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ABSTRACT 
We enabled an unprecedented scale of quantum molecular 
dynamics simulations through algorithmic innovations. A new 
lean divide-and-conquer density functional theory algorithm 
significantly reduces the prefactor of the O(N) computational cost 
based on complexity and error analyses. A globally scalable and 
locally fast solver hybridizes a global real-space multigrid with 
local plane-wave bases. The resulting weak-scaling parallel 
efficiency was 0.984 on 786,432 IBM Blue Gene/Q cores for a 
50.3 million-atom (39.8 trillion degrees-of-freedom) system. The 
time-to-solution was 60-times less than the previous state-of-the-
art, owing to enhanced strong scaling by hierarchical band-space-
domain decomposition and high floating-point performance 
(50.5% of the peak). Production simulation involving 16,661 
atoms for 21,140 time steps (or 129,208 self-consistent-field 
iterations) revealed a novel nanostructural design for on-demand 
hydrogen production from water, advancing renewable energy 
technologies. This metascalable (or “design once, scale on new 
architectures”) algorithm is used for broader applications within a 
recently proposed divide-conquer-recombine paradigm. 

Categories and Subject Descriptors 
J.2 [Computer Applications]: Physical Sciences and Engineering 
– physics, chemistry. 

General Terms 
Algorithms, Performance. 

Keywords 
Divide-and-conquer, Density functional theory, On-demand 
hydrogen production. 
 
 

1. INTRODUCTION: IMPORTANCE OF 
THE PROBLEM 

In broad areas such as physics, chemistry, biology, and materials 
science, there is urgent need for performing large quantum 
molecular dynamics (QMD) simulations, which follow the 
trajectories of all atoms while computing interatomic forces 
quantum mechanically from first principles [1, 2]. This year 
marks the 50th anniversary of two seminal developments that 
underpin the QMD method: The first molecular dynamics (MD) 

simulation using empirical interatomic forces by Aneesur Rahman 
[3]; and introduction of the density functional theory (DFT) [4, 5] 
— the most widely used quantum mechanical (QM) method [6] 
— for which Walter Kohn received a Nobel chemistry prize in 
1998 [7]. By solving N one-electron problems self-consistently 
instead of directly solving one N-electron problem, DFT 
approximately reduces the exponential complexity of the quantum 
N-body problem to O(N3). DFT-based QMD simulations are 
typically limited to small systems involving a few hundred atoms 
due to the asymptotic O(N3) computational complexity. In special 
cases where only a small subset of atoms is actively involved in 
chemical reactions, the computational cost can be reduced by 
embedding a small QM calculation within a large MD simulation. 
For the development of such multiscale QM/MM (molecular 
mechanical) methods [8, 9], Karplus, Levitt, and Warshel shared 
the 2013 Nobel chemistry prize [10, 11]. Unfortunately, a large 
number of atoms need to be treated quantum mechanically instead 
in many important applications. 

To overcome the O(N3) bottleneck in these genuinely quantum-
mechanical problems, various O(N) DFT algorithms [12-14] have 
been designed on the basis of the data locality principle called 
quantum nearsightedness [15-17]. Among them, the divide-and-
conquer (DC) DFT algorithm [18-24] pioneered by Weitao Yang 
[18] is highly scalable [25, 26] on massively parallel computers. 
The DC-DFT algorithm represents the three-dimensional space as 
a union of spatially localized domains, and global physical 
properties are computed as linear combinations of local domain 
properties. In the past several years, the DC-DFT algorithm — 
especially with large basis sets (> 104 unknowns per electron, 
which is necessary for the transferability of accuracy [27]) — has 
at last attained controlled error bounds, robust convergence 
properties, and adequate energy conservation for its use in QMD 
simulations, thereby making large DC-DFT-based QMD 
simulations practical [23, 28, 29]. 

A major remaining problem associated with DC-DFT is the large 
prefactor of its O(N) computational cost, which makes it a 
challenge to perform large QMD simulations, e.g., involving over 
104 atoms for more than 104 time steps. This large prefactor arises 
from a thick buffer layer that surrounds each computational 
domain in order to minimize the effect of artificial boundary 
conditions imposed at domain peripheries [16]. In this paper, we 
present a new light overhead O(N) DFT algorithm called lean 
divide-and-conquer (LDC) DFT. On the basis of complexity and 
error analyses of DC-DFT, LDC minimizes the O(N) prefactor 
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through: optimization of DC computational parameters; and a 
density-adaptive boundary condition. We employ a globally 
scalable and locally fast (GSLF) electronic-structure solver that 
hybridizes a global real-space multigrid with local plane-wave 
bases. Hybrid band-space-domain (BSD) decomposition is used to 
implement the algorithm on massively parallel computers. 

As a result, the LDC-DFT code has achieved a weak-scaling 
parallel efficiency of 0.984 on 786,432 IBM Blue Gene/Q cores 
for a 50,331,648-atom (or 39.8 trillion degrees-of-freedom to 
represent 201,326,592 electrons) system, as well as good strong 
scaling, 60-times improvement of the time-to-solution over the 
previous state of the art, and high floating-point performance 
(50.5% of the theoretical peak, or 5.08 PFLOP/s) on the Blue 
Gene/Q. Portable performance has been demonstrated on other 
architectures as well. The LDC-DFT code has been used in 
16,661-atom QMD simulation to reveal a novel nanostructural 
design for on-demand production of hydrogen gas from water 
using LiAl alloy particles [30]. This finding opens a new avenue 
toward scalable, rapid and high-yield production of hydrogen gas 
for renewal energy technologies. As will be elaborated in the 
conclusion, the global-local separation through LDC and GSLF 
can be generalized into broad applications within a recently 
proposed divide-conquer-recombine (DCR) algorithmic paradigm 
[29]. This will likely make them metascalable [26, 31], assuming 
only that a tree network topology (involving progressively 
reduced communication volume at upper tree levels) will be 
supported. 

2. IMPROVEMENT OVER THE 
PREVIOUS STATE-OF-THE-ART 

Electronic structure calculation based on DFT is one of the most 
extensively studied supercomputing applications. An early 
precursor includes O(N) semi-empirical QM calculation based on 
the tight-binding method, which is more approximate than DFT 
(1994 Gordon Bell prize) [32]. This was followed by O(N) DFT 
calculation based on the locally self-consistent multiple scattering 
method (1998 Gordon Bell prize) [33] and O(N) DFT-based QMD 
simulation (SC01 best paper) [14]. More recent works include 
four Gordon Bell prizes in the past 8 years [34-37]. These include 
O(N3) DFT methods based on plane-wave [34] and real-space grid 
[37] bases implemented on massively parallel computing 
platforms such as Blue Gene/L and the K computer. In addition, a 
novel O(N) DFT algorithm [35] based on a three-dimensional 
fragment method [38-40] has significantly sped up conventional 
O(N3) DFT methods. 

