named divide-conquer-
recombine (DCR) [20]. In DCR, the DC phase constructs globally 
informed local solutions, which in the recombine phase are 
synthesized into a global solution encompassing large 
spatiotemporal scales. To efficiently implement DCR simulation 
algorithms on massively parallel supercomputers, we have also 
developed globally scalable and locally fast (GSLF) solvers that 
hybridize, e.g., a global real-space multigrid with local plane-
wave bases [3]. In the context of QMD, for example, DC 
electronic wave functions have been used to synthesize: (1) high-
order inter-molecular-fragment interactions [21, 22]; (2) global 
frontier (i.e. highest occupied and lowest unoccupied) molecular 
orbitals [23, 24]; and (3) global charge-migration dynamics [25, 
26]. 

The above DCR-in-space algorithms encompass large length 
scales based on data locality principles such as the quantum 
nearsightedness principle [27]. A harder problem is to predict 
long-time dynamics of these systems, because the sequential 
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bottleneck of time precludes efficient parallelization. Recently, 
various statistical approaches have been developed [28, 29] to 
utilize an ensemble of mutually uncorrelated MD trajectories to 
synthesize longer-time trajectories based on temporal locality of 
physical processes [30]. This DCR-in-time, combined with space-
time-ensemble parallelism (STEP) [31], maximally exposes 
concurrency and data locality, and allows the prediction of 
material processes at the length and time scales that are otherwise 
impossible to reach. We have used DCR-in-time to study the 
long-time global kinetics of photoexcited electrons and holes in an 
exciton-flow network [32]. 

The global-local separation through DCR, enhanced with GSLF 
and STEP techniques, can be generalized into broad applications 
and will likely make them metascalable, with a minimal 
architectural assumption that a tree network topology (involving 
progressively reduced communication volume at upper tree 
levels) will be supported. 

This paper is organized as follows. The next section introduces 
the DCR algorithmic paradigm. Section 3 demonstrates the 
scalability and performance of DCR algorithms. Applications of 

DCR-based QMD and RMD simulations are presented in section 
4, and finally section 5 contains conclusion. 

2. DIVIDE-CONQUER-RECOMBINE (DCR) 

2.1 DCR-in-Space 
In a divide-conquer-recombine (DCR) algorithm, the divide-and-
conquer (DC) phase constructs globally informed local solutions 
in O(N) time based on tree-based algorithms; see Fig. 1(a) [20, 
32]. Subsequently in the recombine phase, these local solutions 
are synthesized into a global solution that encompasses large 
spatiotemporal scales; see Fig. 1(b) [20, 32]. Figures 1(a) 
schematically shows a tree data structure used in DCR-based 
molecular dynamics (MD) simulations, in which the root of the 
tree represents the entire simulation volume Ω. The entire volume 
is recursively subdivided into subsystems (or cells) of equal 
volume. Recursive subdivision is repeated until each cell at the 
leaf level defines a DC domain Ωα . 
 

 
Figure 1.  DCR algorithm.  (a) Two-dimensional schematic of the DC phase, in which atoms (spheres in the bottom plane) within a 
DC domain (each small magenta parallelogram in the bottom plane) are abstracted by collective variables such as a finite-
difference representation of the charge distribution. The DC domains are combined recursively to form a tree data structure 
consisting of progressively coarser cells, until reaching the entire simulation volume at the root of the tree. A DC algorithm 
performs O(N) computation by traversing the tree both upward and downward.  (b) Typical triplet and quadruplet computations 
involving one of the DC domains (colored red) in the recombine phase are shown by blue and black lines, respectively. 

 
 

2.1.1 Divide-and-Conquer 
We have designed a number of O(N) DC algorithms (N is the 
number of atoms) for MD simulations. 

Space-time multiresolution molecular dynamics (MRMD) 
reduces the O(N2) complexity of the N-body problem to O(N) 
[18]. MD simulation follows the trajectories of N point atoms by 
numerically integrating coupled ordinary differential equations. 
The hardest computation in MD simulation is the evaluation of the 
long-range electrostatic potential at N atomic positions. Since 
each evaluation involves contributions from N−1 sources, direct 
summation requires O(N2) operations. The MRMD algorithm uses 
the octree-based fast multipole method (FMM) [4, 7] to reduce the 
computational complexity to O(N) based on spatial locality. We 
also use multiresolution in time, where temporal locality is 
utilized by computing forces from further atoms with less 
frequency [6]. 

