
�1�© 2013 The MathWorks, Inc.

Workshop: Parallel Computing with 
MATLAB and Scaling to HPCC

Raymond Norris
MathWorks



�3

Outline

� Parallelizing Your MATLAB Code
� Tips for Programming with a Parallel for Loop
� Computing to a GPU
� Scaling to a Cluster
� Debugging and Troubleshooting



�4

What’s Not Being Covered Today?

� Data Parallel
� MapReduce
� MPI
� Simulink



�5

Let’s Define Some Terms

cli·ent noun \ޛklƯ-ԣnt\
1 : MATLAB session that submits the job

com·mu·ni·cate job adjective 
\kԣ-ޛmyü-nԣ-ޞkƗt\ \jäbޛ\
1 : a job composed of tasks that 
communicate with each other, 
running at the same time

in·de·pen·dent job 
adjective -penޛ-in-dԣޞ\
dԣnt\ \jäbޛ\
1 : a job composed of 
independent tasks, with no 
communication, which do not 
need to run at the same 
time

lab noun \labޛ\
1 : see worker



�6

…a Few More Terms

MAT·LAB pool noun \mat-lab\ \pülޛ\
1 :  a collection of workers

MDCS abbreviation

1 : MATLAB Distributed Computing

Server
SPMD abbreviation

1 : Single Program Multiple

Data

worker noun \wԣr-kԣrޛ\
1 : headless MATLAB session that

performs tasks



�7

MATLAB Parallel Computing Solution

MATLAB 
Desktop (Client)

Local

Desktop Computer

Parallel Computing Toolbox

Cluster

Computer Cluster

Scheduler

MATLAB Distributed Computing Server



�8

Typical Parallel Applications

� Massive for loops (parfor)
– Parameter sweep

� Many iterations
� Long iterations

– Monte-Carlo simulations
– Test suites

� One-Off Batch Jobs

� Partition Large Data Sets (spmd)

Task Parallel Applications

Data Parallel Applications



�9

Outline

� Parallelizing Your MATLAB Code
� Tips for Programming with a Parallel for Loop
� Computing to a GPU
� Scaling to a Cluster
� Debugging and Troubleshooting



�10

But Before We Get Started…

� Do you preallocate your matrices?



�11

Effect of Not Preallocating Memory

>> x = 4;

>> x(2) = 7;

>> x(3) = 12;

�0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

4 4
4
7

4
7
4
7

12

X(3) = 12X(2) = 7



�12

Benefit of Preallocation

>> x = zeros(3,1);

>> x(1) = 4;

>> x(2) = 7;

>> x(3) = 12;

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0
0
0

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0
0
0

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

4
0
0

4
7
0

4
7

12



�13

Let’s Try It…



�14

Getting Started With the MATLAB Pool



�15

The MATLAB Pool

Worker

Worker
Worker

Worker

Worker

Worker

MATLAB 
Desktop (Client)



�16

Connecting to HPCC to Run MATLAB

ssh –X USERNAME@hpc-login1.usc.edu

## For bash users

% cp ~matlab/setup_matlab.sh ~/

% source setup_matlab.sh

## For tcsh users

% cp ~matlab/setup_matlab.csh ~/

% source setup_matlab.csh

% matlab_local ## or matlab_cluster

ssh –X COMPUTE-NODE

. /usr/usc/matlab/2013a/setup.[c]sh

% matlab &

Only for today’s 
seminar

To be updated on 
the Wiki



�17

Starting a MATLAB Pool…

Open a MATLAB pool with two workers using the local profile

Bring up  the Windows Task Manager or Linux top

Maximum of 12 local workers

Start MATLAB



�18

One MATLAB Pool at a Time

Even if you have not exceeded the maximum number of workers,
you can only open one MATLAB pool at a time



�19

Stopping a MATLAB Pool



�20

Add Shortcut for Starting the MATLAB Pool
9



�21

Add Shortcut for Stopping the MATLAB Pool
9



�22

Toolbox Support for Parallel Computing



�23

Products That Support PCT

� Bioinformatics Toolbox
� Communications System 

Toolbox
� Embedded Coder
� Global Optimization Toolbox
� Image Processing Toolbox
� Model-Based Calibration 

Toolbox
� Neural Network Toolbox

� Optimization Toolbox
� Phased Array System 

Toolbox
� Robust Control Toolbox
� Signal Processing Toolbox
� Simulink
� Simulink Coder
� Simulink Control Design 
� Simulink Design Optimization
� Statistics Toolbox
� SystemTest

http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html



�24

parfor: The Parallel for Loop



�25

Using the parfor Construct

� In order to convert a for loop to a parfor loop, the 
for loop must at least be:
– Task independent
– Order independent



�26

Order Independent?



