
J. Chem. Phys. 153, 134110 (2020); https://doi.org/10.1063/5.0018516 153, 134110

© 2020 Author(s).

Heterogeneous parallelization and
acceleration of molecular dynamics
simulations in GROMACS
Cite as: J. Chem. Phys. 153, 134110 (2020); https://doi.org/10.1063/5.0018516
Submitted: 15 June 2020 . Accepted: 14 September 2020 . Published Online: 05 October 2020

Szilárd Páll , Artem Zhmurov, Paul Bauer , Mark Abraham , Magnus Lundborg , Alan Gray,

Berk Hess , and Erik Lindahl 

COLLECTIONS

Paper published as part of the special topic on Classical Molecular Dynamics (MD) Simulations: Codes, Algorithms,

Force fields, and Applications

ARTICLES YOU MAY BE INTERESTED IN

CORE-MD, a path correlated molecular dynamics simulation method
The Journal of Chemical Physics 153, 084114 (2020); https://doi.org/10.1063/5.0015398

A fast and high-quality charge model for the next generation general AMBER force field
The Journal of Chemical Physics 153, 114502 (2020); https://doi.org/10.1063/5.0019056

An efficient and accurate model for water with an improved non-bonded potential
The Journal of Chemical Physics 153, 134105 (2020); https://doi.org/10.1063/5.0014469

https://images.scitation.org/redirect.spark?MID=176720&plid=1085727&setID=378408&channelID=0&CID=358608&banID=519992853&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=a6e1cecbc242d3b912549e1a9893d52b6202f329&location=
https://doi.org/10.1063/5.0018516
https://doi.org/10.1063/5.0018516
https://aip.scitation.org/author/P%C3%A1ll%2C+Szil%C3%A1rd
http://orcid.org/0000-0003-0603-5514
https://aip.scitation.org/author/Zhmurov%2C+Artem
https://aip.scitation.org/author/Bauer%2C+Paul
http://orcid.org/0000-0002-2268-0065
https://aip.scitation.org/author/Abraham%2C+Mark
http://orcid.org/0000-0001-6363-2521
https://aip.scitation.org/author/Lundborg%2C+Magnus
http://orcid.org/0000-0002-0873-7854
https://aip.scitation.org/author/Gray%2C+Alan
https://aip.scitation.org/author/Hess%2C+Berk
http://orcid.org/0000-0002-7498-7763
https://aip.scitation.org/author/Lindahl%2C+Erik
http://orcid.org/0000-0002-2734-2794
/topic/special-collections/clmd2020?SeriesKey=jcp
/topic/special-collections/clmd2020?SeriesKey=jcp
https://doi.org/10.1063/5.0018516
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0018516
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0018516&domain=aip.scitation.org&date_stamp=2020-10-05
https://aip.scitation.org/doi/10.1063/5.0015398
https://doi.org/10.1063/5.0015398
https://aip.scitation.org/doi/10.1063/5.0019056
https://doi.org/10.1063/5.0019056
https://aip.scitation.org/doi/10.1063/5.0014469
https://doi.org/10.1063/5.0014469


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Heterogeneous parallelization and acceleration
of molecular dynamics simulations
in GROMACS

Cite as: J. Chem. Phys. 153, 134110 (2020); doi: 10.1063/5.0018516
Submitted: 15 June 2020 • Accepted: 14 September 2020 •
Published Online: 5 October 2020

Szilárd Páll,1 Artem Zhmurov,1 Paul Bauer,2 Mark Abraham,2 Magnus Lundborg,3
Alan Gray,4 Berk Hess,2,a) and Erik Lindahl2,5,a)

AFFILIATIONS
1Swedish e-Science Research Center, PDC Center for High Performance Computing, KTH Royal Institute of Technology,
100 44 Stockholm, Sweden

2Science for Life Laboratory, Department of Applied Physics, Swedish e-Science Research Center, KTH Royal Institute
of Technology, Box 1031, 171 21 Solna, Sweden

3ERCO Pharma AB, Stockholm, Sweden
4NVIDIA Corporation, Reading, United Kingdom
5Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Box 1031, 171 21 Solna, Sweden

Note: This paper is part of the JCP Special Topic on Classical Molecular Dynamics (MD) Simulations: Codes, Algorithms,
Force Fields, and Applications.
a)Authors to whom correspondence should be addressed: hess@kth.se and erik.lindahl@scilifelab.se

ABSTRACT
The introduction of accelerator devices such as graphics processing units (GPUs) has had profound impact on molecular dynamics
simulations and has enabled order-of-magnitude performance advances using commodity hardware. To fully reap these benefits, it has
been necessary to reformulate some of the most fundamental algorithms, including the Verlet list, pair searching, and cutoffs. Here, we
present the heterogeneous parallelization and acceleration design of molecular dynamics implemented in the GROMACS codebase over
the last decade. The setup involves a general cluster-based approach to pair lists and non-bonded pair interactions that utilizes both GPU
and central processing unit (CPU) single instruction, multiple data acceleration efficiently, including the ability to load-balance tasks
between CPUs and GPUs. The algorithm work efficiency is tuned for each type of hardware, and to use accelerators more efficiently,
we introduce dual pair lists with rolling pruning updates. Combined with new direct GPU–GPU communication and GPU integration,
this enables excellent performance from single GPU simulations through strong scaling across multiple GPUs and efficient multi-node
parallelization.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0018516., s

I. INTRODUCTION

Molecular dynamics (MD) simulation has had tremendous suc-
cess in a number of application areas in the past two decades, in part
due to hardware improvements that have enabled studies of systems
and timescales that were previously not feasible. These advances
have also made it possible to introduce better algorithms, and longer

simulations have enabled more accurate calibration of force fields
against experimental data, all of which have contributed to increas-
ing trust in computational studies. However, the high computa-
tional cost of evaluating forces between all particles combined with
integrating over short time steps (∼2 fs) has led to fundamental
challenges for the field as the speed of individual processor cores
is no longer increasing. Without algorithms that can better exploit

J. Chem. Phys. 153, 134110 (2020); doi: 10.1063/5.0018516 153, 134110-1

© Author(s) 2020

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0018516
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0018516
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0018516&domain=pdf&date_stamp=2020-October-5
https://doi.org/10.1063/5.0018516
https://orcid.org/0000-0003-0603-5514
https://orcid.org/0000-0002-2268-0065
https://orcid.org/0000-0001-6363-2521
https://orcid.org/0000-0002-0873-7854
https://orcid.org/0000-0002-7498-7763
https://orcid.org/0000-0002-2734-2794
mailto:hess@kth.se
mailto:erik.lindahl@scilifelab.se
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0018516


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

new parallel hardware, the timescales accessible in simulations will
hit a brick wall. Unlike some other fields, improving resolution by
increasing the model detail, e.g., with quantum effects or increas-
ing the size of the system, cannot replace reaching longer timescales.
In most cases, molecular dynamics targeting a specific application
depends critically on achieving faster simulations by reducing the
time each MD step takes.

One successful recent approach has been the introduction of
enhanced sampling based on ensembles of simulations. When com-
bined with parallelization of individual runs, this makes it possible to
use the largest high performance computing (HPC) resources in the
world to study even small systems. However, even for HPC systems,
a high rate of producing trajectories is imperative to sample dynam-
ics covering adequate timescales, which means cost-efficiency and
throughput are of paramount importance.1

The design choices in GROMACS are guided by a bottom-
up approach to parallelization and optimization, partly due to the
code’s roots of high performance on cost-efficient hardware. This is
not without challenges; good arguments can be made for focusing
either top-down on scaling or just sticking to single-graphics pro-
cessing unit (GPU) simulations. However, by employing state-of-
the-art algorithms and efficient parallel implementations, the code
is able to target hardware and efficiently parallelize from the lowest
level of SIMD (single instruction, multiple data) vector units to mul-
tiple cores and caches, accelerators, and distributed-memory HPC
resources.

We believe that this approach makes great use of limited com-
pute resources to improve research productivity,2,3 and it is increas-
ingly enabling higher absolute performance on any given resource.
Exploiting low-level parallelism can be tedious and has often been
avoided in favor of using more hardware to achieve the desired
time-to-solution. However, the evolution of hardware is making
this trade-off increasingly difficult. The end of microprocessor fre-
quency scaling and the consequent increase in hardware parallelism
means that targeting all levels of parallelism is a necessity rather than
option. The MD community has been at the forefront of investing in
this direction,4–7 and our early work on scalable algorithms,8 fine-
grained parallelism,9 and low-level portable parallelization abstrac-
tions10 has been previous steps on this path.

Accelerators such as GPUs are expected to provide the majority
of raw floating point operations per second (FLOPS) in upcoming
exascale machines. However, the impact of GPUs can also be seen
in low- to mid-range capacity computing, especially in fields such as
MD that have been able to utilize the high instruction throughput
as well as single precision capabilities; this has had particularly high
impact in making consumer GPU hardware available for scientific
computing.

While algorithms with large amounts of fine-grained paral-
lelism are well-suited to GPUs, tasks with little parallelism or irreg-
ular data access are better suited to central processing unit (CPU)
architectures. Accelerators have become increasingly flexible but still
require host systems equipped with a CPU. While there has been
some convergence of architectures, the difference between latency-
and throughput-optimized functional units is fundamental, and uti-
lizing each of them for the tasks at which they are best suited requires
heterogeneous parallelization. This typically employs the CPU also
for scheduling work, transferring data, and launching computation
on the accelerator, as well as inter- and intra-node communication.

Accelerator tasks are launched asynchronously using APIs such as
CUDA, OpenCL, and SYCL to allow concurrent CPU–GPU exe-
cution. The heterogeneous parallelization model adds complexity
that comes at a cost, both in terms of hardware (latency, complex
topology) and programmability, but it provides flexibility (every
single algorithm does not need to be implemented on the accel-
erator) and opportunities for higher performance. Heterogeneous
systems are evolving fast with very tightly coupled compute units,
but the heterogeneity in HPC will remain and is likely best addressed
explicitly.

Our first GPU support was introduced in GROMACS 4.511 and
relied on a homogeneous acceleration by implementing the entire
MD calculation on the GPU. The same approach has been used
by several codes (e.g., ACEMD,12 AMBER,13,14 HOOMD-blue,15

FENZI,16 and DESMOND-GPU17) and has the benefit that it keeps
the GPU busy, avoiding communication as long as scaling is not
a concern. However, this first approach also had shortcomings:
only algorithms ported to the GPU can be used in simulations,
which limits applicability in large community codes. Implement-
ing the full set of MD algorithms on all accelerator frameworks
is not practical from porting and maintenance concerns. In addi-
tion, our experience showed that outperforming the highly opti-
mized CPU code in GROMACS by only relying on GPUs was dif-
ficult, especially in parallel runs where the CPU-accelerated code
excels. To make use of GPUs without giving up feature support
while providing speedup to as many simulation use-cases as possible,
utilizing both CPU and GPU in heterogeneous parallelization was
necessary.

