
Optimizing Molecular Dynamics

• Intranode optimization: CPU & memory access
• Internode optimization: Communication

Aiichiro Nakano
Collaboratory for Advanced Computing & Simulations

Department of Computer Science
Department of Physics & Astronomy

Departmentf of Quantitative & Computational Biology
 University of Southern California

Email: anakano@usc.edu

Data/computation locality!

Intranode: Memory Access

• Linked-list cells—irregular memory access pattern

• Data locality: Regular data layout
 for i = cell_end[c]+1 to cell_end[c+1]
 access r1[i]
 endfor

cell 1

cell 0 2

cell 3

0

cell 2

1

3

4
5

6

7

head E

0 1 2 3

4 6 7

lscl

0 1 2 3 4 5 6 7

20 31 5EE E

head 7 3 1 Empty

Data re-ordering

BLAS3-Performance Molecular Dynamics?
• BLAS3: q = flop/memory access = (block size)1/2

• Molecular dynamics: q = O(n2)/O(n) = O(n: block size)
 > Use of SIMD (single instruction multiple data)
 instructions on multicore (AVX), GPU

BLAS 3

BLAS 2
BLAS 1

Peak

BLAS Floating-Point Performance
• BLAS-ification: Transform from band-by-band to all-band computations to

utilize a matrix-matrix subroutine (DGEMM) in the BLAS3 library for the
quantum molecular dynamics application

• Algebraic transformation of computations

Example: Nonlocal pseudopotential operation
D. Vanderbilt, Phys. Rev. B 41, 7892 (’90)

• 50.5% of the theoretical peak FLOP/s performance on 786,432 Blue Gene/Q
cores (entire Mira at the Argonne Leadership Computing Facility)

• 55% of the theoretical peak FLOP/s on Intel Xeon E5-2665

!𝑣!" ⟩|𝜓#$ = '
%

&!"#$

'
'(

)$!%

(|𝛽',% 𝐷'(,% 𝛽(,% 𝜓#$ 𝑛 = 1,… ,𝑁+,!-

𝚿 = | ⟩𝜓.$, … , | (𝜓&&!'(
$ 	2𝐁 𝑖 = | (𝛽',. , … , | (𝛽',&!"#$ 2𝐃(𝑖, 𝑗)

%,/
= 𝐷'(,%𝛿%/

!𝑣!"𝚿 ='
',(

)

2𝐁(𝑖)2𝐃(𝑖, 𝑗)2𝐁(𝑗)0

K. Nomura et al., IEEE/ACM Supercomputing, SC14 (’14)

https://aiichironakano.github.io/cs596/Nomura-MetascalableQMD-SC14.pdf

• BLASified nonlocal electron dynamics on graphics processing unit (GPU):
Operation of nonlocal potential is projected onto a vector space spanned by
Kohn-Sham orbitals at time 0 within the real-time scissor approximation
[Wang et al., J. Phys. Condens. Mat. 31, 214002 (’19)], making it dense matrix
operations implemented with highly optimized level3 (or matrix-matrix)
BLAS (basic linear algebra subprogram) library on GPU

!𝑣!"| ⟩𝜓# 𝑡 ≅ ∆$%&)
'()*+,

| ⟩𝜓' *𝜓'| ⟩𝜓# 𝑡

• See lecture on divide-&conquer Maxwell-Ehrenfest-surface hopping simulation

Razakh et al., PDSEC (IEEE, ’24); Piroozan et al., PMBS (IEEE, ’24)

More BLAS-ification

https://aiichironakano.github.io/phys760/DCMESH.pdf

Computation Locality

• Pair-interaction computation: Preserve nearest-neighbor cells’
proximity in memory

• Spacefilling curve: Mapping from the d-dimensional space to
one-dimensional list to preserve spatial proximity of
consecutive list elements

J. Mellor-Crummey et al., Int’l J. Parallel Prog. 29, 217 (’01)

Data to computation re-ordering: How to traverse cells?