Fast ReaxFF (F-ReaxFF) algorithm solves the O(N3) variable N-
charge problem in chemically reactive molecular dynamics 
(RMD) simulations in O(N) time [19]. To describe chemical bond 
breakage and formation, the ReaxFF potential energy is a function 
of the positions of atomic pairs, triplets and quadruplets as well as 

the chemical bond orders of all constituent atomic pairs. To 
describe charge transfer, ReaxFF uses a charge-equilibration 
scheme, in which atomic charges are determined at every MD step 
to minimize the electrostatic energy with the charge-neutrality 
constraint. This variable N-charge problem amounts to solving a 
dense linear system of equations, which requires O(N3) 
operations. F-ReaxFF uses FMM to perform the matrix-vector 
multiplications with O(N) operations. It further utilizes the 
temporal locality of the solutions to reduce the amortized 
computational cost averaged over simulation steps to O(N). To 
further speed up the solution, we use a multilevel preconditioned 
conjugate-gradient (MPCG) method [10]. This method splits the 
Coulomb interaction matrix into far-field and near-field matrices 
and uses the sparse near-field matrix as a preconditioner. The 
extensive use of the sparse preconditioner enhances the data 
locality, thereby increasing the parallel efficiency. 

Lean divide-and-conquer density functional theory (LDC-DFT) 
is a new O(N) algorithm for quantum molecular dynamics (QMD) 
simulations, which follow the trajectories of all atoms while 
computing interatomic forces quantum mechanically from first 
principles [3, 20]. Density functional theory (DFT) approximately 
reduces the exponential complexity of the quantum N-body 
problem to O(N3) by solving N one-electron problems self-



consistently instead of directly solving one N-electron problem. 
We solve the Kohn-Sham (KS) equations within each DC domain 
Ωα  to obtain local electronic wave functions {ψn

α (r)}  iteratively 
using the MPCG method (n indexes multiple wave functions per 
domain). The KS equations depend on the global electrostatic 
potential, which is computed from the global electron density ρ(r) 
in O(N) time using a tree-based multigrid method. The global 
density in turn is a sum of domain densities calculated from 
{ψn

α (r)} . The global ρ(r) and local {ψn
α (r)}  are determined 

iteratively in a global-local self-consistent-field (SCF) iteration. 
On the basis of complexity and error analyses, LDC-DFT 
minimizes the O(N) prefactor through: (1) optimization of DC 
computational parameters; and (2) a density-adaptive boundary 
condition [3, 20]. 

2.1.2 Recombine 
The key idea of DCR is to utilize DC solutions as compactly 
supported basis functions, with which global properties are 
synthesized using various recombination algorithms. The 
recombine phase typically performs range-limited n-tuple 
computations [33] among DC domains to account for higher inter-

domain correlations that are not captured by the tree topology 
used in the DC phase. Examples of triplet (n = 3) and quadruplet 
(n = 4) computations are illustrated by arrows in Fig. 1(b). An 
example of n-tuple computations in the recombine phase (Fig. 
1(b)) is the computation of the effective inter-molecular-fragment 
interaction energy, for which up to 4-tuple corrections have been 
incorporated in a perturbative manner [21]. Furthermore, even 
higher-order screening effects have been included through a 
posteriori recipe based on statistical mechanics, in which the self-
consistent Ornstein-Zernike equation was solved within the 
Percus-Yevick [21] and hypernetted-chain [22] approximations. 
Linear combination of DC electronic wave functions can also be 
used in the recombine phase to construct the highest occupied 
molecular orbitals (HOMO) and lowest unoccupied molecular 
orbitals (LUMO) of the entire system [23]. The computational 
cost for obtaining these global frontier orbitals is drastically 
reduced by including only a small subset of DC orbitals near the 
Fermi energy [23]. DC wave functions were also used to describe 
global charge-migration dynamics by constructing coarse-grained 
electronic Hamiltonians with the use of quantum-dynamical [25] 
or bridge Green function [26] methods. 