In order to quantify the time-to-solution of state-of-the-art DFT 
calculations, let us consider a product of the number of simulated 
atoms and the number of self-consistent field (SCF) iterations 
executed per second. For their 2011 Gordon Bell prize, Hasegawa 
et al. reported an execution time of 5,456 seconds per SCF 
iteration for a 107,292-atom Si system on the K computer using 
their O(N3) real-space grid DFT algorithm [37]. This amounts to 
19.7 atom•iteration/s. Very recently, Osei-Kuffuor and Fattebert 
reported an O(N) DFT calculation, where 1 QMD step took ~275 
seconds for a 101,952-atom polymer system on 23,328 Blue 
Gene/Q cores [41]. Assuming 5 SCF iterations per MD step, this 
amounts to a speed of 1,850 atom•iteration/s. As will be presented 
in section 5.2, one SCF iteration for a 50.3 million-atom silicon 
carbide (SiC) system using our LDC-DFT code took 441 seconds 
on 786,432 Blue Gene/Q cores, amounting to a speed of 114,000 
atom•iteration/s. This represents 5,800- and 62-fold improvements 
of the time-to-solution over the two previous state-of-the-art 

calculations mentioned above. Here, care must be taken in these 
comparisons, since they are between different DFT algorithms 
(e.g. O(N3) vs. O(N)) on different platforms. At any rate, the DFT-
based QMD simulation presented in this paper is by far the fastest 
to date. As will be explained in section 3, this progress has been 
realized by combining the new LDC-DFT algorithm with a 
number of state-of-the-art computational techniques [34-37]. The 
improved time-to-solution has allowed us to perform an 
unprecedented scale of production QMD simulation involving 
16,661 atoms for 21,140 time steps (or 129,208 SCF iterations) on 
786,432 Blue Gene/Q cores. Most of the largest DFT calculations 
reported previously were static (i.e. one-step) calculations, and we 
are not aware of any QMD simulation for such long time. 

A limited number of parallel O(N) DFT software are available, 
including CONQUEST [42], ONETEP [43, 44], and SIESTA 
[45]. Publicly available DC-DFT codes include OpenMX [21], 
and implementation of DC-DFT on massively parallel computers 
is discussed in Refs. [26] and [46]. In terms of the parallel 
efficiency, however, no reported result is higher than that of LDC-
DFT in this paper, i.e., a weak-scaling parallel efficiency of 0.984 
on 786,432 IBM Blue Gene/Q cores. Also, LDC-DFT exhibits a 
reasonable strong-scaling parallel efficiency of 0.803 on 786,432 
Blue Gene/Q cores. Our floating-point performance (50.5% of the 
theoretical peak on the entire Blue Gene/Q) is within the range of 
previous state-of-the-art DFT calculations: 56.5% on Blue Gene/L 
[34], 39% on Cray XT4 [35], 75.8% on Cray XT5 [36], and 
43.6% on K [37]. 

3. APPLICATION AND ALGORITHMIC 
INNOVATIONS 

The performance improvements mentioned above have been 
achieved through several algorithmic innovations. This section 
first provides a brief summary of the conventional DC-DFT 
algorithm [18-24], followed by a description of our algorithmic 
and computational innovations. 

In DC-DFT, the three-dimensional space Ω is represented as a 
union of overlapping spatial domains, Ω =∪αΩα , and physical 
properties are computed as linear combinations of domain 
properties (Fig. 1). Each domain Ωα  is further decomposed into 
its sub-volumes, Ωα =Ω0α ∪Γα . Here, Ω0α  are non-overlapping 
cores covering Ω (i.e., Ω =∪αΩ0α  and Ω0α ∩Ω0β = 0  for α ≠ β), 
whereas Γα  is a buffer layer that surrounds Ω0α . 

We solve the Kohn-Sham (KS) equations [5] within each domain 
to obtain local KS wave functions (Eq. (a) in Fig. 2) iteratively 
using a preconditioned conjugate-gradient (CG) method [47, 48]. 
Here, ψn

α (r)
 
 is the n-th KS wave function in domain α with the 

corresponding energy eigenvalue εn
α , ∇2  is the Laplacian 

operator, and V̂ion  and V̂Hxc  are the electron-ion and electron-
electron (or Hartree-exchange-correlation) potential operators, 
respectively. Note that the KS Hamiltonian operator Ĥ  in Eq. (a) 
in Fig. 2, and hence the KS wave functions, depend on the valence 
electron number density ρ(r) , which is a global quantity of the 
entire system Ω. V̂Hxc  is obtained from ρ(r)  in O(N) time using a 
tree-based algorithm. For each domain Ωα , we define a domain 
support function pα (r)  from r ∈ℜ3  (ℜ  is the set of real 
numbers) to the unit interval [0, 1], which is compactly supported 
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within the domain, i.e., pα (r) = 0 ( r ∉Ωα ). The domain support 
functions constitute a partition of unity, i.e., they satisfy the sum 
rule, Σα pα (r) =1 , at every spatial position r. This allows the 
global density ρ(r) to be decomposed into partial contributions 
ρα (r)  from domains α; see Eq. (b) in Fig. 2. The domain density 
ρα (r)  in turn is obtained from the domain KS wave functions 
ψn

α (r)  as shown in Eq. (c) in Fig. 2 (where the step function Θ(x) 

is 1 and 0 for positive and negative x, respectively). In Eq. (c) in 
Fig. 2, the chemical potential µ is determined from the total 
number of valence electrons N in the entire system through the 
relation, N = drρ r( )∫ , using the Newton-Raphson method. The 

global density and local Kohn-Sham wave functions are 
determined iteratively in an SCF iteration (Fig. 2). Note that the 
local KS solutions are globally informed through the global 
density and chemical potential. 

 
Figure 1.  (a) Schematic of divide-and-conquer (DC) density functional theory (DFT).  (b) DC domain and buffer. 

 

 
Figure 2. Global-local self-consistent field (SCF) iteration in DC-DFT. 