https://aiichironakano.github.io/cs596/Mellor-MDlayout-IJPP01.pdf

Hilbert-Peano Curve
• Gray code: a sequence of numbers such that successive

numbers have Hamming distance 1
 Algorithm: Recursive generation of k-bit Gray code G(k)
 (1) G(1) is a sequence: 0 1.
 (2) G(k+1) is constructed from G(k) as follows:
 a. Construct a new sequence by appending a 0 to the left of all members
 of G(k).
 b. Construct a new sequence by reversing G(k) & then appending a 1 to
 the left of all members of the sequence.
 c. G(k+1) is the concatenation of the sequences defined in steps a & b.

• G(3): 000 001 011 010 110 111 101 100

Giuseppe Peano (1858–1932)David Hilbert (1862–1943)

of bits where two
binary numbers differ

Hilbert-Peano Curve
• Hilbert curve: recursive application of the d-dimensional Gray

codes
• 2-dimensional Hilbert curve

• 3-dimensional Hilbert curve
NP-complete traveling salesman problem

See Corcoran et al., SC17

https://aiichironakano.github.io/cs596/Corcoran-SpaceFillingDeepLearning-SC17.pdf

Morton (Z) Curve
• Spacefilling curve based on octree index

x = 1 1 0
y = 0 0 0
z = 1 0 0
R = 101 001 000

x

yz

• 3D → list map preserves spatial proximity
• Multiresolution analysis made easy

A. Omeltchenko et al., Comput. Phys. Commun. 131, 78 (’00) Multiresolution analysis

https://aiichironakano.github.io/cs596/Omelchenko-DataCmp-CPC00.pdf

Analysis of Data Locaility

2 clusters 1 cluster

Morton Hilbert

Hilbert curve is better than Morton curve for spatial range query

Cluster ~ cache line ~ latency cost

Morton (Z)

Hilbert

Alternative Locality Measure for MD

Scott Calaghan (CSCI 596 final project)

1

5

11

1

1

2

6

3

• 4x4 Hilbert:
– 30 1s
– 10 3s
– 4 5s
– 2 11s
– 2 13s

• Lower median, higher variance
• Better for kc = 1

• 4x4 Z-curve:
– 16 1s
– 16 2s
– 8 3s
– 8 6s

• Higher median, lower variance
• Better for 2 < kc < 13

• Evaluate curves based on curve distances to neighbors
• Compare number below & above threshold cutoff kc (like cache)

Which curve is better for spatial “pair” query?

Tunable Hierarchical Cellular Decomposition

• Spatial decomposition with data “caching” & “migration”
• Computational cells (e.g., linked-list cells in MD) < cell blocks

(threads) < processes (Pgp, spatial decomposition subsystems) <
process groups (Pg, Grid nodes)

• Multilayer cellular
 decomposition (MCD)
 for n-tuples (n = 2-6)
• Tunable cell data &
 computation structures:
 Data/computation re-
 ordering & granularity
 parameterized at each
 decomposition level
• Tunable hybrid MPI +
 OpenMP + SIMD
 implementation

Mapping O(N) divide-&-conquer algorithms onto memory hierarchies

Nomura et al., IPDPS 2009

Floating-point
operation/L2
cache miss
trade-off:
331,776-atom
silica MRMD
on 1.4 GHz
Pentium III

Execution time/MD time step (sec) Number of OpenMP
threads, ntd

Number of MPI
processes, np MRMD P-ReaxFF

1
2
4
8

8
4
2
1

4.19
5.75
8.60
12.5

62.5
58.9
54.9
120

MPI/OpenMP parallelism
trade-off:
8,232,000-atom silica MRMD &
290,304-atom RDX F-ReaxFF on
8-way 1.5 GHz Power4