 

Figure 2.  DCR to reach the experimental length and time scales for the exciton dynamics in amorphous molecular solid.  (a) An 
entire configuration is subdivided into non-overlapping domain cores Ω0α, each of which is augmented with neighbor molecules to 
form a domain Ω α.  (b) NAQMD simulations are performed in each domain to extract the rate constants of various excitonic 
processes.  (c) In the recombine phase, KMC simulations are performed to describe the exciton dynamics that reflects the global 
geometry and topology of the exciton-flow network. Here, each circle represents a molecule, while a directed edge between 
molecules and a loop pointing to itself are labeled by exciton hopping and recombination rates, respectively. 

 

In this paper, we focus on the recombination of DC wave 
functions to describe the kinetics of photoexcited electrons and 
holes, for which the global topology of a large-scale exciton-flow 
network was found to play an essential role [32]. We first perform 
nonadiabatic quantum molecular dynamics (NAQMD) 
simulations to describe coupled electron-ion dynamics involving 
nonadiabatic transitions between excited electronic states. Let us 
consider a specific example of amorphous diphenyl tetracene 
(DPT) consisting of 128 DPT molecules (each DPT molecule in 
turn consists of 50 atoms). To enable larger NAQMD simulations 
than have been performed previously (i.e. less than 1,000 atoms) 
[34, 35], the entire simulation box Ω is subdivided into M non-
overlapping spatial domains Ω0α; see Fig. 2(a). Here, each DPT 
molecule constitutes a non-overlapping domain Ω0α, thus M = 128. 
We augment Ω0α by surrounding it with a buffer layer consisting 
of the k nearest-neighbor molecules in terms of the intermolecular 
C-C distance averaged over the backbone π-orbital planes (we use 
k = 2), so that the augmented domains Ωα are mutually 
overlapping. For NAQMD simulation within each augmented 
domain Ωα (Fig. 2(b)), the rest of the system is represented by a 
fixed charge density. In each domain Ωα consisting of k+1 

molecules, the charge density from the other M−k−1 molecules is 
used to form a global KS potential in Ω, including a non-additive 
contribution to the kinetic energy within an embedded cluster 
scheme [13]. Each NAQMD simulation starts from an electronic 
excited state corresponding to the excitation of an electron from 
the HOMO to the LUMO. Next, NAQMD trajectories are 
analyzed to obtain exciton-hopping rates between DPT molecules. 
The overlapping domains in the DC approach allow the 
construction of a graph data structure that spans the entire 
amorphous DPT solid; see Fig. 2(c). In the graph (or exciton-flow 
network), each DPT molecule constitutes a node, and the nodes 
are interconnected by directed edges labeled by the corresponding 
exciton-hopping rates obtained by the NAQMD simulations. The 
nonadiabatic coupling is also used to compute the exciton-
annihilation rate, at which each exciton recombines to the 
electronic ground state. In addition to the phonon-assisted 
contribution to electronic transitions computed by NAQMD, we 
include the spontaneous emission contribution calculated within 
the transition dipole approximation. In addition to the exciton 
hopping and annihilation rates, we estimate the singlet-fission 
(SF) rate of each singlet excitonic state using a time-dependent 



perturbation theory. Next, we perform first-principles kinetic 
Monte Carlo (KMC) simulations of exciton dynamics using the 
calculated hopping rates between DPT molecules as well as the 
SF and annihilation rates. Each KMC simulation starts by placing 
an exciton on a randomly selected DPT molecule. At each KMC 
step, the exciton either: (1) hops to one of the k-neighbor DPT 
molecules; (2) splits into two triplet excitons via SF; or (3) 
annihilates. The event to occur is chosen stochastically with the 
probability proportional to the corresponding rate. Each 
simulation continues until either SF or annihilation event occurs. 

2.1.3 Globally Scalable and Locally Fast (GSLF) Solver 
To efficiently solve the global-local SCF problem in LDC-DFT, 
our globally scalable and locally fast (GSLF) electronic-structure 
solver combines a local plane-wave basis within each DC domain 
for high numerical efficiency and a global real-space multigrid for 
scalability on massively parallel computers (Fig. 3) [3, 20]. Here, 

fast intra-domain computation utilizes fast Fourier transform 
(FFT) to operate the kinetic-energy and potential-energy operators 
on the electronic wave functions in the sparsest form, 
respectively, in the real and reciprocal spaces. On the other hand, 
a real-space multigrid method is used to solve the Poisson 

equation to obtain the global electrostatic potential based on the 
locality preserving octree data structure; see Fig. 1(a). 

