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Reproducibility Challenge

 Rounding (truncation) error makes floating-point addition non-associative
(a+b)+c+a+(b+c)
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Finding: Sum becomes a random walk across the space of possible rounding

error




Solution: High-Precision (HP) Method

* Propose an extension of the order-invariant, higher-precision
intermediate-sum method by Hallberg & Adcroft [Par. Comput. 40, 140
(14)]

* The proposed variation represents a real number r using a set of /V 64-
bit unsigned integers, a; (i € [O,N — 1])

N-1 _
r = z ai264(N—k—l—1)
=0

N-k k
= a0264(N_k_1) + .-+ aN—-k-1 + aN_k2_64 + .-+ aN_12_64k

e kis the number of 64-bit unsigned integers assigned to represent the
fractional portion of r (0 < kK < N), whereas N-k integers represent the
whole-number component

 Negative number is represented by two’s complement in integer
representation, using only 1 bit

If you are the first to find the problem, the simplest solution suffices
to prove the concept



Performance Projection

e HP sum is faster than Hallberg sum for higher precision & larger
numbers of summands
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