The rest of this section summarizes our algorithmic and 
computational innovations. Section 3.1 describes the lean divide-
and-conquer algorithm to significantly reduce the O(N) prefactor. 
Our globally scalable and locally fast electronic stricture solver is 
presented in section 3.2, and we discuss parallelization based on 
hybrid band-space-domain decomposition in section 3.3. Section 
3.4 deals with the optimization of floating-point performance 
based on algebraic transformation of computations. 

3.1 Lean Divide-and-Conquer (LDC) 
In order to reduce the prefactor of the O(N) computational cost of 
DC-DFT, we first optimize the size of the DC domains based on 
an analysis of its computational cost [29]. Consider a cubic 
system of side length L in three dimensions, and let the core 
length and the buffer thickness of a cubic domain be l and b, 
respectively; see Fig. 1. The computational complexity of the 
DFT computation within each domain is assumed to be the ν-th 
power of the system size. The total computational cost is a 
product of the number of domains and per-domain computational 
cost, Tcomp(l) = (L / l)3(l + 2b)3ν . Given the total system size L and 
the buffer thickness b, the optimal domain size l* is determined to 
minimize Tcomp(l) as a function of l, i.e., l* = argmin Tcomp(l) = 
2b/(ν−1) [29]. The computational complexity of the DFT problem 
is O(n2) for typical domain sizes, where the number of electrons 

per domain is n < 1,000 [34], and thus l* = 2b. The asymptotic 
complexity, which has rarely been encountered in practical DFT 
calculations [34], arises from the orthonormalization of KS wave 
functions and is O(n3). In this limit, l* = b. In all our applications 
in this paper, the domains sizes are such that l* = 2b. 

The choice of the buffer thickness b is dictated by accuracy 
requirement. The quantum nearsightedness principle [15] 
indicates that the error involved in the DC-DFT algorithm (which 
is due to the artificial boundary condition imposed at the domain 
boundary ∂Ωα ) decays exponentially as a function of b [16]. Due 
to the artificial boundary condition at ∂Ωα , the domain density 
ρα (r)  deviates from the total density ρ(r) . Let λ be the 
exponential decay constant of the density perturbation, 
∆ρα (r) = ρα (r)− ρ(r) , away from ∂Ωα  toward the center of the 
domain. Suppose that an error tolerance of ε ρα (r)  is imposed 

on |∆ρα (r) |  at the periphery of Ω0α , where ρα (r)  is the 
average density in Ωα . To satisfy the error tolerance, the buffer 
thickness needs to be as large as 

b = λ ln(max{|∆ρα (r) | r ∈∂Ωα} /ε ρα (r) ) . (1) 
Since the computational complexity of the DC-DFT algorithm 
scales with the buffer thickness asymptotically as b3ν  = b6 ~ b9 
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(for ν = 2 ~ 3) [29], the large b value required for obtaining a 
sufficient accuracy represents a major computational bottleneck. 
Key to reducing the prefactor of the O(N) computational cost of 
DC-DFT is thus to minimize ∆ρα (r)  at ∂Ωα . 

Our LDC-DFT algorithm addresses this problem through an 
improved treatment of domain boundaries. According to the 
Hohenberg-Kohn theorem [4], the local density ρα (r)  
corresponds to a unique external potential v(r), which is distinct 
from that corresponding to the global density ρ(r). To reduce the 
discrepancy ∆ρα (r) , we use a linear-response formula for the 
boundary potential, 

vαbc (r) = d ′r∫ ∂v(r)
∂ρ( ′r ) ρα ( ′r )− ρ( ′r )( )

≅
ρα (r)− ρ(r)

ξ

, (2) 

where ξ is an adjustable parameter. For the last equality in Eq. (2), 
we have adopted a local approximation [49], which is justified by 
the quantum nearsightedness principle [15-17] as formulated by 
Prodan and Kohn [16]. Namely, the response kernel ∂v(r) /∂ρ( ′r )  
is short-ranged with respect to |r−r′|. The same density-template 
potential was used by Ohba et al. [24] to augment the hard-wall 
boundary condition. Here, we instead use the periodic boundary 
condition on the local KS wave functions, incorporating the 
boundary potential in the local KS Hamiltonian, 

Ĥα = −
1
2∇

2 + V̂ion + V̂Hxc[ρ(r)]+ vαbc (r) , (3) 

which replaces Ĥ  in Eq. (a) in Fig. 2. It should be noted that the 
first equality in Eq. (2) is an exact linear response relation 
according to the foundational theorem of DFT [4]. In this paper, 
we take the adjustable parameter ξ in Eq. (2) to be 0.333 in the 
atomic unit by fitting representative systems in Ref. [24]. 

3.2 Globally Scalable and Locally Fast 
(GSLF) Solver 

To efficiently solve the global-local SCF problem in Fig. 2, our 
globally scalable and locally fast (GSLF) electronic-structure 

solver combines a local plane-wave basis within each DC domain 
for high numerical efficiency and a global real-space multigrid for 
scalability on massively parallel computers (Fig. 3): 
1. Fast intra-domain computation: A plane-wave basis [2, 

34, 50] is used to represent local KS wave functions ψn
α (r)  

and charge density ρα (r)  within each domain (containing ~ 
100 atoms), which takes advantage of a highly efficient 

numerical implementation [51] based on fast Fourier 
transform (FFT) [52] to solve Eq. (a) in Fig. 2. 

2. Scalable inter-domain computation: Once the global 
density ρ(r) is obtained from ρα (r)  according to Eq. (b) in 
Fig. 2, a real-space multigrid method [41] is used to solve the 
Poisson equation, ∇2VH (r) = −4πρ(r) , to obtain the Hartree 

potential VH(r) [53], which is part of V̂Hxc  in Eq. (a) in Fig. 
2. The multigrid method is highly scalable on massively 
parallel computers due to the locality preserving octree data 
structure [20, 23]; see Fig. 1(a). 

The FFT solver has been used extensively in O(N3) DFT programs 
[34, 50]. Plane-wave bases in spatially localized domains are 
found in O(N) DFT [43, 44] and discontinuous Galerkin [54] 
methods. The multigrid method has been used in O(N) DFT 
algorithms that are solely based on real-space representation [20, 
23, 41]. 