2.2 DCR-in-Time 
2.2.1 Molecular Kinetics 
A challenging problem is to predict long-time dynamics because 
of the sequential bottleneck of time [36, 37]. Due to temporal 
locality, however, the system stays near local minimum-energy 
configurations most of the time, except for rare transitions 
between them. In such cases, the transition state theory (TST) 
allows the reformulation of the sequential long-time dynamics as 
computationally more efficient parallel search for low activation-
barrier transition events [30, 38]. We also introduce a discrete 
abstraction based on graph data structures, so that combinatorial 
techniques can be used for the search [38]. 

We have developed a directionally heated nudged elastic band 
(DH-NEB) method to search for thermally activated events 
starting from a given initial state without the knowledge of final 
states [31]. In DH-NEB, a nudged elastic band (NEB) consisting 
of a sequence of S states [39], 
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ℜ  is 
the set of real numbers), at different temperatures searches for a 
transition event (Fig. 4(a)). We use an ensemble consisting of B 
bands to perform long-time simulation — molecular kinetics 
(MK) simulation — in the framework of KMC [31]. At each MK 
step, the B bands concurrently find escape events from a common 
initial state, thereby constructing a list of multiple events. The 
activation barrier of each event is used to calculate the rate of the 
event, and the event to occur is chosen stochastically according to 
the rate. The time is incremented stochastically according to the 
Poisson distribution corresponding to the sum of the rates of all 
the events. 

 

 
Figure 4.  Schematic of the DH-NEB and STEP approaches.  (a) Algorithmic steps of the DH-NEB method consist of thermalization 
(step 1), directional heating (step 2), and quench (step 3) of a band. Black solid curves represent the potential energy surface V(R), 
whereas circles (with color-coded temperature) are the states interconnected by harmonic forces (gray lines) to form the band. The 
letters i and f mark the initial and final ends of the band. (b) A nudged elastic band consists of a sequence of S states (gray 
parallelograms), Rs (s = 0,...,S−1), where each state consists of N atoms (white spheres), i = 1,...,N. Corresponding atoms in 
consecutive states interact via harmonic forces represented by wavy lines.  (c) Tree-structured processor organization in the STEP 
approach. An ensemble consists of B bands, each consisting of S states; each state in turn contains D spatial domains. 

 

 
Figure 3. Globally scalable and locally fast, hybrid electronic-
structure solver. Blue lines represent a tree network topology 
for multigrid-based inter-domain computation, whereas red 
lines show the butterfly network for fast Fourier transform 
within each domain. 



2.2.2 Space-Time-Ensemble Parallelism (STEP) 
The ensemble-based MK simulations are implemented efficiently 
on massively parallel computers based on a space-time-ensemble 
parallel (STEP) approach [31]. STEP combines a hierarchy of 
concurrency, i.e., the number of processors is P = BSD: (1) 
spatial decomposition within each state (D is the number of spatial 
subsystems); (2) temporal parallelism across S states within each 
band; and (3) ensemble parallelism over B bands (Fig. 4(c)). The 
multiple parallelization axes of STEP greatly enhance the 
scalability of MK simulations on massively parallel computers. 
The program is implemented using the message passing interface 
(MPI) library for interprocessor communications, and each 
domain is assigned a dedicated MPI communicator using an 
MPI_COMM_SPLIT call. 

2.2.3 Super-state Parallel Replica Dynamics (SPRD) 
Another widely-used DCR-in-time method is parallel replica 
dynamics (PRD) that samples rare events [40]. PRD reduces 
sequential long time dynamics (Fig. 5(a)) to statistically 
independent parallel trajectory runs (or replicas); see Fig. 5(b). To 
handle widely disparate activation barriers in complex reaction 
pathways, an extension of PRD called super-state parallel replica 

dynamics (SPRD) groups a number of microscopic states into a 
super-state, and only rare transitions between those super-states 
(or super-events) are handled with PRD [28]. 