Performance Tunability

Sweet spot

SIMD Vectorization

(Example) Zero padding to align complex data
Original solution SIMD solution

• Single-instruction multiple-data (SIMD) parallelism

for (i=0; i<N; i++)
 for (a=0; a<3; a++)
 r[i][a] =
 r[i][a] +
 DeltaT*rv[i][a];

Peng et al., PDPTA 2009; UCHPC 2010; J. Supercomputing 57, 20 (’11)

vector registers

cf. False-sharing avoidance

Hierarchical Parallelization

CACS Playstation3 cluster

PowerPC

synergistic processing elements

• Developed a hierarchical parallel lattice Boltzmann method (pLBM) for flow simulation
on a cluster of Cell Broadband Engine-based Playstation3 consoles & IBM BlueGenes

 1. Spatial decomposition via message passing
 2. Multithreading through critical section-free, dual representation
 3. Single-instruction multiple data (SIMD) parallelism via new vector transforms

Peng et al., IJCS 08; Euro-Par 08; IPDPS 09; cf. https://en.wikipedia.org/wiki/Four-vector

;⃗ = (𝜌, 𝑗1 , 𝑗2 , 𝑗3)

https://en.wikipedia.org/wiki/Four-vector

More Four-Vectors for SIMD
Use SIMD-efficient four-vectors abundant in mathematical physics!

• Special relativity in physics: space (x, y, z)-time (t) four-vector
 𝑋- = 𝑐𝑡, 𝑥, 𝑦, 𝑧 ; c: light speed
• Quaternion representation of rotation in computer graphics:

𝑞.
𝑞/
𝑞0
𝑞1

=

cos 2
0
cos 345

0

sin 2
0
cos 365

0

sin 2
0
sin 365

0

cos 2
0
sin 345

0

; 𝜃, 𝜙, 𝜓 : Euler angles

• Feature vector in deep-learning molecular dynamics:
 𝐷78 = 1/𝑅78 , 𝑥78/𝑅78 , 𝑦78/𝑅78 , 𝑧78/𝑅78
 L. Zhang et al., Phys. Rev. Lett. 120, 143001 (’18)

https://aiichironakano.github.io/cs596/Zhang-DPMD-PRL18.pdf

Recap: Intranode Performance Optimization
• Key hardware feature: Memory hierarchy; latency vs.

bandwidth (cf. Internet speed test)
• Key strategy: Feed the fast processor by (1) enhancing

data/computation locality to achieve high cache-hit rate (e.g.,
space-filling curve) & (2) increasing operational intensity, q =
fast computation/slow memory I/O (e.g., BLAS-ify)

• Do it yourself: Hierarchical decomposition via divide-&-
conquer implemented with hybrid MPI + OpenMP + SIMD
(e.g., CUDA)

Cache-Oblivious Linked-List Cell MD?
• Recursive blocking for cells?

In Proc. FOCS99

Intelligent Performance Optimization
• Knowledge representation to

express concurrency/data
locality & machine learning to
optimally map them to
hardware

“Intelligent optimization of parallel & distributed applications,” B. Bansal, U. Catalyurek, J.
Chame, C. Chen, E. Deelman, Y. Gil, M. Hall, V. Kumar, T. Kurc, K. Lerman, A. Nakano, Y. L.
Nelson, J. Saltz, A. Sharma, and P. Vashishta, in Proc. of Next Generation Software Workshop,
Int’l Parallel & Distributed Processing Symp. (IPDPS 07)

Pruned decision tree
C. Chen, Ph.D.
Thesis (Computer
Science, USC, ’07)

e.g., Tunable hierarchical cellular decomposition
exposes maximal data locality

Use AI!