Heterogeneous offload is employed by several MD codes
(NAMD,18 LAMMPS,19 CHARMM,20 or GENESIS21). However,
here too, the GROMACS CPU performance provided a challenge:
since the tuned CPU SIMD kernels are already capable of achieving
iteration rates around 1 ms per step without GPU acceleration, the
relative speedup of adding an accelerator was less impressive at the
time.

To address this, we started from scratch by recasting algo-
rithms into a future-proof form to exploit both GPUs and CPUs
(including multiple devices) to provide very high absolute perfor-
mance while supporting virtually all features no matter what hard-
ware is available. The pair-interaction calculation was redesigned
with a cluster pair algorithm9 to fit modern architectures, which
replaces the traditional Verlet list based on particles. Clusters are
optimized to fit the hardware, and the classical cut-off setup has
evolved into accuracy-based approaches for simulation settings to
allow multi-level load balancing and on-the-fly tuning based on
system properties. Together with CPU SIMD parallelization and
multi-threading,22 this has allowed efficient offloading of short-
range non-bonded calculations to GPUs and brought major gains
in performance.23

New algorithms and the heterogeneous acceleration framework
have made it possible to track the shift toward dense heterogeneous
machines and balancing CPU/GPU utilization by offloading more
work to powerful accelerators.1 The most recent release has almost
come full circle to allow offloading full MD steps, but this version
also supports most features of the MD engine by utilizing both CPUs
and GPUs, it targets multiple accelerator architectures, and provides
scaling both across multiple accelerator devices and multiple nodes.
This bottom-up heterogeneous acceleration approach provides

J. Chem. Phys. 153, 134110 (2020); doi: 10.1063/5.0018516 153, 134110-2

© Author(s) 2020

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

flexibility, portability, and performance for a wide range of target
architectures, ranging from laptops to supercomputers and from
CPU-only machines to dense multi-GPU clusters. In the following,
we present the algorithms and implementations that have enabled
it. These are relatively complex concepts, so we will first discuss
the general ideas in Secs. II–IV, after which we dedicate Sec. V to
details of core algorithms, returning to performance benchmarks
and discussions in the Secs. VI and VII.

II. COMPUTATIONAL CHALLENGES
IN MD SIMULATIONS

The core of classical MD is the time-evolution of particle sys-
tems by numerically integrating Newton’s equations of motion. This
requires calculating forces for every time step, which is the main
computational cost. While this can be parallelized, the integration
step is inherently iterative.

The total force on each particle involves multiple terms:
non-bonded pair interactions (typically Lennard-Jones and elec-
trostatics), bonded interactions (e.g., bonds, angles, and torsions),
and possibly terms such as restraints or external forces. Given
particle coordinates, each term can be computed independently
(Fig. 1).

While there are good examples of MD applications with gigan-
tic systems,24 the most common approach is to keep the simulation
size fixed and small to improve absolute performance. Improving the
time-to-solution thus requires strong scaling. Historically, virtually
all time was spent computing forces, which made it straightforward
to parallelize, but well-optimized MD engines now routinely achieve
step iteration rates at or below a millisecond.8,10,11,25 Thus, the MD
problem is increasingly becoming latency-sensitive where synchro-
nization, bandwidth, and latency both within nodes and over the
network are becoming major challenges for homogeneous as well as
heterogeneous parallelization due to Amdahl’s law. This has partly
been compensated for by increasing density of HPC resources where
jobs rely more on intra-node communication than on the inter-
node network. This, in turn, has enabled a shift from coarse paral-
lelism using Message Passing Interface (MPI) and domain decom-
position (DD) to finer-grained concurrency within force calcula-
tion tasks, which is better suited for multicore and accelerator
architectures.

Dense multi-GPU servers often make it possible for simulations
to remain on a single node, but as the performance has improved,
the previous fast intra-node communication has become the new

bottleneck compared to the fast synchronization within a single
accelerator or CPU. As a side-effect, simulations that a decade ago
required extreme HPC resources are now routinely performed on
single nodes (often with amazingly cost-efficient consumer hard-
ware). This has commoditized MD simulations, but to explore
biological events, we depend on advancing absolute performance
such that individual simulations cover dynamics in the hundreds
of microseconds, which can then be combined with ensemble-level
parallelism to sample multi-millisecond processes.

In the mid 2000s, processors hit a frequency wall and the
increases in transistor count were instead used for more functional
units, leading to multi- and many-core designs. Specialization has
enabled improvements such as wider and more feature-rich SIMD
units as well as application-specific instructions, and recent GPUs
have also brought compute-oriented application-specific accelera-
tion features. Compute units, however, need to be fed data, but
memory subsystems and interconnects have not showed similar
improvement. Instead, there has been an increasing discrepancy
between the speed of computation and data movement. The arith-
metic intensity per memory bandwidth required to fully utilize com-
pute units has increased threefold for CPUs in the last decade and
nearly tenfold for GPUs.26 In particular, most accelerators still rely
on communication over the slowly evolving PCIe bus, while their
peak FLOP rate has increased five times and GROMACS com-
pute kernel performance grew by up to an order of magnitude.1

This imbalance has made heterogeneous acceleration and overlap-
ping compute and communication increasingly difficult. This is
partly being addressed through tighter host–accelerator integration
with NVIDIA NVLink among the first (other technologies include
Intel CXL or AMD Infinity Fabric), and this trend is likely to
continue.

MD as a field was established in an era where the all-important
goal was to save arithmetic operations, which is even reflected in
functional forms such as the Lennard-Jones potential (the power-
12 repulsion is used as the square of the power-6 dispersion instead
of an expensive exponential). However, algorithm design and par-
allelization is shifting from saving FLOPS to efficient data layout,
reducing and optimizing data movement, overlapping communica-
tion and computation, or simply recomputing data instead of stor-
ing and reloading. This shifts burden of extracting performance to
the software, including authors of compilers, libraries, and appli-
cations, but it pays off with significant performance improvements,
and the resulting surplus of FLOPS suddenly available will enable the
introduction of more accurate functional forms without excessive
cost.

FIG. 1. Structure of an MD step. There
is concurrency available for paralleliza-
tion both for different force terms and
within tasks (horizontal bars). The inner
(gray) loop only computes forces and
integrates, while the less frequent outer
loop (blue dashed) involves tasks to
decompose the problem.

J. Chem. Phys. 153, 134110 (2020); doi: 10.1063/5.0018516 153, 134110-3

© Author(s) 2020

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

III. PARALLELIZATION OF MD IN GROMACS
A. The structure of the MD algorithm

The force terms computed in MD are independent and expose
task parallelism within each MD step. Force tasks typically only
depend on positions from the previous step and other constant
data, although domain decomposition (DD) introduces an addi-
tional dependency on the communication of particle coordinates
from other nodes. The per-step concurrency in computing forces
(Fig. 1) is a central aspect in offload-based parallel implementa-
tions. The reduction to sum forces for integration acts as a barrier;
only when new coordinates become available can the next itera-
tion start. The domain decomposition algorithm on the other hand
exposes coarse-grained data parallelism through a spatial decom-
position of the particle system. Within each domain, finer-grained
data-parallelism is also available (in particular, in non-bonded pair
interactions), but to improve absolute performance, it is the total
step iteration rate in this high-level flowchart that has to be reduced
to the order of 100 μs.

B. Multi-level parallelism
Modern hardware exposes multiple levels of parallelism char-

acterized by the type and speed of data access and communication
between compute units. Hierarchical memory and intra- and inter-
node interconnects facilitate handling data close to compute units.
Targeting each level of parallelism has been increasingly impor-
tant on petascale architectures, and GROMACS does so to improve
performance.10,22

On the lowest level, SIMD units of CPUs offer fine-grained
data-parallel execution. Similarly, modern GPUs rely on SIMD-like
execution called SIMT (single instruction, multiple thread) where a
group of threads execute in lockstep (width typically 32–64). CPUs
have multiple cores, frequently with multiple hardware threads per
core. Similarly, GPUs contain groups of execution units (multi-
processors/compute units), but unlike on CPUs, distributing work
across these cannot be controlled directly, which poses load bal-
ancing challenges. On the node level, multiple CPUs communicate
through the system bus. Accelerators are attached to the host CPU
or other GPUs using a dedicated bus. These CPU–GPU and GPU–
GPU buses add complexity in heterogeneous systems and, together
with the separate global memory, represent some of the main chal-
lenges in a heterogeneous setup. Finally, the network is essentially
a third-level bus for inter-node communication. An important con-
cern is not only fast access on each level but also the non-uniform
memory access (NUMA): moving data between compute units has
non-uniform cost. This also applies to intra-node buses as each
accelerator is typically connected only to one NUMA domain, not
to mention inter-node interconnects where the topology can have
large impact on communication latency.

The original GROMACS approach was largely focused on effi-
cient use of low- to medium-scale resources, particularly commodity
hardware, through highly tuned assembly (and later SIMD) ker-
nels. The original MPI- (also PVM) based scaling was less impres-
sive, but in version 4.0,8 this was replaced with a state-of-the-art
neutral-territory domain-decomposition27 combined with fully flex-
ible 3D dynamic load balancing (DLB) of triclinic domains. This
is combined with a high-level task decomposition that dedicates

a subset of MPI ranks to long-range Particle Mesh Ewald (PME)
electrostatics to reduce the cost of collective communication
required by the 3D FFTs, which means multiple-program, multiple-
data (MPMD) parallelization. Domain decomposition was initially
also used for intra-node parallelism using MPI as well as our own
thread-based MPI library implementation.11 Since the DD algo-
rithm ensures data locality, this has been a surprisingly good fit
to NUMA architectures, but it comes with challenges related to
exposing finer-grain parallelism across cores and limits the abil-
ity to make use of efficient data-exchange with shared caches.
Algorithmic limitations (minimum domain size) also restrict the
amount of parallelism that can be exposed in this manner. While
the design had served well, significant extensions were required
in order to target manycore and heterogeneous GPU-accelerated
architectures.

