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Objective: Operationally understand spatial decomposition (who does 
what) & message passing using a real-world application (pmd.c)

https://aiichironakano.github.io/cs596/src/pmd
https://github.com/KenichiNomura/binary-LJ-pmd

https://aiichironakano.github.io/cs596/src/pmd
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Parallel Molecular Dynamics
Spatial decomposition (short-ranged):
1. Divide the physical space into subspaces of equal volume
2. Assign each subspace to a computing node (more generally, to a 

process) in a parallel computer
3. Each node computes forces on the atoms in its subspace & updates 

their positions & velocities Who does what

Map

Will learn other decomposition schemes later:
https://aiichironakano.github.io/cs596/NT.pdf

Spatial
subsystem

Computing
node

or MPI rank

https://aiichironakano.github.io/cs596/NT.pdf


Spatial Decomposition

• Process ID
 Vector
 px  =  p/(PyPz)
 py  =  (p/Pz) mod Py
 pz  =  p mod Pz
 Scalar
 p  =  px´PyPz + py´Pz + pz

In pmd.h
int vproc[3] = {1,1,2}, nproc = 2;

In pmd.c
MPI_Comm_rank(MPI_COMM_WORLD, &sid);
vid[0] = sid/(vproc[1]*vproc[2]);
vid[1] = (sid/vproc[2])%vproc[1];
vid[2] = sid%vproc[2];

nproc = vproc[0]´vproc[1] ´vproc[2]

Which 3D
subspace?

Rank

Px Py Pz

Map a spatial 
subsystem to 
a process!

rank

cf. MD lecture 
slides 29 &30

https://aiichironakano.github.io/cs596/01MD-VG.pdf


Neighbor Process ID
p¢a(k)  =  [pa + da(k) + Pa] mod Pa (k = 0,...,5; a = x, y, z)
p¢ (k)  =  p¢x (k)´PyPz + p¢y(k)´Pz + p¢z(k)

In pmd.c
int iv[6][3]={{-1,0,0}, {1,0,0}, {0,-1,0}, {0,1,0}, {0,0,-1}, {0,0,1}};
...
for (ku=0; ku<6; ku++) {
  for (a=0; a<3; a++)
    k1[a] = (vid[a]+iv[ku][a]+vproc[a])%vproc[a];
  nn[ku] = k1[0]*vproc[1]*vproc[2]+k1[1]*vproc[2]+k1[2];
  for (a=0; a<3; a++) sv[ku][a] = al[a]*iv[ku][a];
}

Neighbor ID, κ   

! 

! 

" = (δx, δy, δz)    

! 

! 
" = (Δx, Δy, Δz) 

0 (east) 

1 (west) 
2 (north) 

3 (south) 

4 (up) 

5 (down) 

(-1, 0, 0) 

(1, 0, 0) 
(0, -1, 0) 

(0, 1, 0) 

(0, 0, -1) 

(0, 0, 1) 

(-Lx, 0, 0) 

(Lx, 0, 0) 
(0, -Ly, 0) 

(0, Ly, 0) 

(0, 0, -Lz) 

(0, 0, Lz) 

 

destination rank
coordinate shift for
self-centric parallelization

• Lx, Ly & Lz are the box lengths per process in the x, y & z directions
• Atom coordinates are in the range [0, La] (a = x, y, z) in each process 

wrap around

neighbor’s vector 
process ID

neighbor’s rank



Neighbor Process ID Example

nn[0] nn[1]

nn[2]

nn[3]

nn[4] nn[5] Periodic boundary condition

nn[] is used to send messages  



Parallel MD Concepts
Atom caching Atom migration

1. First half kick to obtain vi(t+Dt/2)
2. Update atomic coordinates to obtain ri(t+Dt)
3. atom_move():  Migrate the moved-out atoms to the neighbor processes
4. atom_copy():  Copy the surface atoms within distance rc from the neighbors
5. compute_accel():  Compute new accelerations, ai(t+Dt), including 
   the contributions from the cached atoms
6. Second half kick to obtain vi(t+Dt)

rc

Data structure



Linked-List Cell Method

• Cell size
 Lca = ëLa /rcû 
 rca = La/Lca (a = x, y, z)
• Cell index
 c  =  cx(Lcy+2)(Lcz+2) + cy(Lcz+2) + cz

 cx  =  c/[(Lcy+2)(Lcz+2)]
 cy  =  [c/(Lcz+2)] mod (Lcy+2)
 cz  =  c mod (Lcz+2)
• Atom → cell mapping
 ca  =  ë(ra+rca)/rcaû (a = x, y, z)