�27

What If a MATLAB Pool Is Running?



�28

The Mechanics of parfor Blocks

Pool of MATLAB Workers

c = pi;

a = zeros(10, 1)

for idx = 1:10 

a(idx) = idx * c;

end

a

Worker
Worker

Worker Worker



�29

a(idx) = idx * c;

The Mechanics of parfor Blocks

Pool of MATLAB Workers

c = pi;

a = zeros(10, 1)

parfor idx = 1:10 

a(idx) = idx * c;

end

a

a(idx) = idx * c;

a(idx) = idx * c;

a(idx) = idx * c;

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

Auto-load balancing

Worker
Worker

Worker Worker



�30

Example: Hello, World!
1. Code the example below.  Save it as forexample.m

>> forexample



�31

Example: Hello, World! (2)
2. Code the helper function.  Save it as myfcn.m . Time and run it.

>> myfcn



�32

Example: Hello, World! (3)
3. Parallelize the for loop and save it as parforexample.m
4. Start a MATLAB pool and run it.  Change the size of the Pool.  
What speed ups do you get?

>> parforexample



�33

Example: Break It (1)
5. Add a dependency to the parfor loop.  Look at the code 
analyzer messages.

>> parforbug



�34

Example: Break It (2)

The variable a cannot be properly classified



�35

Constraints

� The loop variable cannot be used to index with other 
variables

� No inter-process communication.  Therefore, a parfor
loop cannot contain:
– break and return statements
– global and persistent variables
– nested functions
– changes to handle classes

� Transparency
– Cannot “introduce” variables (e.g. eval, load, global, etc.)
– Unambiguous Variables Names

� No nested parfor loops or spmd statement



�36

This is Great!  Should I Get Linear 
Improvement?

� Not exactly
– Too little work, too much data

� Are you calling BLAS or LAPACK routines?
� What are you timing?

– MATLAB Profiler

� Amdahl’s Law

– ܷܵ ܰ ൌ � ଵ
ଵି ା�ುಿ

1.1 1.3
2

10

20

100

1

10

100

10% 25% 50% 90% 95% 99%

Fa
ct

or
 o

f S
pe

ed
 U

p

Percentage That is Parallelizable



�37

Optimizing a parfor Loop

� Should I pre-allocate a matrix?
– There is no significant speedup, if any, in pre-allocating the 

matrix

� Should I pre-assign large matrices before the parfor?
– Yes, if they’re going to be referenced after the for loop (to be 

explained why later)
– Otherwise, do all the large creation on the workers
– So if I have a for loop with 100 iterations and 10 workers, are 

each of the matrices create 10 times?  Or 100 times?
� 100 times.  See later for minimizing this.



�38

parfor Variable Classification

� All variables referenced at the top level of the parfor
must be resolved and classified

Classification Description
Loop Serves as a loop index for arrays
Sliced An array whose segments are operated on by different 

iterations of the loop
Broadcast A variable defined before the loop whose value is used 

inside the loop, but never assigned inside the loop
Reduction Accumulates a value across iterations of the loop, 

regardless of iteration order
Temporary Variable created inside the loop, but unlike sliced or 

reduction variables, not available outside the loop

>> web([docroot '/distcomp/advanced-topics.html#bq_of7_-1'])



�39

Variable Classification Example

1

2

4 5

6

Loop1

Temporary2

3 Reduction
Sliced Output4

Sliced Input5

Broadcast6

3



�40

After the for loop, what is the type and the 
value of each variable?  

>> what_is_it_parfor

Variable Type Value
a broadcast ones(1:10)
b temp undefined
c temp undefined
d sliced 1:10
e reduction 55
f temp 5
g reduction 20
h temp 10
j temp 0.0000 + 1.0000i
s broadcast rand(1,10)

idx loop undefined



�41

Sliced Variables

� An indexed variables, parceled out to each worker
– Indexing at the first level only and for () or {}
– Within the list of indices for a sliced variable, one of these 

indices is of the form i, i+k, i-k, k+i, or k-i, where i is the loop 
variable and k is a constant or a simple (non-indexed) 
broadcast variable; and every other index is a constant, a 
simple broadcast variable, colon, or end

Not Valid Valid
A(i+f(k),j,:,3) A(i+k,j,:,3)

A(i,20:30,end) A(i,:,end)

A(i,:,s.field1) A(i,:,k)



�42

Implications of Sliced Variables

What is the value of A?