3.3 Hierarchical Band-Space-Domain (BSD) 
Decomposition 

An LDC-DFT-based QMD simulation code is implemented on 
massively parallel computers by employing multiple levels of 
parallelism with hierarchical band-space-domain (BSD) 
decomposition; see Fig. 4. (A similar approach was used 
previously in our space-time-ensemble parallel MD approach [26, 
55].) At the coarser level, we use task decomposition among 
domains Ωα . The program is implemented using the message 
passing interface (MPI) library for interprocessor 
communications, and each domain is assigned a dedicated MPI 
communicator using an MPI_COMM_SPLIT call. At the finer 
level, the plane-wave based calculations within each domain are 
further parallelized by a hybrid approach combining spatial 
decomposition (i.e., distributing real-space or reciprocal-space 
grid points among processors) and band decomposition (i.e., 

assigning the calculations of different KS wave functions to 
different processors) [47, 48] within the communicator assigned 
to the domain. During energy minimization, different KS wave 
functions are iteratively optimized on different processors 
independently from the others under an approximate 
orthonormality condition, i.e., band decomposition is employed. 
The electron density is also calculated by band decomposition. On 
the other hand, the KS wave functions are orthonormalized by 
first constructing an overlap matrix between them using 

 
Figure 3. Globally scalable and locally fast, hybrid electronic-
structure solver. Blue lines represent a tree network topology 
for multigrid-based inter-domain computation, whereas red
lines show the butterfly network for fast Fourier transform
within each domain. 

 
Figure 4. Hybrid band-space-domain decomposition. Within a
processor group assigned to each domain, each core computes
either a subset of spatial (real or reciprocal) grid points
(shown by a red frame) or a band (blue frame) in alternating
band-space decompositions. The identical grid vs. band
decomposition is used in all domains. 
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reciprocal-space decomposition, where the Fourier components of 
the wave functions are distributed among multiple processors. 
This is followed by parallel Cholesky decomposition of the 
overlap matrix, which introduces an additional parallelization 
axis. To switch between the spatial and band decompositions, all-
to-all communications are required only within the communicator. 
In addition, global communication within the communicator is 
necessary to calculate the scalar products between the wave 
functions. 

3.4 Algebraic Transformation of 
Computations 

The numerical kernel of LDC-DFT is the solution of the KS 
equations (Eq. (a) in Fig. 2). As explained earlier, this is 
formulated as an iterative minimization of the energy as a 
functional of KS wave functions using a preconditioned CG 
method. The original LDC-DFT code used a band-by-band CG 
minimization, in which KS wave functions (or bands) are 
optimized one at a time sequentially in ascending order of KS 
energy. To take maximal advantage of the highly optimized basic 
linear algebra subprograms (BLAS) library, we instead adopt an 
all-band approach, in which CG minimization is performed 
simultaneously for all KS wave functions at once. The original 
band-by-band computation is expressed in terms of matrix-vector 
operations using the DGEMV subroutine in level 2 BLAS 
(BLAS2). By combining all bands together into a matrix and 
operating the KS Hamiltonian at once, we transform the entire CG 
minimization to BLAS3 matrix-matrix computations using the 
DGEMM subroutine. This exposes more parallelism and 
drastically increases the floating-point performance. 

Some of these computational transformations are best carried out 
in an algebraic manner. Here, we illustrate this approach using 
one of the most expensive computations in LDC-DFT, i.e., 
applying the ultrasoft nonlocal pseudopotential operator v̂nl  [47, 
48, 56] to the KS wave functions, which is part of the electron-ion 
potential operator V̂ion  in Eq. (a) in Fig. 2: 

v̂nl ψn
α =

ij

Lmax

∑
I

Natom

∑ βi,I Dij,I β j,I ψn
α n =1,…,Nband( ) . (4) 

Here, Natom is the number of atoms per domain, Lmax is the number 
of angular momenta for projecting KS wave functions onto 
spherical harmonics centered at the atoms, and Nband is the number 
of KS wave functions. For this computation, each wave function 
⏐ψn

α 〉 is represented in the reciprocal space as an Np-element 
vector (Np ~ 104 is the number of plane waves). The same 
representation is used for the angular momentum-dependent 
projection function ⏐βi,I〉 centered at each atom I. In order to use 
BLAS3, we rewrite Eq. (4) as 

v̂nlΨ = !B(i) !D(i, j) !B( j)TΨ
i, j

L

∑  (5) 

by packing all of the wave functions into an Np × Nband 
 
matrix Ψ = 

[⏐ψ1
α 〉,...,⏐ψNband

α 〉]. In Eq. (5), !B(i)  = [⏐ βi,1 〉,...,⏐ βi,Natom 〉] is an 

Np × Natom 
 
matrix and [ !D(i, j)]I ,J  = Dij,IδIJ is an Natom × Natom 

matrix; δIJ = 1 (I = J) and 0 (else). Consequently, the nonlocal 
pseudopotential calculation can be performed solely as matrix-
matrix operations using the DGEMM subroutine in BLAS3. 

4. PERFORMANCE OPTIMIZATIONS 
This section first presents the computing platforms, on which the 
performance of the LDC-DFT code has been tested, followed by 
the description of thread-level, data-level and I/O optimizations. 

4.1 Experimental Platforms 
Numerical tests are performed on the IBM Blue Gene/Q computer 
[57] named Mira at the Argonne Leadership Computing Facility. 
Mira consists of 48 racks, each with 1,024 nodes. Each node has a 
16-core processor operating at 1.6 GHz, 32 MB L2 cache with 
hardware transactional memory and speculative operation 
functionalities [58], and 16 GB DDR3 memory. The processor 
employs the PowerPC A2 architecture that supports quad floating-
point processing units (QPUs), 16 KB L1 instruction cache, 16 
KB L1 data cache, and 4-way multithreading per core enabling 64 
concurrent threads on one node. Though it is highly energy 
efficient (55 watts per node) due to the relatively low clock speed, 
the Blue Gene/Q chip delivers a peak performance of 204.8 
GFLOP/s. Each node has 11 communication links — 10 links to 
connect to other computing nodes and one link to an I/O node. 
Each link can simultaneously transmit and receive data at 2 GB/s, 
amounting to a total bandwidth of 44 GB/s. A 5-dimensional torus 
network is used for internode communications [57, 59, 60]. 

At every clock cycle, each PowerPC A2 core can issue one 
instruction to the auxiliary execution unit (AXU) for floating-
point operations and another to the main execution unit (XU) for 
load/store, branch and integer operations, etc. It thus requires at 
least 2 instruction streams per core to maximize the instruction 
throughput. Assigning 4 threads per core could further improve 
the performance by hiding latency, assuming that the memory 
bandwidth is not saturated. PowerPC A2 utilizes the quad 
processing extension (QPX) instruction set for single-instruction 
multiple-data (SIMD) operations on QPUs, which can perform 
four double-precision floating-point operations in a single cycle. 
Therefore, ensuring SIMD utility is critical for achieving decent 
performance on Blue Gene/Q. 