Search for pairs only within the nearest neighbor cells:
O(N2) → O(N)

cached resident

Only change from serial lmd.c in green: 
Augmented cells to include cached atoms

cx

cy



List Construction Algorithm
/* Reset the headers, head */
for (c=0; c<lcxyz2; c++) head[c] = EMPTY;
/* Scan atoms to construct headers, head, & linked lists, lscl */
for (i=0; i<n+nb; i++) {  Consider nb cached atoms
  /* Vector cell index to which this atom belongs */
  for (a=0; a<3; a++) mc[a] = (r[i][a]+rc[a])/rc[a];  Position offset by one cell
  /* Translate the vector cell index, mc, to a scalar cell index */
  c = mc[0]*lcyz2+mc[1]*lc2[2]+mc[2];
  /* Link to the previous occupant (or EMPTY if you're the 1st) */
  lscl[i] = head[c];
  /* The last one goes to the header */
  head[c] = i;
}

In the above:
lcyz2 = lc2[1]*lc2[2] 

where
lc2[a] = lc[a]+2 (a = 0,1,2)
lcxyz2 = lcyz2*lc2[0]

Change from serial lmd.c in green



Interaction Computation
/* Scan inner cells (resident) */
for (mc[0]=1; mc[0]<=lc[0]; (mc[0])++)
for (mc[1]=1; mc[1]<=lc[1]; (mc[1])++)
for (mc[2]=1; mc[2]<=lc[2]; (mc[2])++) {
  /* Calculate a scalar cell index */
  c = mc[0]*lcyz2+mc[1]*lc2[2]+mc[2];
  /* Scan the neighbor cells (including itself) of cell c (resident + cached) */
  for (mc1[0]=mc[0]-1; mc1[0]<=mc[0]+1; (mc1[0])++)
  for (mc1[1]=mc[1]-1; mc1[1]<=mc[1]+1; (mc1[1])++)
  for (mc1[2]=mc[2]-1; mc1[2]<=mc[2]+1; (mc1[2])++) {
    /* Calculate the scalar cell index of the neighbor cell */
    c1 = mc1[0]*lcyz2+mc1[1]*lc2[2]+mc1[2];
    /* Scan atom i in cell c */
    i = head[c];
    while (i != EMPTY) {
      /* Scan atom j in cell c1 */
      j = head[c1];
      while (j != EMPTY) {
        ...
        if (i<j && rij<rc2) Process pair (i, j)
        ...
        j = lscl[j];
      }
      i = lscl[i];
    }
  }
}

Change from serial lmd.c in green

Who does what: Each rank computes forces 
on the resident atoms in its subspace & 
updates their positions & velocities

Resident atoms may interact 
with cached atoms (cf. slide 7)



Parallel Interaction Computation

for resident cells, c {
  for neighbor (resident or cached) cells, c1 {
    scan atom i in cell c using c’s linked list {
      scan atom j in cell c1 using c1’s linked list {
        ...
        if (i<j && rij<rc2) {
          compute pair force aij & potential u(rij)
          bintra = j < n; // j is resident?
          ai += aij; if (bintra) aj -= aij;
          if (bintra) lpe += u(rij); else lpe += u(rij)/2; 
        }
      }
    }
  }
}
MPI_Allreduce(&lpe, &potEnergy,...,MPI_SUM,...);

SPMD: Who does what?
Each process computes: 
1. The forces on its resident atoms
2. The potential energy between resident pairs & 

1/2 of that between resident-cached pairs 

cx

cy

j bintra = (j < n)



Atom Caching: atom_copy()

Reset the number of received cache atoms, nbnew = 0
for x, y, and z directions
  Make boundary-atom lists, lsb, for lower and higher directions including both 
  resident, n, and cache, nbnew, atoms (within rc from boundary)
  for lower and higher directions
    Send/receive boundary-atom coordinates to/from the neighbor
    Increment nbnew;
  endfor
endfor
nb = nbnew

Caching from 26 neighbors in 6 steps (by forwarding)



Implementing Atom Caching

Copying condition
bbd(ri[],ku) {
  kd = ku / 2 (= 0|1|2)
  kdd = ku % 2 (= 0|1)
  if (kdd == 0)
    return ri[kd] < RCUT
  else
    return al[kd] – RCUT < ri[kd]
}

