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Reproducibility Challenge
• Rounding (truncation) error makes floating-point addition non-associative

• Finding: Sum becomes a random walk across the space of possible rounding 
error
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(𝑎 + 𝑏) + 𝑐 ≠ 𝑎 + (𝑏 + 𝑐)



Solution: High-Precision (HP) Method
• Propose an extension of the order-invariant, higher-precision 

intermediate-sum method by Hallberg & Adcroft [Par. Comput. 40, 140 
(’14)]

• The proposed variation represents a real number r using a set of N 64-
bit unsigned integers, 𝒂𝒊 𝒊 ∈ [𝟎, 𝑵 − 𝟏]

• k is the number of 64-bit unsigned integers assigned to represent the 
fractional portion of r (0 ≤ k ≤ N), whereas N-k integers represent the 
whole-number component

• Negative number is represented by two’s complement in integer 
representation, using only 1 bit
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If you are the first to find the problem, the simplest solution suffices 
to prove the concept



Performance Projection
• HP sum is faster than Hallberg sum for higher precision & larger 

numbers of summands

Speedup(HP/Hallberg) > 1 

Speedup(HP/Hallberg) < 1 
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