In order to examine performance portability, we benchmark the 
LDC-DFT code on another architecture, i.e., a computing node 
comprised of dual Intel Xeon E5-2665 CPUs operating at 2.4 GHz 
and 64 GB DDR3 memory at the Center for High-Performance 
Computing and Communication at the University of Southern 
California. The Xeon E5-2665 employs the Sandy Bridge-EP 
architecture. There are 8 physical cores and 16 threads supported 
by the hyper-threading technology. Each core has its own 256 KB 
L2 cache and shares 20 MB L3 cache per chip with the other 
cores. Intel turbo boost technology 2.0 and error-correcting-code 
memory are also supported. Intel QuickPath interconnect provides 
up to 1,866 mega transfers per second, and the maximum memory 
bandwidth is 14.9 GB/s per memory channel.  

4.2 Architecture-level Optimizations 
In addition to the algorithmic and algebraic techniques explained 
in sections 3, we perform several architecture-level performance 
optimizations as explained in this subsection. Furthermore, 
massive file I/O in production runs is handled by collective I/O. 

Architecture-level performance optimizations are guided by 
performance-profiling results. Here, we use the Blue Gene 
performance monitoring (BGPM) API and the hardware 
performance monitor (HPM) toolkit for profiling [61]. We have 
instrumented the LDC-DFT code using three performance 
counters: (1) PEVT_CYCLES to count CPU cycles; (2) 

665



PEVT_INST_QFPU_FPGRP1_QUAD to count floating-point 
(FP) operations that utilize the QPUs for SIMD operations; and 
(3) PEVT_INST_QFPU_FPGRP1_SINGLE for non-QPU FP 
operations. These three counters are used respectively to identify: 
(1) cycle hotspots; (2) vectorized code sections; and (3) non-
vectorized code sections. The cycle hotspots are marked as 
candidates for applying thread-level parallelism. On the other 
hand, code sections with high non-vectorized operation counts are 
selected for detailed analysis for data parallelism. 

Data Parallelism: To ensure that the LDC-DFT code fully 
utilizes SIMD vectorization in all critical hotspots [62], we have 
further analyzed the non-vectorized hotspots based on the 
profiling. The code line-level and function-level profiling results 
using the HPCTW toolkit [63] have revealed that several 
performance-critical loop structures (which account for ~20% of 
the total execution time) have not been vectorized automatically 
during compilation. Some of these are due to ambiguous data 
alignment of the complex-variable arrays used in the loop 
computation. To mitigate this issue, we have manually vectorized 
five of the most time-consuming non-vectorized loops by creating 
wrapper subroutines that ensure proper data alignment of complex 
arrays. In addition, solution of the SCF problem (Fig. 2) based on 
a plane-wave basis requires efficient FFT operations. On the basis 
of the profiling, we have found that the commodity FFTW library 
routines [52] used in the original code consume considerable 
cycles but mostly from non-SIMD instructions. We have also 
found that 21.1% of the total cycles, with 72.5% of the total non-
vectorized FP operations and less than 1% of the total vectorized 
FP (QPX) operations, were spent in the FFTW subroutines. This 
indicates that the computations in the FFTW library on Blue 
Gene/Q were not SIMD vectorized properly. To alleviate this 
issue, we have decided to use Spiral, a highly efficient threaded 
FFT library on Blue Gene/Q [51], instead of the commodity 
FFTW library used in the original code [52]. Post-optimization 
profiling results have confirmed that SIMD instructions are now 
issued in the manually vectorized code sections and in the Spiral 
FFT calculations. 

Thread-Level Parallelism: To fully utilize the hardware 
threads and double-instruction units on Blue Gene/Q, we have 
implemented a hybrid MPI+multithreading parallelization scheme 
[58] in the LDC-DFT code. For multithreading, we use the 
OpenMP library, where the number of threads is specified by the 
environment variable, OMP_NUM_THREADS. First, candidate 
subroutines for threading are selected based on the time spent in 
each subroutine and its complexity for threading (e.g., severity of 
race conditions and whether a threaded version of a library is 
available). This process is assisted by the concurrency control 
decision tree recently developed by us [58]. On the basis of such 
prioritization, we apply OpenMP threading to the cycle hotspot 
loops identified via HPM profiling. We also use the threaded IBM 
engineering and scientific library (ESSL) for threaded BLAS 
calculations. In addition, a highly efficient customized threaded 
matrix-matrix multiplication subroutine (i.e. JAG-DGEMM [64]) 
is used instead of the typical DGEMM in the ESSL package. 
Finally, FFT calculations are threaded via the Spiral FFT library 
[51]. 

Collective File I/O: To address a challenge of massive file I/O 
on the 786,432-core Blue Gene/Q, we have implemented an 
aggregated I/O scheme, in which a number of MPI processes are 
grouped together to perform disk I/O. Within each group, only a 
master process accesses disk, while the other processes 
communicate with the master to transfer data. Creating and 

managing files for each of 786,432 or a larger number of MPI 
processes is beyond the system’s capability, whereas grouping all 
processes for a single I/O incurs an excessive communication cost 
and does not take advantage of the multiple I/O servers. We use 
the optimal I/O group size of 192 MPI processes to minimize the 
I/O time. As a result of the collective I/O scheme, for a typical 
production run for about 12 hours on the full 786,432 cores, the 
file read and write times of 9.1 and 99 seconds account for only 
0.02% and 0.23%, respectively, of the total execution time. To 
reduce the I/O size for atomic coordinates, we can optionally use 
our spacefilling-curve-based adaptive data compression scheme 
[65], though the compression ratio is rather small for the 16,611-
atom production run shown in section 6. 

5. SCALABILITY, TIME-TO-SOLUTION, 
AND PORTABLE FLOATING-POINT 
PERFORMANCE 

The algorithmic innovations in section 3 and performance 
optimizations in section 4 have resulted in excellent scalability, 
time-to-solution, and portable floating-point performance of the 
parallel LDC-DFT algorithm. The program is written in Fortran 
90 with MPI for message passing, combined with OpenMP for 
multithreading. In the following, we present performance 
measurement results of the LDC-DFT code. Section 5.1 presents 
scalability data including both weak- and strong-scaling results. 
The time-to-solution and peak floating-point performance are 
presented in sections 5.2 and 5.3, respectively. Section 5.4 deals 
with performance portability, and this section concludes with the 
verification and validation of the LDC-DFT code in section 5.5. 