The multilevel heterogeneous parallelization was born from
a redesign that extended the parallelization to separately target
each level of hardware parallelism, first introduced in version 4.6.10

New algorithms and programming models have been adopted to
expose parallelism with finer granularity. Our first major change
was to redesign the pair-interaction calculation to provide a flex-
ible and future-proof algorithm with accuracy-based settings and
load balancing capabilities, which can target either wide SIMD or
GPU architectures. On the CPU front, SIMD parallelism is used
for most major time-consuming parts of the code. This was neces-
sitated by Amdahl’s law: as the performance of non-bonded ker-
nels and PME improved, previously insignificant components such
as integration turned into new bottlenecks. This was made fully
portable by the introduction of the GROMACS SIMD abstrac-
tion layer, which started as the replacement of raw assembly
with intrinsics and now supports a range of CPU architectures
using 14 different SIMD instruction sets,28 with additional ones in
development.

To utilize both CPUs and GPUs, intra-node parallelization
was extended with an accelerator offload layer and multithread-
ing. The offload layer schedules GPU tasks and data movement
to ensure concurrent CPU–GPU execution and it has evolved as
more offload abilities were added. OpenMP multithreading was first
introduced to improve PME scaling29 and later extended to the
entire MD engine. To allow assembling larger units of computa-
tion for GPUs, we increased the size of MPI tasks and have them
run across multiple cores instead of dispatching work from a large
number of MPI ranks per node. This avoids bottlenecks in schedul-
ing and execution of small GPU tasks. Multithreading algorithms
have also gone through several generations with a focus on data-
locality, cache-optimizations, and load balancing, improving scala-
bility to larger thread counts. Hardware topology detection based on
the hwloc30 library is used to guide automated thread affinity setting,
and NUMA considerations are taken into account when placing
threads.

For single-node CPU-only parallelism, execution is still done
with sequentially dependent tasks [Fig. 2(a)], which allows relying
on implicit dependencies and sharing output across force calcula-
tions. Expressing concurrency (Fig. 1) to allow parallel execution
over multiple cores and GPU has required explicitly expressing
dependencies. The new design uses multi-threading and heteroge-
neous extensions for handling force accumulation and reduction.
On the CPU, per-thread force accumulation buffers are used with

J. Chem. Phys. 153, 134110 (2020); doi: 10.1063/5.0018516 153, 134110-4

© Author(s) 2020

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 2. Execution flows of (a) single-CPU and flavors of the CPU–GPU heterogeneous offload designs. Incremental task offloading is shown for (b) short-range non-bonded
interactions (green), (c) PME (orange) and dynamic list pruning (blue cross-hatch), (d) bonded interactions (purple), and (e) integration/constraints (gray). With asynchronous
offload, force reduction requires resolving dependencies. The explicit ones are enforced through synchronization (CPU) or asynchronous events (GPU) illustrated by black
arrows. Implicit synchronization is fulfilled by the sequential dependencies between tasks on the CPU timeline, as well as those on the same GPU timeline (corresponding to
in-order streams).

cache-efficient sparse reduction instead of atomic operations. This
is important for bonded interactions where a thread typically only
contributes forces to a small fraction of particles in a domain. When
combined with accelerators, force tasks can be assigned to either
CPU or GPU, with additional remote force contributions received
over MPI. With forces distributed in CPU and GPU memories,
we use a new reduction tree to combine all contributions. Explicit
dependencies of this reduction for the single GPU case are indicated
by black arrows in Fig. 2. Fulfilling dependencies may require CPU–
GPU transfers to the compute unit that does the reduction, and the
heterogeneous schedule is optimized to ensure that these overlap
with computation [panels (c) and (d) of Fig. 2].

IV. HETEROGENEOUS PARALLELIZATION
Asynchronous offloading in GROMACS is implemented using

either CUDA or OpenCL APIs and has two main functionalities:
explicit control of CPU–GPU data movement and asynchronous
scheduling of concurrent task execution and synchronization. This
design aims to maximize CPU–GPU execution overlap, reduce the
number of transfers by moving data early, keeping data on the accel-
erator as long as possible, ensuring that transfer is overlapping with
computation, and optimize task scheduling for the critical path to
reduce the time per step.

A. Offloading force computation
GROMACS initially chose to offload the non-bonded pair

interactions to the GPU, while overlapping with PME and bonded

interactions being evaluated on the CPU [Fig. 2(b)]. While this
approach requires CPU resources, it has the advantage of support-
ing domain decomposition and all functionalities, since any special
algorithm can be executed on the CPU.22,31 When combined with
DD, interactions with particles not local to the domain depend on
halo exchange. This is handled by splitting non-bonded work into
two kernels: one for local-only interactions and the other for inter-
actions that involve non-local particles. Based on co-design with
NVIDIA, stream priority bits were introduced in the GPU hard-
ware and exposed in CUDA. This made it possible to launch non-
local work in a high priority stream to preempt the local kernel
and return remote forces early, while the local kernel execution
can overlap with communication. Currently, only a single prior-
ity bit is available, but increasing this should facilitate additional
offloading; this is a less complex solution than a persistent kernel
with dynamic workload-switching. The intra-node load balancing
together with control and data flow of the heterogeneous setup with
short-range force offload (non-bonded and bonded) is illustrated in
Fig. 3.

The gradual shift in CPU–GPU performance balance in hetero-
geneous systems1 brought the need for offloading further force tasks
to avoid the CPU becoming a bottleneck or, from a cost perspec-
tive, not needing expensive CPUs. Consequently, we added offload
of PME long-range electrostatics both in CUDA and OpenCL. PME
is offloaded to a separate stream [Fig. 2(c)] to allow overlap with
short-range interactions. The main challenge arises from the two 3D
FFTs required. Simulations rely on small grids (typical dimensions
32–256), which has not been an optimization target in GPU FFT
libraries, so scaling FFT to multiple GPUs would often not provide
meaningful benefits. However, we can still allow multi-GPU scaling

J. Chem. Phys. 153, 134110 (2020); doi: 10.1063/5.0018516 153, 134110-5

© Author(s) 2020

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 3. Multi-domain heterogeneous control and data flow with short-range non-bonded and bonded tasks offloaded. Horizontal lines indicate CPU/GPU timelines with inner
MD steps (gray) and pair-search/DD (blue dashed). Data transfers are indicated by vertical arrows (solid ones for CPU–GPU and dashed ones for MPI; H2D is host-to-device
and D2H is device-to-host). The area enclosed in green is concurrent CPU–GPU execution, while the red one indicates no overlap (pair search and DD). Task load balancing
is used to increase CPU–GPU overlap (dotted arrows) by shifting work between PME and short-range non-bonded tasks (a) and balancing CPU-based pair search/DD with
list pruning (b).

by reusing our MPMD approach and placing the entire PME exe-
cution on a specific GPU. We have also developed a hybrid PME
offload to allow back-offloading the FFTs to the CPU, while the
rest of the work is done on the GPU. This is particularly useful for
legacy GPU architectures where FFT performance can be low. Addi-
tionally, it could be beneficial for strong scaling on next-generation
machines with high-bandwidth CPU–GPU interconnects to allow
grid transfer overlap and exploiting well-optimized parallel CPU
3D FFT implementations. The last force task to be offloaded was
the bonded interactions. Without DD, this is executed on the same
stream as the short-range non-bonded task [Fig. 2(d)]. Both tasks
consume the same non-bonded layout-optimized coordinates and
share force output buffer. With DD, the bonded task is scheduled
on the nonlocal stream (Fig. 3) as it is often small and not split by
locality.

The force offload design inherently requires data transfer
to/from the GPU every step, copying coordinates to, and forces
from, the GPU prior to force reduction [black boxes in Figs. 2(b)–
2(e)], followed by integration on the CPU. With accelerator-heavy
systems, this can render an offload-based setup CPU-limited. In
addition, GPU compute to PCIe bandwidth is also imbalanced.
High performance interconnects are not common and typically used
only for GPU–GPU communication. This disadvantages the offload
design as it leaves the GPU idle for part of each step, although this
can partly be compensated for with pair list pruning described in
Sec. V. Pipelining force computation, transfer, and integration or
using intra-domain force decomposition can reduce the CPU bot-
tlenecks.32 However, slow CPU–GPU transfers are harder to address
by overlapping since computation is faster than data movement. For
this reason, our recent efforts have aimed to increasingly eliminate

CPU–GPU data movement and rely on direct GPU communication
for scaling.

B. Offloading complete MD iterations
To avoid the data transfer overhead, GROMACS now sup-

ports executing the entire innermost iteration, including integra-
tion, on accelerators [Fig. 2(e)]. This can fully remove the CPU
from the critical path and reduces the number of synchronization
events. At the same time, the CPU is employed for pair search
and domain decomposition (done infrequently), and special algo-
rithms can use the now free CPU resources during the GPU step. In
addition to the force tasks performed on the GPU, the data own-
ership for the particle coordinates, velocities, and forces is now
also moved to the GPU. This allows shifting the previous paral-
lelization trade-off and minimize GPU idle time. The inner MD
loop, however, still supports forces that are computed on the CPU,
and often, the cycle of copying the data from/to the GPU and
evaluating these forces on the CPU takes less time than the force
tasks assigned to the GPU [Fig. 2(e)]. The CPU can now be con-
sidered a supporting device to evaluate forces not implemented
on GPU (e.g., CMAP corrections) or those not well-suited for
GPU evaluation (e.g., pulling forces acting on a single atom). This
keeps the GPU code base to a minimum and balances the load
by assigning a different set of tasks to the GPU depending on the
simulation setup and hardware configuration. This is highly benefi-
cial both for high-throughput and multi-simulation experiments on
GPU-dense compute resources or upgrading old systems with a
high-end GPU. At the same time, it also allows making efficient
use of communication directly between GPUs, including dedicated

J. Chem. Phys. 153, 134110 (2020); doi: 10.1063/5.0018516 153, 134110-6

© Author(s) 2020

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

high-bandwidth/low-latency interconnects where available. In our
most recent implementation, data movement can be automatically
routed directly between GPUs instead of staging communication
through CPU memory. When a CUDA-aware MPI library is used,
communication operates directly on GPU memory spaces. Our
own thread-MPI implementation relies on direct CUDA copies.
Additionally, by exchanging CUDA events, it can use stream
synchronization across devices, which allows fully asynchronous
communication offload leaving the CPU free from both compute
and coordination/wait. The external MPI implementation requires
additional CPU–GPU synchronization prior to communication but
allows the new functionality to be used across multiple nodes. Much
of the GPU–GPU communication, either between short-range tasks
or between short-range and PME tasks, is of a halo exchange nature
where non-contiguous coordinates and forces are exchanged, which
requires GPU buffer packing and unpacking operations. Particularly
for this, keeping the outer loop of domain decomposition and pair
search on the CPU turns out to be a clear advantage, since the index
map building is a somewhat complex random access operation, but
once complete, the data are moved to the accelerator and reused
across multiple simulation time steps.