Super-states are usually pre-defined based on some a priori 
knowledge [28, 41]. For complex reaction dynamics, for which 
such a priori definition is unavailable, we instead employ 
machine-learning approaches to automatically define super-states 
on the fly. Rare super-events are detected using cross-correlation 
between time series of replica trajectories based on time-series 
anomaly detection and Bayesian analysis [29, 42]. Conventional 
SPRD simulations run for a block of MD time steps (e.g. 1,000 
steps), followed by cross-time-series statistical analysis to detect 
super-events performed in a separate post-processing phase, 
where simulation trajectory data are stored in files and later 
analyzed (Fig. 5(c)). We are currently developing in situ SPRD 
method, where correlation analysis is done as data are produced 
so as to reduce the need to store data in files for post-processing 
(Fig. 5(d)). 

 

 
Figure 5.  DCR-in-time.  (a) Conventional MD simulation has sequential time dependence.  (b) PRD predicts the long-time behavior 
through statistical analysis of multiple parallel MD trajectories.  Conventional file-based (c) and new in situ (d) PRD simulations. 
ML represents machine-learning tasks. 

 

3. SCALABILITY AND PERFORMANCE 
DCR algorithms are characterized by excellent scalability, time-
to-solution, and portable floating-point performance. This section 
presents benchmark results on our QMD and RMD simulation 
codes. The programs are written in Fortran 90 with MPI for 
message passing combined with OpenMP for multithreading. 

Weak scaling: We have benchmarked our LDC-DFT code for 
QMD simulations on the 786,432-code Blue Gene/Q at the 
Argonne National Laboratory. We first performed a weak-scaling 
benchmark, in which the number of atoms per core N/P is kept 
constant. Figure 6(a) shows the wall-clock time per QMD 
simulation step with scaled workloads — 64P-atom SiC system 
on P cores. The execution time includes 3 SCF iterations to 
determine the electronic wave functions and the global density, 

with 3 MPCG iterations per SCF cycle to refine each wave 
function. By increasing the number of atoms linearly with the 
number of cores, the wall-clock time remains nearly constant, 
indicating excellent scalability. To quantify the parallel efficiency, 
we first define the speed of the LDC-DFT program as a product of 
the total number of atoms and the number of QMD simulation 
steps executed per second. The isogranular speedup is given by 
the ratio between the speed on P cores and that on 16 cores (i.e. 
one computing node) as a reference system. The weak-scaling 
parallel efficiency is the isogranular speedup divided by P/16. 
With the granularity of 64 atoms per core, the parallel efficiency 
was 0.984 on P = 786,432 for a 50,331,648-atom (or 201,326,592-
electron) SiC system. This computation involved 
39,815,773,421,568 electronic wave-function and charge-density 
values sampled on mesh points. The result demonstrates the very 



high scalability of the LDC-DFT algorithm. 

Figure 6(b) shows the execution time of the F-ReaxFF based 
RMD algorithm for cyclotrimethylenetrinitramine (RDX) material 
as a function of P, where the number of atoms is N = 10,752P. 
The computation time includes 3 MPCG iterations to solve the 
electronegativity equalization problem for determining atomic 
charges at each MD time step. On 786,432 Blue Gene/Q cores, the 
isogranular parallel efficiency of the F-ReaxFF algorithm is 0.957. 

Strong scaling: Next, we performed a strong-scaling test by 
simulating a LiAl nanoparticle immersed in water containing a 
total of 77,889 atoms (Li2136Al2136 immersed in 24,539 H2O 
molecules). In this test, the number of cores ranged from P = 
49,152 to 786,432, while keeping the total problem size constant. 
Figure 7 shows the wall-clock time per QMD simulation step as a 
function of P. The time-to-solution was reduced by a factor of 
12.85 on 786,432 cores compared with the 49,152-core run (i.e., 
using 16-times larger number of cores). This signifies a strong-
scaling speedup of 12.85, with the corresponding strong-scaling 
parallel efficiency of 0.803. 

Time-to-solution: The LDC-DFT algorithm significantly reduces 
the O(N) prefactor of its computational cost with a given energy 
tolerance, and consequently the time-to-solution. To quantify the 
time-to-solution, let us consider the largest computation shown in 
Fig. 6(a), i.e., a 50,331,648-atom SiC system on the entire 
786,432 cores of the Blue Gene/Q. One SCF iteration using LDC-

DFT in this case took 441 seconds, with a speed of 114,000 
atom•iteration/s. This represents a several orders-of-magnitude 
improvement over the previous state-of-the-art in terms of the 
time-to-solution [3]. 