5.1 Weak and Strong Scaling 
We first perform a weak-scaling benchmark of the LDC-DFT 
code on the Blue Gene/Q, in which the number of atoms per core 
Natom/P is kept constant. Figure 5 shows the wall-clock time per 
QMD simulation step with scaled workloads — 64P-atom SiC 
system on P cores of Blue Gene/Q. In this test, we set the number 
of domains to be P. The execution time includes 3 SCF iterations 
to determine the KS wave functions and the global density, with 3 
CG iterations per SCF cycle to refine each wave function. By 
increasing the number of atoms linearly with the number of cores, 

 
Figure 5. Wall-clock time per QMD simulation step of the 
parallel LDC-DFT algorithm, with scaled workloads — 64P-
atom SiC system on P cores (P = 16, ..., 786,432) of Blue 
Gene/Q. 
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the wall-clock time remains nearly constant, indicating excellent 
scalability. To quantify the parallel efficiency, we first define the 
speed of the LDC-DFT program as a product of the total number 
of atoms and the number of QMD simulation steps executed per 
second. The isogranular speedup is given by the ratio between the 
speed on P cores and that on 16 cores (i.e. one computing node) 
as a reference system. The weak-scaling parallel efficiency is the 
isogranular speedup divided by P/16. With the granularity of 64 
atoms per core, the parallel efficiency is 0.984 on P = 786,432 for 
a 50,331,648-atom (or 201,326,592-electron) SiC system. This 
computation involves 39,815,773,421,568 electronic wave-
function and charge-density values sampled on mesh points. This 
result demonstrates the very high scalability of the LDC-DFT 
algorithm. 

Next, we perform a strong-scaling test by simulating a LiAl 
nanoparticle immersed in water containing a total of 77,889 atoms 
(Li2136Al2136 immersed in 24,539 H2O molecules). In this test, the 
number of cores ranges from P = 49,152 to 786,432, while 
keeping the total problem size constant. Figure 6 shows the wall-
clock time per QMD simulation step as a function of P. The time-
to-solution is reduced by a factor of 12.85 on 786,432 cores 
compared with the 49,152-core run (i.e., using 16-times larger 
number of cores). This signifies a strong-scaling speedup of 
12.85, with the corresponding strong-scaling parallel efficiency of 
0.803. 

 
Figure 6. Wall-clock time per QMD simulation step of the 
parallel LDC-DFT algorithm with strong scaling — 77,889-
atom LiAl-water system on P cores (P = 49,152, ..., 786,432) of 
Blue Gene/Q. 

The excellent weak and strong scaling shown above is a 
consequence of minimal global communication in the DC-DFT 
algorithm. Namely, only one global density function ρ(r) is 
shared among the DC domains instead of communicating O(N) 
electronic wave functions ψn

α (r) . This abstraction of global 
properties using reduced degrees of freedom significantly 
decreases the communication requirement. For the largest system 
involving 50.3 million atoms, the global charge density accounts 
for only 0.078% of the entire data size, which is far surpassed by 
the local electronic wave functions. In addition, the reduced buffer 
thickness in the new LDC-DFT algorithm (see section 5.2) has 
drastically reduced the point-to-point communication to exchange 
ρα (r)  values among nearest neighbor domains. 

5.2 Time-to-Solution 
The LDC-DFT algorithm significantly reduces the O(N) prefactor 

of its computational cost with a given energy tolerance, and 
consequently the time-to-solution. To quantify the reduction of 
the time-to-solution, we first measure the convergence of 
calculation with respect to the buffer thickness b, which controls 
the data locality of the algorithm (Fig. 1). Figure 7 shows the 
calculated potential energy as a function of b for an amorphous 
cadmium selenide (CdSe) system containing 512 atoms in a cubic 
simulation box of length 45.664 atomic units (a.u.). The side 
length l of each cubic domain is fixed as 11.416 a.u. To study the 
convergence of the calculated energy with respect to the 
localization control parameter b, we compare results of our 
original DC-DFT and new LDC-DFT algorithms. We see that the 
LDC-DFT calculation converges much more rapidly than the DC-
DFT calculation. The LDC-DFT potential energy converges 
within 10-3 a.u. per atom above b = 4 a.u. In order to assess the 
impact of the improved convergence of LDC-DFT on the 
computational cost, let us consider an example of the error 
tolerance of 5×10-3 a.u. for the energy. According to Fig. 7, the 
buffer thickness b to achieve this convergence criterion is 
decreased from 4.73 a.u. for DC-DFT to 3.57 a.u. for LDC-DFT. 
According to the complexity analysis in section 3.1, this amounts 
to the computational speedup over the original algorithm by a 
factor of [(11.416+2×4.72)/(11.416+2×3.57)] 3ν  = 2.03 (for ν = 2) 
or 2.89 (for ν = 3). The speedup factor of LDC-DFT over DC-
DFT is a function of the energy-convergence criterion: 2.59 or 
4.18 (for the energy-convergence criterion of 1×10-2 a.u.), 2.03 or 
2.89 (5×10-3 a.u.), and 1.42 or 1.69 (10-3 a.u.) for ν = 2 or 3, 
respectively. 

 
Figure 7. Energy convergence with respect to the localization 
control parameter. Potential energy is plotted as a function of 
the buffer thickness b for an amorphous CdSe system. The 
solid and open circles represent results for the LDC-DFT and 
original DC-DFT algorithms, respectively. 

The decreased buffer thickness in LDC-DFT also reduces the 
crossover point, above which the O(N) algorithm is faster than the 
conventional O(N3) DFT algorithm. The crossover point is 
estimated by equating the LDC-DFT computation time Tcomp(l*) 
(l* is the optimal domain length derived in section 3.1) with that 
of the O(N3) DFT, L3ν . For ν = 2, the resulting crossover point is 
L = 8b = 28.56 a.u. for CdSe. The corresponding number of atoms 
is Natom = 125. Even by imposing a more stringent accuracy 
requirement by enlarging the buffer thickness by 50%, the 
crossover point is 125 × 1.53 = 422 atoms, for which the above 
assumption (i.e. ν = 2) still holds [34]. 

To measure the actual time-to-solution, let us consider the largest 
computation shown in section 5.1, i.e., a 50,331,648-atom SiC 
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system on the entire 786,432 cores of the Blue Gene/Q. One SCF 
iteration using LDC-DFT in this case took 441 seconds, with a 
speed of 114,000 atom•iteration/s. As mentioned in section 2, this 
represents a several orders-of-magnitude improvement over the 
previous state-of-the-art in terms of the time-to-solution. 