V. ALGORITHM DETAILS
A. The cluster pair algorithm

The Verlet list33 and linked cell list34 algorithms for finding
particles in spatial proximity and constructing lists of short-range
neighbors were some of the first algorithms in the field and are
cornerstones of MD. However, while the Verlet list exposes a high
degree of parallelism, its traditional formulation expresses this in
an irregular form, which is ill-suited for SIMD-like architectures.
To reduce the execution imbalance due to varying list lengths,
padding35 or binning18 has been used. However, the community
has largely converged on reformulating the problem by grouping
interactions into fixed size work units instead.9,13,21,32,36,37

A common approach is to assign different i-particles to each
SIMT thread requiring a separate j particle loaded for each pair inter-
action. This leads to memory access divergence, which becomes a
bottleneck in SIMD-style implementations, even with arithmetically
intensive interactions.38 Sorting particles to increase spatial local-
ity for better caching improves performance,15,39–41 but the inher-
ently scattered access is still inefficient. Early efforts used GPU
textures18,42 to improve data reuse, but this is hard to control
as the effectiveness depends on the size of the j-lists relative to
cache.

Given the need for increasing the arithmetic-to-memory oper-
ation ratio, we formulated an algorithm that regularizes the problem
and increases data reuse. The goal is to load j-particle data as effi-
ciently and rarely as possible and reuse it for multiple i-particles,
roughly similar to blocking algorithms in matrix–matrix multipli-
cation. Our cluster pair algorithm uses a fixed number of particles
per cluster, and pairs of such clusters rather than individual parti-
cles are the unit of computing short-range interactions. Hence, we
compute interactions between i-clusters of N particles and a list of j-
clusters each of M particles. M is adjusted to the SIMD width, while
N allows balancing data reuse with register usage. In addition to a
data layout that allows efficient access and that N × M interactions
are calculated for every load/store, the algorithm is easy to adapt to
new architectures or SIMD widths. Since the algorithmic efficiency
will be higher for smaller clusters, we can also place two sets of the N
i-cluster particles in a wide SIMD register of length 2M, which our
SIMD layer supports on all hardware where sub-register load/store
operations are efficient. The clusters and pair list are obtained dur-
ing search using a regular grid in x and y dimensions but bin-
ning the resulting z columns into cells with fixed number of parti-
cles (in contrast to fixed-size cells) that define our clusters (Fig. 4,
left). The irregular 3D grid is then used to build the cluster pair
list.9

Following the approach used for CPU SIMD, choosing M to
match the GPU execution width may seem suitable. However, as
GPUs typically have large execution width, the resulting cluster size

FIG. 4. Cluster pair setups with four particles (N = 4 and M = 4). Left panel: CPU/SIMD-centric setup. All clusters with solid lines are included in the pair list of cluster i1
(green). Clusters with filled circles have interactions within the buffered cutoff (green dashed line) of at least one particle in i1, while particles in clusters intersected by the
buffered cutoff that fall outside of it represent an extra implicit buffer. Right panel: hierarchical super-clusters on GPUs. Clusters i1–i4 (green, magenta, red, and blue) are
grouped into a super-cluster. Dashed lines represent buffered cutoffs of each i-cluster. Clusters with any particle in any region will be included in the common pair list. Particles
of j-clusters in the joint list are illustrated by discs filled in black to gray; black indicates clusters that interact with all four i-clusters, while lighter gray shading indicates that a
cluster only interacts with 1–3 i-cluster(s), e.g., jm only with i4.

J. Chem. Phys. 153, 134110 (2020); doi: 10.1063/5.0018516 153, 134110-7

© Author(s) 2020

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

would greatly increase the fraction of zero interactions evaluated.
The raw FLOP-rate would be high, but of efficiency low. To avoid
this, our GPU algorithm calculates interactions between all pairs of
an i − j cluster pair instead of assigning the same i- and different
j-particles to each GPU hardware thread. Hence, we adjust N × M
to the GPU execution width. However, evaluating all N × M inter-
actions of a cluster pair in parallel would eliminate the i-particle
data reuse. The arithmetic intensity required to saturate modern
processors is quite similar across the board,26,43 so restoring data
reuse is imperative. We achieve this by introducing a super-cluster
grouping (Fig. 4). A joint pair list is built for the super-cluster as
the union of j-clusters that fall in the interaction sphere of any i-
cluster. This improves arithmetic saturation at the cost of some pairs
in the list not containing interacting particles, since all j-clusters are
not shared. To minimize this overhead, the super-clusters are kept
as compact as possible, and the search is optimized to obtain close
to cubic cluster geometry—we use an eight-way grouping obtained
from a 2 × 2 × 2 cell grouping on the search grid. Even so, the joint j-
list would lead to substantial overhead if interactions were computed
with all clusters, similar to the challenge with large regular tiling. We
avoid this elegantly by skipping cluster pairs with no interacting par-
ticles based on an interaction bitmask stored in the pair list. This is
illustrated in Fig. 4 where lighter-shaded j-clusters do not interact
with some of the i-clusters; for example, jm can be skipped for i1–i3.
As M × N is adjusted to match the execution width, the interac-
tion masks allow efficient divergence-free skipping of entire cluster
pairs. Our organization of pair-interaction calculation is similar to
that used by others,14,37 with the key difference that those approaches
rely on larger fixed size tiles and use other techniques to reduce the
impact of large grouping.

The interaction mask describes a j − i relationship, swapping
the order of the standard i − j formulation. Consequently, the loop
order is also swapped and our GPU implementation uses an outer
loop over the joint j-cluster list and inner loop over the eight i-
clusters. This has two main benefits: First, 8 bits per j-cluster is suf-
ficient to encode the interaction mask, instead of needing a variable-
length structure. Second, the force reduction becomes more effi-
cient. Since we utilize Newton’s third law to only calculate inter-
actions once, we need to reduce forces both for i- and j-particles.
At the end of an outer j iteration, all interactions of the j-particles
loaded will have been computed and the results can be reduced
and stored. At the same time, accumulating the i-particle partial
forces requires little memory (8 × 8 forces) and can be done in reg-
isters. Self-exclusions are handled in the interaction kernels, while
force-field exclusions are stored in the list with j-clusters as bit-
masks and enforced simultaneously with the interaction cutoff, just
as the interaction masks.9 In our typical target systems, on aver-
age, approximately four of the eight i-clusters contain interactions
with j particles. Hence, about half of the inner loop checks result
in skips, and we have observed these to cost 8%–12%, which is
a rough estimate of the super-cluster overhead. In comparison,
the normal cut-off check has at most 5%–10% cost in the CUDA
implementation.

For PME simulations, we calculate the real-space Ewald cor-
rection term in the kernel. On early GPU architectures (also
CPUs with low FMA FLOPS), tabulated F ⋅ r is most efficient. On
all recent architectures, we have instead developed an analytical
function approximation of the correction force. This yields better

performance as it relies on FMA arithmetics despite the >15%
increase in kernel instruction count.

Multiprocessor-level parallelism is provided by assigning each
thread block a list element that computes interactions of all parti-
cles in a super-cluster. To avoid conditionals, separate kernels are
used for different combinations of electrostatics and Lennard-Jones
interactions and cutoffs, whether energy is required or not. The clus-
ter algorithm has been implemented both in CUDA and OpenCL
and tuned for multiple GPU architectures. On NVIDIA and recent
AMD GPUs with 32-wide execution, we use an 8× 4 cluster setup for
64-wide execution on AMD 8 × 8 and on Intel hardware with 8-wide
execution a 4 × 2 setup, all with 8-way super-clustering.

B. Algorithmic work efficiency and pair-list buffers
The cluster algorithm trades computing interactions known to

evaluate to zero for improved execution efficiency on SIMD-style
architectures. To quantify the amount of additional work, we cal-
culate the parallel work efficiency of the algorithm as a fraction of
non-zero interactions evaluated. It is worth noting that this met-
ric is ≤1 even for the standard Verlet algorithm as any finite buffer
contains non-interacting particles (Fig. 5). In the cluster algorithm,
this is augmented with particles outside the buffered sphere, but
where another particle in the cluster falls inside it (Fig. 4). The work
efficiency depends on the cutoff, buffer size, and geometry/size of
the clusters that is optimized during search. The cost of this search
is the reason why absolute performance still benefits from larger
buffers, just as kernel execution efficiency benefits from the cluster
size.

The improved computational efficiency offsets the algorithmic
work-efficiency trade-off for all modern architectures.9 Moreover,
particles in the pair list that fall outside the buffered cut-off can be
made use of: these provide an extra implicit buffer that allows using a
shorter explicit buffer when evaluating pair interactions while main-
taining the accuracy of the algorithm. One example of a cluster con-
tributing to the implicit buffer is illustrated in Fig. 4. Making use

FIG. 5. Algorithmic work efficiency of the particle (1 × 1) and cluster (8 × 4) Verlet
approaches defined as the fraction of interactions calculated that are within the
actual cutoff, shown as a function of buffer size for three common cut-off distances.
The trade-off is that larger cluster sizes enable greater computational efficiency,
and increased buffers enable longer reuse of the pair list.

J. Chem. Phys. 153, 134110 (2020); doi: 10.1063/5.0018516 153, 134110-8

© Author(s) 2020

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

of this implicit buffer increases the practical parallel efficiency rela-
tive to the standard particle-based algorithm. With a box of SPC/E
water where a 0.9 nm cut-off pair list is reconstructed every 40 steps,
the 1 × 1 setup requires a buffer of 0.218 nm to reach the same
error tolerance as the 8 × 4 cluster setup achieves with a 0.105 nm
buffer.

We believe that this is a striking example of the importance
of moving to tolerance-based settings instead of rule-of-thumb or
heuristics to control accuracy. All algorithms in a simulation affect
the accuracy of the final results, and while the acceptable error varies
greatly between problems, it will be dominated by the worst part
of the algorithm—there is little benefit from evaluating only some
parts more accurately. To control the effect of missing pair inter-
actions close to the cutoff, our implementation estimates the Verlet
buffer for a given upper bound for the error in the energy. The esti-
mate is based on the particle masses, temperature, pair interaction
functions, and constraints, also taking into account the cluster setup
and its implicit buffering.9 Since first introduced, we have refined
the buffer estimate to account for constrained atoms rotating around
the atom they are constrained to rather than moving linearly, which
allows tighter estimates for long list lifetimes. The upper bound for
the maximum drift can be provided by the user as a tolerance set-
ting in the simulation input. We use 0.005 kJ/mol/ps per atom as
default, but the tolerance and hence drift can be arbitrarily small.
For the default setting, the implicit buffer turns out to be sufficient
for a water system or solvated biomolecule with PME electrostatics
and 20 fs pair-list update intervals, and no extra explicit buffer is thus
required in this case. The actual energy drift caused by these settings
is 0.0001 kJ/mol/ps per atom, a factor of 5 smaller than the upper
bound. For comparison, typical constraint algorithms result in drifts
around 0.0002 kJ/mol/ps per atom, so being significantly more con-
servative than this will usually not improve the overall error in a
simulation.