>> bad_sliced_matrix



�43

Implications of Broadcast Variables

The entire data set r is broadcast to each worker 

>> broadcast_matrix



�44

Implications of Broadcast Variables

Could you create r on the workers instead?

>> temporary_matrix



�45

Implications of Broadcast Variables



�46

Implications of Reductions Variables

� Variable appears on both sides of assignment
� Same operation must be performed on variable for all 

iterations
� Reduction function must be associative and 

commutative



�47

Implications of Reduction Variables



�48

Implications of Temporary Variables

What is the value of A?  d?  idx?



�49

Variable Assignments Are Not Displayed
When Running a parfor

>> no_display



�50

rand in parfor Loops (1)

� MATLAB has a repeatable sequence of random 
numbers

� When workers are started up, rather than using this 
same sequence of random numbers, the labindex is 
used to seed the RNG



�51

rand in parfor Loops (2)



�57

Outline

� Parallelizing Your MATLAB Code
� Tips for Programming with a Parallel for Loop
� Computing to a GPU
� Scaling to a Cluster
� Debugging and Troubleshooting



�58

What If My parfor Has a parfor In It?

� MATLAB runs a static analyzer on the immediate
parfor and will error out nested parfor loops.  
However, functions called from within the parfor that 
include parfor loops are treated as regular for loops

>> nestedparfor_bug

>> nestedparfor_fix



�60

What’s Wrong With This Code?
Why can we index into C with jidx, but not B?

>> whats_wrong_with_this_code



�61

parfor issue: Indexing With Different 
Expressions

How can we avoid indexing into x two different ways?

>> valid_indexing_bug



�62

parfor issue: Solution

Create a temporary variable, x_2nd_col, to store the column vector.  Then loop 
into the vector using the looping index, jidx, rather than the into a matrix.
Note: This doesn’t scale very well if we needed to index into x many ways.

>> valid_indexing_fix



�63

parfor issue: Inadvertently Creating 
Temporary Variables

What is the code analyzer message?  And how can we solve this problem?
Why does the code analyzer think highest is a temporary variable?

>> inadvertent_temporary_bug



�64

parfor issue: Solution

>> inadvertent_temporary_fix

Assign highest to the result of a reduction function



�65

parfor issue: Inadvertently Creating
Broadcast Variables

>> inadvertent_broadcast_bug

What is the code analyzer message?
Why isn’t c a sliced variable?  What kind is it?
How can we make it sliced?
If we didn’t have the b assignment, would c be sliced?



�66

parfor issue: Solution

>> inadvertent_broadcast_fix

Create the additional variables x and y, which are sliced



�67

Persistent Storage (1)

� I cannot convert the outer loop into parfor because 
it’s in someone else’s top level function. However, if I 
convert the inner loop into parfor in the 
straightforward manner, we end up sending large 
data to the workers N times.



�68

Persistent Storage (2)



�69

Solution: Persistent Storage

Store the value in a persistent variable in a function



�70

Best Practices for Converting for to parfor

� Use code analyzer to diagnose parfor issues 
� If your for loop cannot be converted to a parfor, 

consider wrapping a subset of the body to a function
� If you modify your parfor loop, switch back to a for 

loop for regression testing
� Read the section on classification of variables

>> docsearch ‘Classification of Variables’

9



�71

Outline

� Parallelizing Your MATLAB Code
� Tips for Programming with a Parallel for Loop
� Computing to a GPU
� Scaling to a Cluster
� Debugging and Troubleshooting



�72

What is a Graphics Processing Unit (GPU)

� Originally for graphics acceleration, now 
also used for scientific calculations

� Massively parallel array of integer and
floating point processors
– Typically hundreds of processors per card
– GPU cores complement CPU cores

� Dedicated high-speed memory

� blogs.mathworks.com/loren/2013/06/24/running-monte-carlo-
simulations-on-multiple-gpus

* Parallel Computing Toolbox requires NVIDIA GPUs with Compute Capability 1.3 or 
higher, including NVIDIA Tesla 20-series products.  See a complete listing at 
www.nvidia.com/object/cuda_gpus.html