5.3 Floating-Point Performance 
We have measured the floating-point (FP) performance of LDC-
DFT. The Blue Gene Performance Monitoring (BGPM) API is 
used to measure the FP performance of the entire program by 
linking the threaded HPM library (libmpihpm_smp). 

We first study the dependence of the FP performance on the 
number of threads using a small number of Blue Gene/Q nodes. 
Here, a 512-atom SiC system is simulated by 64 MPI ranks. The 
number of computing nodes is varied from 4, 8 to 16 using 16, 8 
and 4 MPI ranks per node, respectively. To fully utilize the 
double-instruction and hardware-thread units, we also vary the 
number of threads such that 1–4 threads are spawned on every 
core. Table 1 shows the measured FP operations per second 
(FLOP/s) along with its percentage of the theoretical peak in the 
parentheses. We see that the FLOP/s is an increasing function of 
the number of threads per core. This reflects benefits from the 
double-instruction units (for the case of 2 threads per core) and 
the hardware-thread unit (for the case of 4 threads per core). Here, 
we should note that saturating all hardware threads does not 
necessarily improve the performance. In some test cases, the 
FLOP/s decreases when using 4 threads per core instead of 2 
threads per core. This is likely due to memory bandwidth 
saturation. 

Table 1. Dependence of the FLOP/s performance on the 
number of threads on Blue Gene/Q. The number in each cell is 
the measured FP performance in GFLOP/s, with the 
corresponding percentage of the theoretical peak in a 
parenthesis. 
Number of 

nodes 
Number of threads per core 

1 2 4 
4 236 (28.8%) 343 (41.9%) 445 (54.3%) 
8 433 (26.4%) 563 (34.4%) 746 (45.6%) 

16 806 (24.6%) 1017 (31.0%) 1535 (46.8%) 
 

Table 2. FLOP/s performance on Mira. 
Number of 

racks 
Number of 

nodes 
Number 
of cores 

Measured 
TFLOP/s 

%peak 
FLOP/s 

1 1,024 16,384 113.23 53.99 
2 2,048 32,768 226.32 53.96 

48 49,152  786,432 5,081.0 50.46 
 

Next, we perform large-scale FP performance measurements. 
Here, 131,072-, 262,144- and 6,291,456-atom SiC systems are 
simulated on 1, 2 and 48 racks (or 16,384, 32,768 and 786,432 
cores) of Mira, respectively. We use 16 MPI ranks per node, 
where each MPI rank spawns 4 threads. The benchmark results 
are shown in Table 2. The percentage of the peak decreases only 
slightly from 54% to 50.5% by increasing the number of racks 
from 1 to 48. The performance on the entire Mira (i.e. 786,432 
cores) is 5.08 PFLOP/s. 

5.4 Performance Portability 
To study the portability of the performance to other computing 
architectures, we measure the FP performance on a dual Intel 
Xeon E5-2665 platform using a SiC crystal consisting of 64 
atoms. In this benchmark, the SiC system is decomposed into 

eight domains and each subdomain is assigned to one MPI task. 
We use the Intel Fortran compiler version 14.0 for compilation, 
OpenMPI 1.6.4 for interprocess communication, and Intel VTune 
amplifier XE 2013 for the FLOP/s measurement. FFTW library 
version 3.3.3 and BLAS routines in Intel math kernel library 
(MKL) version 11.0 are linked during compilation. We perform 
hardware event-based sampling with the amplxe-cl command. The 
elapsed time and the average unhalted frequency are obtained 
from the CPU_CLK_UNHALTED.THREAD and 
CPU_CLK_UNHALTED.REF_TSC events. Since all floating-
point variables are in double precision, the FLOP can be estimated 
with the FP_COMP_OPS_EXE.SSE_SCALAR_DOUBLE, 
FP_COMP_OPS_EXE.SSE_PACKED_DOUBLE and 
SIMD_FP_256.PACKED_DOUBLE events. Here, we assume the 
turbo-boosted clock for the peak performance (198 GFLOP/s per 
Xeon chip and 396 GFLOP/s per node). To fully utilize the hyper-
threading capability, we use OMP_NUM_THREADS = 4. We 
have obtained 217.6 GFLOP/s (i.e. 55% of the peak performance), 
which demonstrates an excellent performance portability of the 
LDC-DFT code. 

5.5 Verification and Validation 
In the production QMD simulations presented in the next section, 
the DC computational parameters are chosen to achieve a 
convergence of the calculated energy within 10-3 a.u./atom. Also, 
the magnitude of interatomic forces is converged within 10-3 
a.u./atom. For a direct verification of the LDC-DFT code for the 
problem under consideration, we have performed QMD 
simulations for a Li30Al30 particle in liquid water (containing a 
total of 606 atoms) using both O(N) LDC-DFT [29] and 
conventional O(N3) plane-wave DFT [47, 48] codes. We have 
confirmed that the quantity-of-interest (i.e., the number of H2 
molecules produced) in these two simulations is identical. We 
have then used the verified LDC-DFT code to simulate larger 
systems. Though experimental validation of the hydrogen 
production rate is beyond the reach of current experimental 
technologies, our calculation quantitatively explains recent 
experimental observations [30]: (1) Hydrogen-production rate 
peaks at the alloy composition of equal Li and Al contents; and 
(2) hydrogen production is accompanied by increased pH of 
surrounding water. 

6. SCIENCE APPLICATION FOR 
RENEWABLE-ENERGY 

Hydrogen production from water using aluminum (Al) particles 
[47, 66] could provide a renewable energy cycle [67, 68]. 
However, its practical application is hampered by the low reaction 
rate and poor yield. Using the largest ever QMD simulations on 
786,432 Blue Gene/Q cores based on the LDC-DFT algorithm 
(Fig. 8), we have shown that orders-of-magnitude faster reactions 
with higher yields can be achieved by alloying Al particles with 
lithium (Li) [30]; see also a supplementary movie, S1.mov [69]. 
Here, the orders-of-magnitude improvement of the time-to-
solution over the previous state-of-the-art shown in section 5 has 
enabled QMD simulations encompassing unprecedented spatio-
temporal scales, involving 16,661 atoms (or 43,708 electrons) for 
21,140 time steps (or 129,208 SCF iterations) with a unit time 
step of 0.242 fs. 