We see several advantages to this approach and would argue
that the field, in general, should move to requested tolerances instead
of heuristic settings. First, the user can set a single parameter that is
easier to reason about and that will be valid across systems and tem-
peratures. Second, it will enable innovation in new algorithms that
maintain accuracy (instead of performance improvements becom-
ing a race toward the least accurate implementation). Finally, since
other parameters can be optimized freely for the input and run con-
ditions, we can make use of this for advanced load balancing to safely
deviate from classical setups by relying on maintaining accuracy
rather than arbitrary settings as described below.

C. Non-bonded pair interaction kernel throughput
The throughput of the cluster-based pair interaction algorithm

depends on the number of interactions per particle and hence par-
ticle density. This varies across applications from coarse-grained to
all-atom bio-molecular systems or liquid-crystal simulations. Hence,
we investigate the performance of the pair interaction kernels as
a function of particle density. We measure the pair throughput of
the nonbonded kernel using a Lennard-Jones system consisting of
argon atoms to facilitate comparison across a wide range of appli-
cation areas from physical to biological systems. The effective pair
throughput (counting only non-zero interactions) is also influenced
by the buffer length and the conditionally enforced cutoff in the GPU

kernels. When comparing CUDA GPU and AVX512 CPU kernels
with same-size clusters (identical work efficiency), the raw through-
put reaches peak performance already from ∼150 pairs per particle
on the CPU, while the GPU does not saturate until ∼1000 pairs
(Fig. 6). This is explained by the increasing i-particle data reuse
with longer j-lists. The effective pair throughput shows a monotonic
increase, since more pairs will be inside the cutoff with more par-
ticles in the interaction range, as expected from Fig. 5. For typical
all-atom simulations, the effective GPU kernel throughput gets close
to 100 Ginteractions/s, while the corresponding throughput on a
20-core CPU is an order-of-magnitude lower.

To provide good performance for small systems and enable
strong scaling, it is important to achieve high kernel efficiency
already at limited particle counts. To illustrate performance as a
function of system size for all-atom systems, Fig. 7 shows actual pair
throughput for SPC/E water systems with 1 nm cut-off, Ewald elec-
trostatics, 40 step search frequency, and default tolerances. Water
typically represents up to 90% of biomolecular systems (hence, it
is the particle density of interest), and therefore, nonbonded per-
formance is critical for water. Historically, GROMACS and other
codes used special kernels for water, but this no longer works well
with SIMD-style architectures. On the other hand, when some par-
ticles have only one type of interaction (hydrogens in water typically
only have Coulomb interactions), this opens up the possibility for
additional optimizations useful on some architectures. The GRO-
MACS CPU kernels achieve peak performance already around 3000
atoms (using up to 40 threads), and apart from the largest devices,
within 10% of peak GPU pair throughput is reached around 48k
atoms. GPU throughput is up to sevenfold higher at peak than on
CPUs, and although it suffers significantly with smaller inputs (up
to fivefold lower than peak), for all but the very smallest systems, the
GPU kernels reach higher absolute throughput. The challenge for
small systems is the overhead incurred from kernel invocation and
other fixed-cost operations. Pair list balancing also comes at a slight

FIG. 6. Non-bonded pair interaction throughput of CUDA GPU and AVX512 CPU
kernels as a function of particles in the half cut-off sphere. The raw throughput
includes zero interactions, while effective throughput only counts non-zero inter-
actions. Pair ranges typical to all-atom and coarse-grained/gas simulations are
indicated. Measurements were done using a 157k particle Lennard-Jones system
to minimize input size effects (density ρ = 26 nm−3 and σ = 0.3345 nm). Hardware:
NVIDIA V100 PCIe GPU and Intel Xeon Gold 6148 CPU.

J. Chem. Phys. 153, 134110 (2020); doi: 10.1063/5.0018516 153, 134110-9

© Author(s) 2020

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 7. Force-only pair interaction kernel performance as a function of input size.
The throughput indicates how CPU kernels have less overhead for small systems,
while GPU kernels achieve significantly higher throughput from moderate inputs
sizes. Multiple generations of consumer and professional CPU and GPU hardware
are shown; CUDA kernels are used on NVIDIA GPUs, OpenCL on AMD, and AVX2
and AVX512 on the AMD and Intel CPUs, respectively. All cores and threads were
used for CPUs.

cost, and while it is effective when there are enough lists to split, it
is limited by the amount of work relative to the size of the GPU.
The sub-10k atom systems simply do not have enough parallelism
to execute in a balanced manner on the largest GPUs. In contrast,
CPU kernels exhibit a slight decrease for large input due to cache
effects.

D. The pair list generation algorithm
GROMACS uses a fixed pair list lifetime instead of heuris-

tic updates based on particle displacement, since the Maxwell–
Boltzmann distribution of velocities means that the likelihood of
requesting a pair list update at a step approaches unity as the size
of the system increases. In addition, the accuracy-based buffer esti-
mate allows the pair search frequency to be picked freely (it will only
influence the buffer size), unlike the classical approach that requires
it to be carefully chosen considering simulation settings and run
conditions.

We early decided to keep the pair search on the CPU. Given
the complex algorithms involved, our main reason was to ensure
parallelization, portability, and ease of maintenance while getting
good performance (reducing GPU idle time) through algorithmic
improvements. The search uses a SIMD-optimized implementation
and, to further reduce its cost, the hierarchical GPU list is initially
built using cluster bounding-box distances avoiding expensive all-
to-all particle distance checks.9 A particle-pair distance based list
pruning is carried out on the GPU, which eliminates non-interacting
cluster pairs. This can also further adapt the setup to the hardware
execution width by splitting j-clusters; for example, for current Intel
GPUs, the search produces a 4 × 4 cluster setup (Fig. 4), which is
pruned into 4 × 2 for eight-wide execution. Initial pruning is done
the first time the list is processed by a special version of the ker-
nel (using warp collectives for low extra cost), and the pruned list
is reused for consecutive MD steps. Depending on the cutoff and
buffer length, pruning reduces the list size by 50%–75%.

E. Dual pair list with dynamic pruning
Domain decomposition and pair list generation rely on irregu-

lar data access, and their performance has not improved at the same
rate as compute kernels. Trading their cost for more pair interac-
tion work through increasing the search frequency has drawbacks.
First, as the buffer increases, the overhead becomes large (Fig. 5).
The trade-off is also sensitive to inputs and runtime conditions, with
a small optimal window. In order to address this, we have devel-
oped an extension to the cluster algorithm with a dual pair list setup
that uses a longer outer and a short inner list cutoff. The outer list
is built very infrequently, while frequent pruning steps produce a
pair list based on the inner cutoff, typically with close to zero explicit
buffer. As pruning operates on regularized particle data layout pro-
duced by the pair search, it comes at a much lower cost (typically
<1% of the total runtime) than using a long buffer-based pair list
in evaluating pair interactions. This avoids the previous trade-off
and reduces the cost of search and DD without force computa-
tion overhead. With GPUs, pruning is done in a rolling fashion
scheduled in chunks between force computations of consecutive MD
steps, which allows it to overlap other work such as CPU integration
(Fig. 3).

F. Multi-level load balancing
Both data and task decomposition contribute to load imbalance

on multiple levels of parallelism. Sources of data-parallel imbalance
include inherently irregular pair interaction data (varying list sizes)
and non-uniform particle density (e.g., membrane protein simu-
lations using united-atom lipids) resulting in non-bonded imbal-
ance across domains and non-homogeneously distributed bonded
interactions (solvent does not have as many bonds as a protein).
With task-parallelism when using MPMD or GPU offload, task
load imbalance is also a source of imbalance between MPI ranks or
CPU and GPU. Certain algorithmic choices such as pair search fre-
quency or electrostatics settings can shift load between parts of the
computation, whether running in parallel or not.

In particular, for small systems, it is a challenge to balance work
between the compute units of high-performance GPUs. Especially
with irregular work, there will be a kernel “tail” where only some
compute units are active, which leads to inefficient execution. In
addition, with small domains per GPU with DD, there may be too
few cluster lists to process in a balanced manner. To reduce this
imbalance and the kernel tail, it would be desirable to control block
scheduling, but this is presently not possible on GPUs.44 Instead, we
tune scheduling indirectly through indexing order. The GPU pair
interaction work is reshaped by sorting to avoid long lists being
scheduled late. In addition, when the number of pair lists is too low
for efficient execution for given hardware, we heuristically split lists
to increase the available parallelism.

Kernel tail effects can be also be mitigated by overlapping com-
pute kernels. This requires enough concurrent work available to fill
idle GPU cores and that it is expressed such that parallel execution
is possible. GPU APIs do not allow fine-grained control of kernel
execution, and instead, the hardware scheduler decides on an execu-
tion strategy. By using multiple streams/queues with asynchronous
event-based dependencies, our GPU schedule is optimized to max-
imize the opportunity for kernel overlap. This reduces the amount
of idle GPU resources due to kernel tails as well as those caused

J. Chem. Phys. 153, 134110 (2020); doi: 10.1063/5.0018516 153, 134110-10

© Author(s) 2020

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

by scheduling gaps during a sequence of short dependent kernels
(e.g., the 3D-FFT kernels used in PME).

With PME electrostatics, the split into real and reciprocal space
provides opportunities to rebalance work at constant tolerance by
scaling the cutoff together with the PME grid spacing.45 This was
first introduced as part of our MPMD approach with an external
tool.11 This load balancing was later automated and implemented
as an online load balancer,22 originally to allow shifting work from
the CPU to the GPU. This approach now works remarkably well
also with dedicated PME ranks both in CPU-only runs and when
using multiple GPUs. The load balancer is automatically triggered
at startup and scans through cutoff and PME grid combinations
using CPU cycle counters to find the highest-performance alterna-
tive as illustrated in Fig. 8 using a biomolecular system typical for
applications that aim to reduce the system size simulated.