�73

Core 1

Core 3 Core 4

Core 2

Cache

Performance Gain with More Hardware

Using More Cores (CPUs) Using GPUs

Device Memory

GPU cores

Device Memory



�74

Programming Parallel Applications (GPU)

� Built-in support with Toolboxes

�E
as

e 
of

 U
se

�G
reater C

ontrol



�75

Programming Parallel Applications (GPU)

� Built-in support with Toolboxes

� Simple programming constructs:
gpuArray, gather 

�E
as

e 
of

 U
se

�G
reater C

ontrol



�76

Example: Solving 2D Wave Equation
GPU Computing

� Solve 2nd order wave 
equation using spectral 
methods:

߲ଶݑ
ଶݐ߲ ൌ

߲ଶݑ
ଶݔ߲ 

߲ଶݑ
�ଶݕ߲

� Run both on CPU and 
GPU

� Using gpuArray and 
overloaded functions 

www.mathworks.com/help/distcomp/using-gpuarray.html#bsloua3-1



�77

Benchmark: Solving 2D Wave Equation
CPU vs GPU

Intel Xeon Processor W3690 (3.47GHz), 
NVIDIA Tesla K20 GPU

Grid Size CPU 
(s)

GPU
(s) Speedup

64 x 64 0.05 0.15 0.32

128 x 128 0.13 0.15 0.88

256 x 256 0.47 0.15 3.12

512 x 512 2.22 0.27 8.10

1024 x 1024 10.80 0.88 12.31

2048 x 2048 54.60 3.84 14.22



�78

Programming Parallel Applications (GPU)

� Built-in support with Toolboxes

� Simple programming constructs:
gpuArray, gather 

� Advanced programming constructs:
arrayfun, bsxfun, spmd

� Interface for experts:
CUDAKernel, MEX support

�E
as

e 
of

 U
se

�G
reater C

ontrol

www.mathworks.com/help/releases/R2013a/distcomp/create-and-run-mex-files-containing-cuda-code.html

www.mathworks.com/help/releases/R2013a/distcomp/executing-cuda-or-ptx-code-on-the-gpu.html



�79

GPU Performance – not all cards are equal

� Tesla-based cards will provide best performance 
� Realistically, expect 4x to 15x speedup (Tesla) vs CPU
� See GPUBench on MATLAB Central for examples 

Laptop GPU 
GeForce

Desktop GPU 
GeForce / Quadro

High Performance Computing GPU 
Tesla / Quadro

www.mathworks.com/matlabcentral/fileexchange/34080-gpubench



�80

Criteria for Good Problems to Run on a GPU

� Massively parallel:
– Calculations can be broken into hundreds  

or thousands of independent units of work
– Problem size takes advantage of many GPU cores

� Computationally intensive:
– Computation time significantly exceeds CPU/GPU data transfer time 

� Algorithm consists of supported functions:
– Growing list of Toolboxes with built-in support

� www.mathworks.com/products/parallel-computing/builtin-parallel-support.html

– Subset of core MATLAB for gpuArray, arrayfun, bsxfun
� www.mathworks.com/help/distcomp/using-gpuarray.html#bsloua3-1
� www.mathworks.com/help/distcomp/execute-matlab-code-elementwise-on-a-

gpu.html#bsnx7h8-1



�81

Outline

� Parallelizing Your MATLAB Code
� Tips for Programming with a Parallel for Loop
� Computing to a GPU
� Scaling to a Cluster
� Debugging and Troubleshooting



�82

Migrating from Local to Cluster

MATLAB 
client

parfor

MATLAB 
workersMATLAB 

client

batch

MATLAB 
workers

parfor



�83

Offload Computations with batch

Result

Work

Worker

Worker

Worker

Worker
MATLAB 

Desktop (Client)



�84

Can’t I Just Use matlabpool to Connect to 
the Cluster/Cloud?

� MATLAB pool
– So long as the compute nodes can reach back to your local 

desktop, then yes, you can run jobs on the cluster using 
matlabpool

– Recall, the MATLAB Client is blocked
– Cannot run other parallel jobs
– Consumes MDCS licenses while the pool is open, even if they 

aren’t being used

� Batch
– Ideal if:

� the local desktop is not reachable from the cluster, or
� if I want shutdown my desktop, or
� if I want submit multiple jobs at once

9



�85

Why Can’t I Open a MATLAB Pool to the 
Cluster?

hostname
port no.