Through the analysis of the simulation data, a key nanostructural 
design has been identified as the abundance of neighboring Lewis 
acid-base pairs, where water-dissociation and hydrogen-
production require very small activation energies. These reactions 
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are facilitated by wide charge pathways across Al atoms that 
collectively act as a “superanion”. Furthermore, dissolution of Li 
atoms into water produces a corrosive basic solution that inhibits 
the formation of a reaction-stopping oxide layer on the particle 
surface, thereby increasing the yield. We have also found a 
surprising autocatalytic behavior of bridging oxygens (similar to 
Ref. [70]) that connect Al and Li. Namely, Li-O-Al is not merely 
an inert reaction product but instead plays an unexpectedly active 
role in the oxidation process by assisting the breakage of O-H and 
formation of Al-O bonds. 

As a verification of the O(N) LDC-DFT algorithm, we have first 
simulated a Li30Al30 particle surrounded by 182 H2O molecules (a 
total of 606 atoms) at temperatures 300, 600 and 1,500 K. Figure 
9(a) shows the calculated hydrogen production rate as a function 
of inverse temperature (an identical result was obtained by a 
conventional O(N3) DFT code). By the Arrhenius fit, the 
activation barrier is estimated to be 0.068 eV. The corresponding 
hydrogen production rate is 1.04×109 s-1 at 300 K per LiAl pair, 
which is orders-of-magnitude higher than that for pure Al [47]. 

A major problem of H2 production from water using Al particles 
is the lack of scalability. Namely, the high reactivity of Al 
nanoparticles cannot be sustained for larger particles that are 
commercially mass-produced. To investigate the scalability of the 
high reactivity of LinAln with water, we have simulated larger 
particles, Li135Al135 and Li441Al441, in water at 1,500 K, involving 
a total of 4,836 and 16,611 atoms, respectively. Figure 9(b) plots 
the H2 production rate normalized by the number of surface 
atoms, Nsurf, as a function of Nsurf for the three systems. The 
normalized H2 production rate is constant as a function of Nsurf 

within error bars. The size effect is thus negligible, indicating that 
the LinAln surface is equally reactive regardless of the surface 
curvature. Thus, the nanostructural design proposed here is 
expected to scale up to industrially relevant particle sizes. 

Not only this microscopic understanding explains recent 
experimental findings in similar alloy systems (e.g. alloy 
composition-dependent reactivity and a remarkable pH change 
associated with H2 production) [71], but it also predicts a specific 
nanostructural design for rapid high-yield production of hydrogen 
on demand, which is expected to scale up to industrially relevant 
particle sizes. This work thus lays a foundation for future studies 
on fundamental science toward rational nanostructural design of 
renewable energy technologies. 
 

7. CONCLUSION: BROADER 
METASCALABLE APPLICATIONS ON 
FUTURE SYSTEMS 

In this paper, we have presented scalable QMD simulations based 
on a new O(N) lean divide-and-conquer density functional theory 
algorithm. Divide-and-conquer is a highly scalable algorithmic 
paradigm, which has been applied successfully to design linear-
scaling algorithms for broad computational problems ranging 
from the formally O(N2) N-body problem [72-75], to the O(N3) 
eigenvalue problem [76, 77] and linear systems [78], to the 
exponentially complex quantum N-body problem [18-24]. With 
the advent of multicore revolution in computer architectures, DC 
software on emerging exascale computers could provide an 
unprecedented capability to solve complex problems. But this is 

 

 
Figure 8.  H2 production from water using a Li441Al441
particle.  (Top) The valance electron density (silver isosurface)
is centered around Al atoms, whereas some of the Li atoms
(red spheres) are dissolved into water. Green ellipsoids
represent the electron charge density around produced H2
molecules. Water molecules are not shown for clarity.
(Bottom) The electron density around water molecules (cyan
isosurfaces). H, O, Li and Al atoms are represented by white,
red, purple and gray spheres. 

 
Figure 9.  Rapid and scalable hydrogen-on-demand.  (a) H2
production rate as a function of inverse temperature (red
circles with error bars), where the blue line is the best fit to
the Arrhenius equation.  (b) Hydrogen production rate
normalized by the number of surface atoms, Nsurf, as a
function of Nsurf. 
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true only if the software continues to scale on the many millions 
of cores expected in a future exascale computer. This is an 
enormous challenge, since we do not even know the architecture 
of such platforms. The primary challenge is to sustain DC’s 
scalability on rapidly evolving parallel computing architectures. 
Such a formidable challenge can only be addressed based on a 
solid theoretical foundation to guarantee provable scalability, 
adapting to evolving architectures, i.e., transforming the DC 
algorithmic framework to be metascalable [26, 31]. Light-
overhead DC algorithms such as LDC-DFT are expected to be 
metascalable, assuming only that a tree network topology 
(involving progressively small communication volume at upper 
tree levels) will be supported. The communication requirement is 
further reduced algorithmically by abstracting the global 
information with much reduced dimensionality, e.g., using only 
one global function (density) and one scalar value (chemical 
potential) instead of the entire O(N) wave functions in DC-DFT. 

The LDC-DFT algorithm has been utilized to compute a rich 
variety of global properties other than mere atomic trajectories. 
We have recently proposed an extension of DC, which we call 
divide-conquer-recombine (DCR) [29]. In DCR, the DC phase 
computes globally informed local solutions, which are used in the 
recombine phase as compact bases to synthesize global properties. 
The recombine phase typically performs range-limited n-tuple 
computations [79] among DC domains to account for higher inter-
domain correlations that are not captured by the tree topology 
used in the DC phase. For example, DC electronic wave functions 
have been used as compactly supported bases to calculate: (1) 
high-order inter-molecular-fragment interactions [80, 81]; (2) 
global frontier (i.e. highest occupied and lowest unoccupied) 
molecular orbitals [82, 83]; (3) global charge-migration dynamics 
[84-86]; and (4) global kinetics of photoexcited electrons and 
holes in an exciton flow network [87]; at the length and time 
scales that are otherwise impossible to reach. These include the 
largest nonadiabatic QMD simulation of photoexcited electron 
dynamics involving 6,400 atoms, reaching experimental 
spatiotemporal scales [87]. Implemented with metascalable DC 
algorithms such as LDC-DFT, the DCR algorithmic framework 
promises to scale on future systems to address many challenging 
scientific and engineering problems. Thus, the LDC and GSLF 
concepts, along with the DCR algorithmic framework, are 
expected to provide a metascalable computing paradigm on future 
systems, which is generalizable to very broad applications. 
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