The load balancer typically converges in a few thousand steps
apart from noisy environments such as multi-node runs with net-
work contention. Significant efforts have been made to ensure the
robustness of the algorithm. It accounts for measurement noise,
avoids cache effects, and mitigates interference of CPU/GPU fre-
quency scaling, and it reduces undesirable interaction with the DD
load balancer (which could change the domain size while the cutoff
is scaled).

Nevertheless, load balancing comes with a trade-off in terms of
increased communication volume. In addition, linearithmic (FFT)
or linear (kernel) time-complexity reciprocal-space work is traded
for quadratic time complexity real-space work (Fig. 8). To miti-
gate waste of energy, we impose a cut-off scaling threshold to avoid
increasing GPU load in heavily CPU-bound runs. The performance
gain from PME load balancing depends on the hardware; with bal-
anced CPU–GPU setups, it is up to 25%, but in highly imbalanced
cases, much larger speedups can be observed.31

The dual pair list algorithm allows us to avoid most of the
drawbacks of shifting work to direct space, since the list pruning

FIG. 8. CPU–GPU load balancing between short- and long-range non-bonded
force tasks used. The PME load balancing seeks to minimize total wall-time, here
at 1.226 nm (green dashed circle), by increasing the electrostatics direct-space
cutoff while also scaling PME grid spacing. This shifts load from the CPU PME
task (blue dashed) to the non-bonded GPU task (red). System: alcohol dehydro-
genase (95k atoms, 0.9 nm cutoff, default buffer tolerance). Hardware: Intel Core
i7-5960X CPU and NVIDIA GTX TITAN GPU.

is significantly cheaper than evaluating interactions. This makes the
balancing less sensitive and easier to use, and where the previous
approach saturated around pair list update intervals of 50–100 steps,
the dual list with pruning can allow hundreds of steps, which is par-
ticularly useful in reducing CPU load to maximize GPU utilization
in runs that offload the entire inner iteration (Fig. 3).

Finally, the domain decomposition achieves load balancing by
resizing spatial domains, thereby redistributing particles between
domains and shifting work between MPI ranks. With force offload,
the use of GPUs is largely transparent to the code, but extensions
to the DLB algorithm were necessary. Support for timing concur-
rent GPU tasks is limited, particularly in CUDA. We account for
GPU work in DLB through the wall-time the CPU spends waiting
for results, labeled accordingly on the CPU timeline in Fig. 3. How-
ever, this can introduce jitter when a GPU is assigned to multiple
MPI ranks. GPUs are not partitioned across MPI ranks, but work
is scheduled in an undefined order and executed until completion
(unless preempted). Hence, the CPU wait can only be systematically
measured on some of the ranks sharing a GPU while not on oth-
ers. This leads to spurious imbalance, and to avoid it, we redistribute
the CPU wall-time spent waiting for the GPU evenly across the MPI
ranks assigned to the same GPU to reflect the average GPU load and
eliminate execution order bias.

VI. PERFORMANCE BENCHMARKS
A. Benchmark systems

To illustrate the real-world performance of the GROMACS het-
erogeneous parallelization, we use a set of benchmark systems repre-
sentative of typical biomolecular workloads both in term of size and
force-fields. For single GPU benchmarks, we evaluate performance
using a small (RNAse) and a medium-sized (GluCl) biomolecular
system, both using the AMBER force field. To show multi-GPU
ensemble simulation throughput, we use a medium-sized aquaporin
membrane protein with coupled simulations that employ the Accel-
erated Weight Histogram (AWH) enhanced sampling algorithm,46

while strong benchmarks use a larger ∼1 × 106 atom satellite tobacco
mosaic virus (STMV) system, still representative of common work-
loads and challenging for strong scaling. The latter two benchmark
systems use the CHARMM force field and its characteristic settings
that notably yield a different short- to long-range nonbonded work-
load balance and hence different performance behavior compared to
AMBER-based simulations that use shorter cutoffs. Further details
of the benchmark systems, including input files, can be found in the
supplementary material.

Faster hardware has been a blessing for simulations, but as
shown in Fig. 9, the improvements in algorithms and software
described here have at least doubled performance for the same
hardware even for older cost-efficient GPU hardware, and with
latest-generation consumer cards, the improvement is almost four-
fold over the past five years. Given the low-end CPU and high-
end GPU combination, new offload modes bring significant perfor-
mance improvements when offloading either only PME or the entire
inner iteration to the accelerator.

Figure 10 shows the impact of different offload setups for
single-GPU runs. As expected, the CPU-only run scales with the
number of cores. When the non-bonded task is offloaded, the

J. Chem. Phys. 153, 134110 (2020); doi: 10.1063/5.0018516 153, 134110-11

© Author(s) 2020

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0018516#suppl


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 9. Performance evolution of GROMACS from the first version with hetero-
geneous parallelism support on identical hardware. Performance is shown for the
142k atom GluCl benchmark on two hardware configurations with varying CPU–
GPU balance using one Intel Xeon E5 2620v4 CPU and NVIDIA GeForce GTX
1080/GTX 1080Ti GPUs.

performance increases significantly for both systems, but it does not
saturate even when using all cores—indicating that the CPU is over-
subscribed. This is confirmed by the large jump in performance
when the PME task too is offloaded. The GPU now becomes the
bottleneck for computations, and the curves saturate when enough
CPU cores are used—adding more will not aid performance. Conse-
quently, when the bonded forces are also offloaded, there is a perfor-
mance regression particularly for the membrane protein system with
lots of torsions [Fig. 10(b)]. With GPU force tasks taking longer than
the CPU force tasks, the data transfers between host and device are
no longer effectively overlapping with compute tasks. This is solved
by offloading the entire innermost MD loop, including coordinate
constraining and updating. This leads to another significant jump
in performance, despite the CPU now being mostly idle. To make
use of this idle resource, one can move the bonded force evaluation
from the GPU back to the CPU. This is beneficial when the entire
cycle is faster than the evaluation of non-bonded and PME forces on
the GPU. For all results, the crossover points will depend on the sys-
tem, but it is generally faster to evaluate bonded forces on the CPU
when apart from very dense systems where only a single CPU core is
available per GPU.

Although it is common to run a single simulation per GPU, it is
often not the best way of maximizing cumulative throughput since

FIG. 10. Single-GPU performance for (a) RNAse (24k atoms) and (b) GluCl ion
channel (142k atoms) systems, both with the AMBER99 force-field. Different
offload setups are illustrated, with the tasks assigned to the GPU listed in the
legend. Hardware: AMD Ryzen 3900X and NVIDIA GeForce RTX 2080 Super.

the options to overlap data transfers between CPU and GPU with
computational tasks are limited. One way to increase the efficiency
even further is to run many uncoupled or loosely coupled trajec-
tories simultaneously on a single GPU. In this case, compute tasks
from one trajectory can overlap with the data transfers in another.
Figure 11 shows benchmarks for the case of ensemble simulations
using the AWH method46 on a single node equipped with two CPUs
and four GPUs. With medium-performance GPUs, the best perfor-
mance is achieved when a CPU is used for computing the bonded
forces, with everything else evaluated on the GPU [Fig. 11(a)], and
the most efficient throughput is obtained with four ensemble mem-
bers running on each GPU. Using the GPU for the full MD loop
is still the second best case when only a single run is executed
on the GPU, but for many runs per GPU, there are more options
for overlapping transfer and compute tasks when using the CPU
for updates (integration) and/or bonded forces. However, for the
somewhat older GPUs, the difference between the worst- and best-
performing cases is only about 25%. When pairing the same older
CPUs with recent GPUs ([Fig. 11(b)], the balance changes apprecia-
bly, and it is no longer justified to use the CPUs even for the lightest
compute tasks. Performing all tasks on the GPU more than doubles
performance compared to leaving updates and bonded forces on the
CPU. Another advantage is that the throughput does not change sig-
nificantly with more ensemble members per GPU, which allows for
greater flexibility, not to mention that the absolute performance will
always be highest when only a single ensemble member is assigned
to each GPU.

Finally, the work on direct GPU communication now also
enables quite efficient multi-GPU scaling combined with outstand-
ing absolute performance. Figure 12 illustrates the effect of the direct
GPU communication optimizations on performance through results
from running the Satellite tobacco mosaic virus (STMV) benchmark
(1M atoms, 2 fs steps) on up to four compute nodes, each equipped
with four NVIDIA Tesla V100 GPUs per node. Intra-node com-
munication uses NVLink and inter-node communication MPI over
Infiniband. We believe that this configuration is a good match to

FIG. 11. Ensemble run cumulative performance as a function of number of accel-
erated weight histogram walkers executed simultaneously for different offload
scenarios. The benchmark system is aquaporin (109 992 atoms per ensemble
member, CHARMM36 force-field). The performance was measured on a dual Intel
Xeon E5-2620 v4 CPU server with four NVIDIA GeForce GTX 1080 GPUs (a) and
four NVIDIA GeForce RTX 2080 GPUs (b).

J. Chem. Phys. 153, 134110 (2020); doi: 10.1063/5.0018516 153, 134110-12

© Author(s) 2020

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 12. Multi-GPU and multi-node scaling performance STMV benchmark (1M
atoms). Performance when using staged communication through the CPU, direct
GPU communication, and the additional benefit of GPU integration are shown. Left
panel: when using reaction-field to avoid lattice summation, the scaling is excellent
and we achieve iteration rates around 1 ms of wall clock time per step over 4 nodes
with 4 GPUs each. Right panel: with PME, the scaling currently becomes limited
by the use a single PME GPUs for offloading, but the absolute performance is high
(despite the different scales). All runs use 1 MPI task per GPU, except the 2-GPU
PME runs that use four MPI ranks to improve task balance.

emerging next-generation HPC systems, which have a focus on good
balance for mixed workloads. When using reaction-field instead of
PME, the scaling is excellent all the way to 16 GPUs. While this is a
less common choice for electrostatics, it highlights the efficiency and
benefits of the GPU halo exchange combined with GPU update and
shows the performance and scaling possible when avoiding the chal-
lenges with small 3D FFTs, extra communication between direct-
and reciprocal-space GPUs, and task imbalance inherent to PME.
When using PME electrostatics, the relative scaling is good up to 8
GPUs (50% efficiency) when the GPU halo exchange is combined
with the direct GPU PME task communication, and there are again
clear benefits from combination with the GPU update path. Beyond
this, we are currently limited by the restriction of a single PME GPU
when offloading lattice summation, which becomes a bottleneck
both in terms of communication and imbalance in computation.
However, we believe that the absolute performance of 55 ns/day is
excellent.