Can’t resolve hostname>> matlabpool(32)

scheduler

Can it resolve the 
IP address?

>> pctconfig(‘hostname’,’12.34.56.78’)



�86

Profiles

� Think of cluster profiles like printer queue configurations
� Managing profiles

– Typically created by Sys Admins
– Label profiles based on the version of MATLAB

� E.g. hpcc_local_r2013a

� Import profiles generated by the Sys Admin
– Don’t modify them with two exceptions

� Specify the JobStorageLocation
� Setting the ClusterSize

� Validate profiles
– Ensure new profile is properly working 
– Helpful when debugging failed jobs

9



�87

Import and Validating a Profile



�88

Submitting Scripts with batch

>> run_sims



�89

Submitting Functions with batch

>> run_fcn_sims



�90

Fixing the batch Warning Message

Warning: Unable to change to requested working directory.

Reason :Cannot CD to C:\Work (Name is nonexistent or not 
a directory).

� Call batch with CurrentFolder set to ‘.’
� job = batch(….,’CurrentFolder’,’.’);



�91

How Can I Find Yesterday’s Job?

Job Monitor



�92

Final Exam: What Final Exam?

� Choose one of the following:
– Î Submit a job that determines the MATLAB directory 

your task ran in
– Submit a job that determines the machine that ran your task

� Hint: system(), hostname.exe

� Clear your MATLAB workspace and get a handle to the 
job you ran above



�93

Final Exam: Solution (1)



�94

Final Exam: Solution (2)



�96

Recommendations

� Profile your code to search for bottlenecks
� Make use of code analyzer when coding parfor and spmd
� Display the correct amount of verbosity for debugging purposes
� Implement an error handler, including capture of calls to 3rd party 

functions – don’t assume calls to libraries succeed
� Beware of multiple processes writing to the same file
� Avoid the use of global variables
� Avoid hard coding path and filenames that don’t exist on the cluster
� Migrate from scripts to functions
� Consider whether or not you’ll need to recompile your MEX-files
� After migrating from for to parfor, switch back to for to make sure 

nothing has broken
� If calling rand in a for loop, while debugging call rand(‘seed’,0), to get 

consistent results each time
� When calling matlabpool/batch, parameterize your code

9



�105

Outline

� Parallelizing Your MATLAB Code
� Tips for Programming with a Parallel for Loop
� Computing to a GPU
� Scaling to a Cluster
� Debugging and Troubleshooting



�106

Troubleshooting and Debugging

� Object data size limitations
– Single transfers of data between client and workers

� Tasks or jobs remain in Queued state even thought 
cluster scheduler states it’s finished
– Most likely MDCS failed to startup

� No results or job failed
– job.load or job.fetchOutputArguments{:}
– job.Parent.getDebugLog(job)

System Architecture Maximum Data Size Per Transfer (approx.)
64-bit 2.0 GB
32-bit 600 MB



�110

System Support



�111

System Requirements

� Maximum 1 MATLAB worker / CPU core
� Minimum 1 GB RAM / MATLAB worker
� Minimum 5 GB of disk space for temporary data 

directories
� GPU

– CUDA-enabled NVIDIA GPU w/ compute capability 1.3 or 
above http://www.nvidia.com/content/cuda/cuda-gpus.html

– Latest CUDA driver 
http://www.nvidia.com/Download/index.aspx



�112

What’s New In R2013a?

� GPU-enabled functions in Image Processing Toolbox 
and Phased Array System Toolbox

� More MATLAB functions enabled for use with GPUs, 
including interp1 and ismember

� Enhancements to MATLAB functions enabled for 
GPUs, including arrayfun, svd, and mldivide (\)

� Ability to launch CUDA code and manipulate data 
contained in GPU arrays from MEX-functions

� Automatic detection and transfer of files required 
for execution in both batch and interactive 
workflows

� More MATLAB functions enabled for distributed arrays



�113

Training: Parallel Computing with MATLAB 

� Two-day course introducing tools and techniques for 
distributing code and writing parallel algorithms in 
MATLAB. The course shows how to increase both the 
speed and the scale of existing code using PCT.
– Working with a MATLAB pool 
– Speeding up computations 
– Task-parallel programming 
– Working with large data sets 
– Data-parallel programming 
– Increasing scale with multiple systems
– Prerequisites: MATLAB Fundamentals

� mathworks.com/training