Floating-point performance: We have measured the floating-
point (FP) performance of LDC-DFT on the Blue Gene/Q. The 
Blue Gene Performance Monitoring (BGPM) API was used to 
measure the FP performance of the entire program by linking the 
threaded HPM library (libmpihpm_smp). Here, a 6,291,456-atom 
SiC system was simulated on the entire 48 racks (or 786,432 
cores). We used 16 MPI ranks per node, where each MPI rank 
spawns 4 threads. The measured performance was 50.5% of the 
peak (i.e. 5.08 PFLOP/s). 

4. SCIENCE APPLICATIONS 
DCR algorithms have enabled some of the largest QMD and 
RMD simulations. This section presents several examples. 

4.1 Hydrogen-on-Demand for Renewable 
Energy 

Hydrogen production from water using aluminum (Al) particles 
could provide a renewable energy cycle [43]. However, its 
practical application is hampered by the low reaction rate and 
poor yield. Using the largest ever QMD simulations on 786,432 
Blue Gene/Q cores based on the LDC-DFT algorithm (Fig. 8(a)), 
we have shown that orders-of-magnitude faster reactions with 
higher yields can be achieved by alloying Al particles with lithium 
(Li); see Fig. 8(b) [44]. Here, the orders-of-magnitude 
improvement of the time-to-solution over the previous state-of-
the-art shown in section 3 has enabled QMD simulations 
encompassing unprecedented spatio-temporal scales, involving 
16,661 atoms (or 43,708 electrons) for 21,140 time steps (or 
129,208 SCF iterations) with a unit time step of 0.242 fs. 

Based on the simulation data, a key nanostructural design has 
been identified as the abundance of neighboring Lewis acid-base 
pairs, where water-dissociation and hydrogen-production require 
very small activation energies. These reactions are facilitated by 
wide charge pathways across Al atoms that collectively act as a 
“superanion”. Furthermore, dissolution of Li atoms into water 
produces a corrosive basic solution that inhibits the formation of a 
reaction-stopping oxide layer on the particle surface, thereby 
increasing the yield. We have also found a surprising catalytic 
behavior of bridging oxygens (similar to Ref. [45]) that connect 

 

 

Figure 6.  Weak scaling of DCR algorithms on Blue Gene/Q.  
(a) Wall-clock time per QMD simulation step of the parallel 
LDC-DFT algorithm, with scaled workloads — 64P-atom SiC 
system on P cores (P = 16, ..., 786,432) of Blue Gene/Q.  (b) 
Wall-clock time per RMD simulation step of the parallel F-
ReaxFF algorithm, with scaled workloads — 10,752P-atom 
RDX system on P cores (P = 16, ..., 786,432). 

 

Figure 7. Wall-clock time per QMD simulation step of the 
parallel LDC-DFT algorithm with strong scaling — 77,889-
atom LiAl-water system on P cores (P = 49,152, ..., 786,432) of 
Blue Gene/Q. 



Al and Li. Namely, Li-O-Al is not merely an inert reaction 
product but instead plays an unexpectedly active role in the 
oxidation process by assisting the breakage of O-H and formation 
of Al-O bonds. 

Not only this microscopic understanding explains recent 
experimental findings in similar alloy systems (e.g. alloy 
composition-dependent reactivity and a remarkable pH change 
associated with H2 production) [46], but it also predicts a specific 
nanostructural design for rapid high-yield production of hydrogen 
on demand, which is expected to scale up to industrially relevant 
particle sizes. This work thus lays a foundation for future studies 
on fundamental science toward rational nanostructural design of 
renewable energy technologies. 

4.2 Singlet Fission for Efficient Solar Cells 
Singlet fission (SF) is a process, in which a spin-singlet exciton in 
an organic semiconductor is split into two spin-triplet excitons 
[32]. If high SF yield is realized in mass-produced disordered 
organic solid, it could revolutionize low-cost fabrication of 
efficient solar cells. Recently, an experimental breakthrough was 
made by observing SF in amorphous diphenyl tetracene (DPT). 
However, atomistic mechanisms that enable efficient SF in 
amorphous molecular solid remain elusive, largely due to the 
required large quantum-mechanical calculations that capture 
nanostructural features. 