VII. DISCUSSION
Microsecond-scale simulations have not only become routine

but eminently approachable with commodity hardware. However,
it is only the barrier of entry that has been lowered. Bridging the
time scale gap from hundreds of microseconds to millisecond in
single-trajectories still requires special-purpose hardware.47,48 Nev-
ertheless, general-purpose codes have unique advantages in terms
of flexibility, adaptability, and portability to new hardware—not to
mention that it is relatively straightforward to introduce new spe-
cial algorithms for including experimental constraints in simula-
tions. There are also great opportunities with using massive-scale
resources for efficient ensemble simulations where the main chal-
lenge is cost-efficient generation of trajectories. Hence, we believe

that a combination of new algorithms, efficient heterogeneous par-
allelization, and large-scale ensemble algorithms will characterize
MD in the exascale era, and performance advances in the core MD
codes will always multiply the advances obtained from new cleaver
sampling algorithms.

The flexibility of the GROMACS engine comes with challenges
for both developers and users. There is a range of options to tune
from algorithmic parameters to parallelization settings, and many of
these are related to fundamental shifts toward much more diverse
hardware that the entire MD community has to adapt to. Our
approach has been to provide a broad range of heuristics-based
defaults to ensure good performance out of the box, but by increas-
ingly moving to tolerance-based settings, we aim to both improve
quality of simulations and make life easier for users. Still, efficiently
using a multitude of different hardware combinations for either
throughput or single long simulations is challenging. As described
here, many of the steps have been automated, but to dynamically
decide the algorithm to resource mapping in a complex compute
node (or what code flavor to use) requires a fully dynamic auto-
tuning approach.44 Developing a robust auto-tuning framework
and integrating it with the multi-level load balancers is especially
demanding due to the complex feature set and broad use-cases
of codes such as GROMACS, but it is something we are working
actively on.

To reach performance for which ASICs are needed today,
MD engines need to be capable of <100 μs iterations. Such iter-
ation rates are possible with GROMACS for small systems, such
as the villin headpice (∼5000 atoms).49 Reaching this performance
for larger systems such as membrane proteins with hundreds of
thousands of atoms will require a range of improvements. In terms
of parallelization in GROMACS, improving the efficiency of GPU
task scheduling, CPU tasking, and better overlap of communica-
tion are necessary. When it comes to algorithms, we expect PME
to remain the long-range interaction method of choice at low scale,
but the limitations of the 3D FFT many-to-many communication
for strong scaling require a new approach. With recent extensions to
the fast multipole method,50 we expect it to become the algorithm
of choice for the largest parallel runs. Future technological improve-
ments including faster interconnects and closer on-chip integration
and advances in both traditional3,51 and coarse-grained reconfig-
urable architectures52 could allow getting closer to this performance
target.

We expect to see several of these advancements in the future. In
the meantime, we believe that the present GROMACS implementa-
tion provides a major step forward in terms of absolute performance
as well as relative scaling by being able to use almost arbitrary-
balance combinations of CPU and GPU functional units. It is our
hope that this will help enable a wide range of scientific applications
on everything from cost-efficient consumer GPU hardware to large
HPC resources.

SUPPLEMENTARY MATERIAL

See the supplementary material (heterogeneous parallelization
and acceleration of molecular dynamics simulations in GROMACS)
for performance benchmark methodology, topologies, input data,
and parameters.

J. Chem. Phys. 153, 134110 (2020); doi: 10.1063/5.0018516 153, 134110-13

© Author(s) 2020

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0018516#suppl


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

ACKNOWLEDGMENTS
This work was supported by the Swedish e-Science Research

Center, the BioExcel CoE (Grant No. H2020-EINFRA-2015-1-
675728), the European Research Council (Grant Nos. 209825
and 258980), the Swedish Research Council (Grant Nos. 2017-
04641 and 2019-04477), and the Swedish Foundation for Strate-
gic Research. NVIDIA, Intel, and AMD are kindly acknowledged
for engineering and hardware support. We thank Gaurav Garg
(NVIDIA) for CUDA-aware MPI contributions, Aleksei Iupinov
and Roland Schulz (Intel) for heterogeneous parallelization, and
Stream HPC for OpenCL contributions, and the project would not
be possible without all contributions from the greater GROMACS
community.

DATA AVAILABILITY

The data that support the findings of this study are avail-
able in the supplementary material and in the following reposito-
ries: performance benchmarks inputs and methodology are pub-
lished at https://doi.org/10.5281/zenodo.3893789 (supplementary
material) and the source code for multi-GPU scaling is available at
https://doi.org/10.5281/zenodo.3890246 (Ref. 53).

REFERENCES
1C. Kutzner, S. Páll, M. Fechner, A. Esztermann, B. L. Groot, and H. Grubmüller,
“More bang for your buck: Improved use of GPU nodes for GROMACS 2018,”
J. Comput. Chem. 40, 2418–2431 (2019).
2H. H. Loeffler and M. D. Winn, “Large biomolecular simulation on HPC plat-
forms II. DL POLY, GROMACS, LAMMPS and NAMD,” Technical report, STFC,
2012.
3M. Schaffner and L. Benini, “On the feasibility of FPGA acceleration of molecular
dynamics simulations,” Technical report, ETH Zurich, Integrated Systems Lab IIS,
2018; arXiv:1808.04201.
4N. Yoshii, Y. Andoh, K. Fujimoto, H. Kojima, A. Yamada, and S. Okazaki,
“MODYLAS: A highly parallelized general-purpose molecular dynamics simula-
tion program,” Int. J. Quantum Chem. 115, 342–348 (2014).
5W. M. Brown, A. Semin, M. Hebenstreit, S. Khvostov, K. Raman, and S. J.
Plimpton, “Increasing molecular dynamics simulation rates with an 8-fold
increase in electrical power efficiency,” in International Conference for High Per-
formance Computing, Networking, Storage and Analysis, SC (IEEE Press, 2016),
pp. 82–95.
6W. McDoniel, M. Höhnerbach, R. Canales, A. E. Ismail, and P. Bientinesi,
“LAMMPS’ PPPM long-range solver for the second generation Xeon Phi,” in High
Performance Computing, ISC 2017, Lecture Notes in Computer Science, Vol.
10266, edited by J. Kunkel, R. Yokota, P. Balaji, and D. Keyes (Springer, Cham,
2017).
7B. Acun, D. J. Hardy, L. V. Kale, K. Li, J. C. Phillips, and J. E. Stone, “Scalable
molecular dynamics with NAMD on the Summit system,” IBM J. Res. Dev. 62,
4:1–4:9 (2018).
8B. Hess, C. Kutzner, D. Van Der Spoel, and E. Lindahl, “GROMACS 4: Algo-
rithms for highly efficient, load-balanced, and scalable molecular simulation,”
J. Chem. Theory Comput. 4, 435–447 (2008).
9S. Páll and B. Hess, “A flexible algorithm for calculating pair interactions
on SIMD architectures,” Comput. Phys. Commun. 184, 2641–2650 (2013);
arXiv:1306.1737.
10M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and E.
Lindahl, “GROMACS: High performance molecular simulations through multi-
level parallelism from laptops to supercomputers,” SoftwareX 1-7, 19 (2015).
11S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts,
J. C. Smith, P. M. Kasson, D. van der Spoel, B. Hess, and E. Lindahl, “GROMACS

4.5: A high-throughput and highly parallel open source molecular simulation
toolkit,” Bioinformatics 29, 845–854 (2013).
12M. J. Harvey, G. Giupponi, and G. D. Fabritiis, “ACEMD: Accelerating
biomolecular dynamics in the microsecond time scale,” J. Chem. Theory Comput.
5, 1632–1639 (2009).
13A. W. Götz, M. J. Williamson, D. Xu, D. Poole, S. Le Grand, and R. C. Walker,
“Routine microsecond molecular dynamics simulations with AMBER on GPUs.
1. Generalized born,” J. Chem. Theory Comput. 8, 1542–1555 (2012).
14R. Salomon-Ferrer, A. W. Goetz, D. Poole, S. Le Grand, and R. C. Walker,
“Routine microsecond molecular dynamics simulations with AMBER on GPUs.
2. Explicit solvent particle mesh Ewald,” J. Chem. Theory Comput. 9, 3878
(2013).
15J. A. Anderson, C. D. Lorenz, and A. Travesset, “General purpose molec-
ular dynamics simulations fully implemented on graphics processing units,”
J. Comput. Phys. 227, 5342–5359 (2008).
16N. Ganesan, M. Taufer, B. Bauer, and S. Patel, “FENZI: GPU-enabled molecular
dynamics simulations of large membrane regions based on the CHARMM force
field and PME,” in 2011 IEEE International Symposium on Parallel and Distributed
Processing Workshops and Ph.D. Forum (IEEE, 2011), pp. 472–480.
17M. Bergdorf, S. Baxter, C. A. Rendleman, and D. E. Shaw, “Desmond/GPU per-
formance as of November 2016,” Technical Report No. ŁDESRES/TR–2016-01,
D. E. Shaw Research, 2016.
18J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco,
and K. Schulten, “Accelerating molecular modeling applications with graphics
processors,” J. Comput. Chem. 28, 2618–2640 (2007).
19W. M. Brown, A. Kohlmeyer, S. J. Plimpton, and A. N. Tharrington, “Imple-
menting molecular dynamics on hybrid high performance computers—Particle–
particle particle-mesh,” Comput. Phys. Commun. 183, 449–459 (2012).
20A.-P. Hynninen and M. F. Crowley, “New faster CHARMM molecular dynam-
ics engine,” J. Comput. Chem. 35, 406–413 (2013).
21C. Kobayashi, J. Jung, Y. Matsunaga, T. Mori, T. Ando, K. Tamura, M. Kamiya,
and Y. Sugita, “GENESIS 1.1: A hybrid-parallel molecular dynamics simula-
tor with enhanced sampling algorithms on multiple computational platforms,”
J. Comput. Chem. 38, 2193–2206 (2017).
22S. Páll, M. J. Abraham, C. Kutzner, B. Hess, and E. Lindahl, “Tackling exas-
cale software challenges in molecular dynamics simulations with GROMACS,” in
Solving Software Challenges for Exascale, Lecture Notes in Computer Science Vol.
8759, edited by S. Markidis and E. Laure (Springer, Cham, 2015), pp. 3–27.
23C. Kutzner, R. Apostolov, and B. Hess, “Scaling of the GROMACS 4.6 molec-
ular dynamics code on SuperMUC,” in International Conference on Parallel
Computing-ParCo2013, 2013.
24J. R. Perilla and K. Schulten, “Physical properties of the HIV-1 capsid from all-
atom molecular dynamics simulations,” Nat. Commun. 8, 15959 (2017).
25T.-S. Lee, D. S. Cerutti, D. Mermelstein, C. Lin, S. Legrand, T. J. Giese, A.
Roitberg, D. A. Case, R. C. Walker, and D. M. York, “GPU-accelerated molecu-
lar dynamics and free energy methods in Amber18: Performance enhancements
and new features,” J. Chem. Inf. Model. 58, 2043–2050 (2018).
26K. Rupp, “CPU GPU and MIC hardware characteristics over time (2019),”
https://github.com/karlrupp/cpu-gpu-mic-comparison (Last viewed May 12,
2020).
27D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H.
J. C. Berendsen, “GROMACS: Fast, flexible, and free,” J. Comput. Chem. 26,
1701–1718 (2005).
28E. Lindahl, M. Abraham, B. Hess, and D. van der Spoel, “GROMACS 2020.2
source code,” Zenodo. V.2020.2. Dataset. http://doi.org/10.5281/zenodo.3773801
29R. Schulz, B. Lindner, L. Petridis, and J. C. Smith, “Scaling of multimillion-
atom biological molecular dynamics simulation on a petascale supercomputer,”
J. Chem. Theory Comput. 5, 2798–2808 (2009).
30F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mercier,
S. Thibault, and R. Namyst, “hwloc: A generic framework for managing hardware
affinities in HPC applications,” in 2010 18th Euromicro Conference on Parallel,
Distributed and Network-Based Processing (IEEE, 2010), pp. 180–186.
31C. Kutzner, S. Páll, M. Fechner, A. Esztermann, B. L. de Groot, and H. Grub-
müller, “Best bang for your buck: GPU nodes for GROMACS biomolecular
simulations,” J. Comput. Chem. 36, 1990–2008 (2015); arXiv:1507.00898.