Scalable Simulation Algorithm Suite

• 4.9 trillion-atom space-time multiresolution MD (MRMD) of SiO2
• 8.5 billion-atom fast reactive force-field (F-ReaxFF) RMD of RDX
• 39.8 trillion grid points (50.3 million-atom) DC-DFT QMD of SiC

parallel efficiency 0.984 on 786,432 Blue Gene/Q cores

QMD (quantum molecular
dynamics): DC-DFT

RMD (reactive molecular
dynamics): F-ReaxFF

MD (molecular dynamics):
MRMD

Nomura et al., IEEE/ACM SC14

Scalability on Multicore Clusters

CACS PS3 cluster

Cell Broadband Engine
Stencil

Stencil

BlueGene/P
MD

• 2.6´ speedup over MPI by hybrid MPI+OpenMP
on 32,768 IBM BlueGene/P cores

• Multithreading parallel efficiency 0.99 for MD on
64-core Godson-T processor

• SIMD efficiency 0.93 on PlayStation3
• 8.8´ speedup on an NVIDIA GeForce 8800 GTS

graphics processing unit (GPU) over an AMD
Sempron CPU

• 55% of theoretical peak performance on 2.67
GHz Intel Core i7 920

0.8 million atoms

Hybrid message-passing (MPI) + multithreading (OpenMP)
+ single-instruction multiple-data (SIMD) programming

Intel Core i7
Stencil

IJCS08; IPDPS09; PPL09; ICS10; CF11; Euro-Par12; JSC12; JPDC13; SC13

Internode Optimization
• Communication bottleneck in metacomputing on a Grid

µs

100 ms

Grid-Enabled MD Algorithm
Renormalized Messages:
Latency can be reduced by
composing a large cross-site
message instead of sending
all processor-to-processor
messages

Grid MD algorithm:
1. asynchronous receive of cells to be

cached
2. send atomic coordinates in the

boundary cells
3. compute forces for atoms in the inner

cells
4. wait for the completion of the

asynchronous receive
5. compute forces for atoms in the

boundary cells

MPI_Irecv()

MPI_Wait()

Renormalized Messages
Communication pattern of a 3D particle transport

simulation code on a cluster of quad-Cell (32 cores) nodes*

Original Renormalized

H. Dursun et al., Parallel Processing Letters 19, 535 (’09)

*LANL Roadrunner: first petaflop/s computer

Where to Go from Here
• Performance profiling: First thing to find is how well/badly your program is

performing in terms of flop/s performance, vectorization, cache miss, etc.

• Use professional tools like Intel VTune & Advisor if available on your computer:
 https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html

https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html
https://www.youtube.com/watch?reload=9&v=ymy139CuAx8

Advisor can show you the “roofline” of your application
• Off-chip memory bandwidth (from DRAM) is critical for performance (to feed

enough data to be operated)
• Operational intensity: Operations per byte of DRAM traffic
• Roofline model: Predicts the floating-point (fp) performance from operation

intensity, theoretical peak fp performance & peak memory bandwidth

𝐴𝑡𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒𝑓𝑝	𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒
G1lop
sec

=

min
𝑃𝑒𝑎𝑘	𝑓𝑝	𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

G1lop
sec

	 ,

𝑃𝑒𝑎𝑘	𝑚𝑒𝑚𝑜𝑟𝑦	𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
GByte
sec

×𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙	𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦
1lop
Byte

S. Williams et al., Commun. ACM 52(4), 65 (’09)
V. Elango et al., ACM. T. Arch. Code Opt. 11, 67 (’15)

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html
https://www.youtube.com/watch?reload=9&v=ymy139CuAx8
https://aiichironakano.github.io/cs596/Williams-Roofline-CACM09.pdf
https://aiichironakano.github.io/cs596/Elango-Roofline-ACMTACO15.pdf

Roofline Model of Performance
𝐴𝑡𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒	𝑓𝑝

G-lop
sec =

min 𝑃𝑒𝑎𝑘	𝑓𝑝
G-lop
sec

,𝑀𝑒𝑚𝑜𝑟𝑦	𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
GByte
sec

×𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙	𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦
-lop
Byte

Key: Data/computation locality
see Berkeley CS267 lecture on “memory hierarchies & matrix multiplication”