To address this multiscale challenge, we have applied DCR to a 
NAQMD study of photoexcitation dynamics in amorphous DPT 
composed of 6,400 atoms (Fig. 9(a)) [32]. We identified the key 
molecular geometry (i.e., molecular dimers with close twisted 
stacking of π-orbital planes) and exciton-flow-network topology 
(i.e., a large number of reverse nearest neighbor molecules) for SF 
“hot spots”, where SF occurs preferentially. The simulation 
revealed the molecular origin of experimentally observed two 
time scales in exciton population dynamics (Fig. 9(b)), and may 
pave a way to nanostructural design of efficient low-cost solar 
cells from first principles. 

4.3 Cavitation Bubble Collapse 
Cavitation bubbles occur in fluids subjected to rapid changes in 
pressure. We used billion-atom RMD simulations on a 163,840-
processor Blue Gene/P supercomputer to investigate damage 
caused by shock-induced collapse of nanobubbles in water near an 
amorphous silica surface [47]; see Fig. 10. Collapse of an empty 
bubble generated a high-speed nanojet, which caused pitting on 
silica surface. We found that pit radii are close to bubble radii, and 
experiments also indicate linear scaling between them. The gas-
filled bubbles underwent partial collapse and consequently the 
damage on the silica surface was mitigated. 

5. CONCLUSION 
With the advent of multicore revolution in computer architectures, 
DC software on emerging exascale computers could provide an 
unprecedented capability to solve complex problems. But this is 

 
Figure 8.  QMD simulation of H2 production from water using 
a Li441Al441 particle.  (a) The valance electron density (silver 
isosurface) is centered around Al atoms, whereas some of the 
Li atoms (red spheres) are dissolved into water. Produced H2 
molecules are represented by green ellipsoids. Water 
molecules are not shown for clarity.  (b) H2 production rate 
per LiAl pair as a function of the inverse temperature.  

Figure 9.  NAQMD simulation of photo-induced excitons in 
amorphous DPT.  (a) Orange and green isosurfaces represent 
quasi-electron and quasi-hole wave functions, whereas gray 
rods represent DPT molecules.  (b) The calculated population 
dynamics of spin-singlet and spin-triplet excitons. 



true only if the software continues to scale on the many millions 
of cores expected in a future exascale computer. This is an 
enormous challenge, since we do not even know the architecture 
of such platforms. The primary challenge is to sustain DC’s 
scalability on rapidly evolving parallel computing architectures. 
Light-overhead DC algorithms such as LDC-DFT are expected to 
be “metascalable”, assuming only that a tree network topology 
(involving progressively small communication volume at upper 
tree levels) will be supported. The communication requirement is 
further reduced algorithmically via dimensionality reduction —
abstracting the global information with much reduced 
dimensionality, e.g., using only one global function (density) and 
one scalar value (chemical potential) instead of the entire O(N) 
wave functions in LDC-DFT. As an extension of DC, we have 
proposed a highly scalable computational approach named DCR 
to describe various large spatiotemporal-scale material processes 
using local atomistic and electronic solutions as a compact basis 
set. The highly scalable parallel DCR approach has broad 
applicability for multiscale material problems, where electronic 
structures and chemical reactions are inseparably coupled to 
microstructures and long-range stress fields. Innovative 
algorithms in the recombine phase typically perform range-limited 
n-tuple computations [33] among DC domains to account for 
higher inter-domain correlations that are not captured by the tree 
topology used in the DC phase, so that a wider variety of hard 
problems can be addressed by DCR. For example, innovative 
recombination of DC solutions can be incorporated into high-
throughput screening to explore a large combinatorial search 
space for discovering new materials [48, 49]. Implemented with 
metascalable DC algorithms like LDC-DFT, in conjunction with 
scalable GSLF and STEP computational techniques, the DCR 
algorithmic framework promises to scale on future systems to 
address many challenging scientific and engineering problems. 
The DCR algorithmic framework is thus expected to provide a 
metascalable-computing paradigm on future systems, which is 
generalizable to very broad applications. 
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