J. Chem. Phys. 153, 134110 (2020); doi: 10.1063/5.0018516 153, 134110-14

© Author(s) 2020

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0018516#suppl
https://doi.org/10.5281/zenodo.3893789
https://doi.org/10.1063/5.0018516#suppl
https://doi.org/10.1063/5.0018516#suppl
https://doi.org/10.5281/zenodo.3890246
https://doi.org/10.1002/jcc.26011
http://arxiv.org/abs/1808.04201
https://doi.org/10.1002/qua.24841
http://doi.org/10.1007/978-3-319-58667-0_4
http://doi.org/10.1007/978-3-319-58667-0_4
https://doi.org/10.1147/jrd.2018.2888986
https://doi.org/10.1021/ct700301q
https://doi.org/10.1016/j.cpc.2013.06.003
http://arxiv.org/abs/1306.1737
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1093/bioinformatics/btt055
https://doi.org/10.1021/ct9000685
https://doi.org/10.1021/ct200909j
https://doi.org/10.1021/ct400314y
https://doi.org/10.1016/j.jcp.2008.01.047
https://doi.org/10.1002/jcc.20829
https://doi.org/10.1016/j.cpc.2011.10.012
https://doi.org/10.1002/jcc.23501
https://doi.org/10.1002/jcc.24874
https://doi.org/10.1038/ncomms15959
https://doi.org/10.1021/acs.jcim.8b00462
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://doi.org/10.1002/jcc.20291
http://doi.org/10.5281/zenodo.3773801
https://doi.org/10.1021/ct900292r
https://doi.org/10.1002/jcc.24030
http://arxiv.org/abs/1507.00898


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

32J. E. Stone, A.-P. Hynninen, J. C. Phillips, and K. Schulten, “Early experiences
porting the NAMD and VMD molecular simulation and analysis software to
GPU-accelerated OpenPOWER platforms,” in High Performance Computing. ISC
High Performance 2016, Lecture Notes in Computer Science, Vol. 9945, edited by
M. Taufer, B. Mohr, and J. Kunkel (Springer, Cham, 2016).
33L. Verlet, “Computer “experiments” on classical fluids. I. Thermodynamical
properties of Lennard-Jones molecules,” Phys. Rev. 159, 98–103 (1967).
34R. W. Hockney, S. P. Goel, and J. W. Eastwood, “Quiet high-resolution com-
puter models of a plasma,” J. Comput. Phys. 14, 148–158 (1974).
35J. Yang, Y. Wang, and Y. Chen, “GPU accelerated molecular dynamics simula-
tion of thermal conductivities,” J. Comput. Phys. 221, 799–804 (2007).
36J. A. van Meel, A. Arnold, D. Frenkel, S. F. Portegies Zwart, and R. G.
Belleman, “Harvesting graphics power for MD simulations,” Mol. Simul. 34,
259–266 (2008).
37M. S. Friedrichs, P. Eastman, V. Vaidyanathan, M. Houston, S. Legrand, A. L.
Beberg, D. L. Ensign, C. M. Bruns, and V. S. Pande, “Accelerating molecular
dynamic simulation on graphics processing units,” J. Comput. Phys. 30, 864–872
(2009).
38S. Pennycook, C. Hughes, M. Smelyanskiy, and S. Jarvis, “Exploring SIMD
for molecular dynamics, using Intel Xeon processors and Intel Xeon Phi copro-
cessors,” in 2013 IEEE 27th International Symposium on Parallel & Distributed
Processing (IEEE, 2013).
39P. Gonnet, “A simple algorithm to accelerate the computation of non-bonded
interactions in cell-based molecular dynamics simulations,” J. Comput. Chem. 28,
570–573 (2007).
40P. Eastman and V. S. Pande, “Efficient nonbonded interactions for molecu-
lar dynamics on a graphics processing unit,” J. Comput. Chem. 31, 1268–1272
(2010).
41U. Welling and G. Germano, “Efficiency of linked cell algorithms,” Comput.
Phys. Commun. 182, 611–615 (2011).
42N. Bailey, T. Ingebrigtsen, J. S. Hansen, A. Veldhorst, L. Bøhling, C. Lemarc-
hand, A. Olsen, A. Bacher, L. Costigliola, U. Pedersen, H. Larsen, J. Dyre, and
T. Schrøder, “RUMD: A general purpose molecular dynamics package optimized
to utilize GPU hardware down to a few thousand particles,” SciPost Phys. 3, 038
(2017); arXiv:1506.05094.

43L. Barba and R. Yokota, “How will the fast multipole method fare in the exas-
cale era?,” SIAM News (2013), https://sinews.siam.org/Details-Page/how-will-
the-fast-multipole-method-fare-in-the-exascale-era (Last viewed May 12, 2020).
44J. Glaser, T. D. Nguyen, J. A. Anderson, P. Lui, F. Spiga, J. A. Millan,
D. C. Morse, and S. C. Glotzer, “Strong scaling of general-purpose molecular
dynamics simulations on GPUs,” Comput. Phys. Commun. 192, 97–107 (2015);
arXiv:1412.3387.
45M. J. Abraham and J. E. Gready, J. Comput. Chem. 32, 2031–2040 (2011).
46V. Lindahl, J. Lidmar, and B. Hess, “Accelerated weight histogram method for
exploring free energy landscapes,” J. Chem. Phys. 141, 044110 (2014).
47I. Ohmura, G. Morimoto, Y. Ohno, A. Hasegawa, and M. Taiji, “MDGRAPE-4:
A special-purpose computer system for molecular dynamics simulations,” Philos.
Trans. R. Soc., A 372, 20130387 (2014).
48J. Grossman, B. Towles, B. Greskamp, and D. E. Shaw, “Filtering, reductions and
synchronization in the Anton 2 network,” in 2015 IEEE International Parallel and
Distributed Processing Symposium (IEEE, 2015), pp. 860–870.
491.95 μs/day (<88 μs/step) on an AMD R9-3900X CPU and NVIDIA RTX 2080
SUPER GPU using 2 fs time step and 0.9 nm cutoff.
50D. S. Shamshirgar, R. Yokota, A. K. Tornberg, and B. Hess, “Regularizing the fast
multipole method for use in molecular simulation,” J. Chem. Phys. 151, 234113
(2019).
51C. Yang, T. Geng, T. Wang, R. Patel, Q. Xiong, A. Sanaullah, C. Wu, J. Sheng,
C. Lin, V. Sachdeva, W. Sherman, and M. Herbordt, “Fully integrated FPGA
molecular dynamics simulations,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (ACM, New
York, NY, USA, 2019), pp. 1–31.
52N. Srivastava, H. Rong, P. Barua, G. Feng, H. Cao, Z. Zhang, D. Albonesi,
V. Sarkar, W. Chen, P. Petersen, G. Lowney, A. Herr, C. Hughes, T. Mattson, and
P. Dubey, “T2s-tensor: Productively generating high-performance spatial hard-
ware for dense tensor computations,” in 2019 IEEE 27th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM) (IEEE,
2019), pp. 181–189.
53A. Gray and G. Garg, “GROMACS with CUDA-aware MPI direct GPU com-
munication support,” Zenodo. V.2021-GPUcomm-JCP, http://doi.org/10.5281/
zenodo.3890247

J. Chem. Phys. 153, 134110 (2020); doi: 10.1063/5.0018516 153, 134110-15

© Author(s) 2020

https://scitation.org/journal/jcp
http://doi.org/10.1007/978-3-319-46079-6_14
http://doi.org/10.1007/978-3-319-46079-6_14
https://doi.org/10.1103/physrev.159.98
https://doi.org/10.1016/0021-9991(74)90010-2
https://doi.org/10.1016/j.jcp.2006.06.039
https://doi.org/10.1080/08927020701744295
https://doi.org/10.1002/jcc.21209
https://doi.org/10.1002/jcc.20563
https://doi.org/10.1002/jcc.21413
https://doi.org/10.1016/j.cpc.2010.11.002
https://doi.org/10.1016/j.cpc.2010.11.002
https://doi.org/10.21468/scipostphys.3.6.038
http://arxiv.org/abs/1506.05094
https://sinews.siam.org/Details-Page/how-will-the-fast-multipole-method-fare-in-the-exascale-era
https://sinews.siam.org/Details-Page/how-will-the-fast-multipole-method-fare-in-the-exascale-era
https://doi.org/10.1016/j.cpc.2015.02.028
http://arxiv.org/abs/1412.3387
https://doi.org/10.1002/jcc.21773
https://doi.org/10.1063/1.4890371
https://doi.org/10.1098/rsta.2013.0387
https://doi.org/10.1098/rsta.2013.0387
https://doi.org/10.1063/1.5122859
http://doi.org/10.5281/zenodo.3890247
http://doi.org/10.5281/zenodo.3890247