3 phases of message passing
1. Message buffering: dbuf ← r-sv (shift), gather
2. Message passing: dbufr ← dbuf
 Send dbuf
 Receive dbufr
3. Message storing: r ← dbufr, append after the residents

shift

x|y|z
lower|higher

I210

Self-centric coordinate systems

See atom_copy() in pmd.c

https://aiichironakano.github.io/cs596/src/pmd/


Deadlock Avoidance

1. Message buffering: dbuf ← r, gather
2. Message passing: dbufr ← dbuf
   /* Even node: send & recv, if not empty */
   if (myparity[kd] == 0) {
     MPI_Send(dbuf,3*nsd,MPI_DOUBLE,inode,120,MPI_COMM_WORLD);
     MPI_Recv(dbufr,3*nrc,MPI_DOUBLE,MPI_ANY_SOURCE,120,
              MPI_COMM_WORLD,&status);
   }
   /* Odd node: recv & send, if not empty */
   else if (myparity[kd] == 1) {
     MPI_Recv(dbufr,3*nrc,MPI_DOUBLE,MPI_ANY_SOURCE,120,
              MPI_COMM_WORLD,&status);
     MPI_Send(dbuf,3*nsd,MPI_DOUBLE,inode,120,MPI_COMM_WORLD);
   }
   /* Single layer: Exchange information with myself */
   else
     for (i=0; i<3*nrc; i++) dbufr[i] = dbuf[i];
3. Message storing: r ← dbufr, append

3-phase (deadlock-free) message passing

Cyclic dependence vproc[0|1|2] must be 1 
or even

Break cyclic dependence!

myparity[0]

myparity[2]

x

z



ANL IBM SP1 User’s Guide (’94)

pmd.c

assignment

MPI_Irecv();
MPI_Send();
MPI_Wait();



Digress: Polyacetylene & Peierls Distortion

Nature’s spontaneous even-odd 
symmetry breaking



Atom Migration: atom_move()

Reset the number of received new immigrants, newim = 0
for x, y, and z directions
  Make moving-atom lists, mvque, for lower and higher directions including both 
  resident, n, and immigrant, newim, atoms but excluding those already moved out
  for lower and higher directions
    Send/receive moving-atom coordinates to/from the neighbor
    (When moving, r[][0] ← MOVED_OUT = -1010)
    Increment newim
  endfor
endfor
Compress the r array to eliminate the moved-out atoms

Moved out
Moved in



Implementing Atom Migration
Moving condition
bmv(ri[],ku) {
  kd = ku / 2 (= 0|1|2)
  kdd = ku % 2 (= 0|1)
  if (kdd == 0)
    return ri[kd] < 0.0
  else
    return al[kd] < ri[kd]
}

3 phases of message passing
1. Message buffering: dbuf ← r-sv (shift) & rv, gather
 Mark MOVED_OUT in r
2. Message passing: dbufr ← dbuf
 Send dbuf
 Receive dbufr
3. Message storing: r & rv ← dbufr, append after the residents

See atom_move() in pmd.c

https://aiichironakano.github.io/cs596/src/pmd/


Bottom Line: Parallel MD

Parallel computing: 
Specifies who does what — decomposition

Parallel molecular dynamics (spatial decomposition): 
Who does what = each processor computes forces on 
only resident atoms in the subspace assigned to it & 
updates their positions & velocities



Scalability Metrics for
Parallel Molecular Dynamics
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Objective: Consolidate your understanding of scalability analysis 
(e.g., fixed-problem vs. isogranular scaling) using a real-world 

example of pmd.c



Recap: Parallel Efficiency

• Execution time: T(W,P)
 W: Workload
 P: Number of processors

• Speed:

• Speedup:
 
• Efficiency:

How to scale WP with P?

Parallel computing = solving a big problem (W) in a short time 
(T) using many processors (P)



Fixed Problem-Size (Strong) Scaling

WP = W—constant (strong scaling)

• Speedup:

• Efficiency:

• Amdahl’s law: f (= sequential fraction of the workload) 
limits the asymptotic speedup 

Solve the same problem faster using more processors
𝑺𝑷 =

𝑻(𝑾,𝟏)
𝑻(𝑾,𝑷)

≤ 𝑷 



Isogranular (Weak) Scaling

WP = Pw (weak scaling)
w = constant workload per processor (granularity)

• Speedup:

• Efficiency:

Solve a larger problem within the same time 
duration using more processors 𝑬𝑷 =

𝑻(𝒘,𝟏)
𝑻(𝑷𝒘,𝑷)

≤ 𝟏 



Analysis of Parallel MD
• Parallel execution time: 
 Workload µ Number of atoms, N (linked-list cell algorithm) 

⏞6
!"#$%& 𝐿'

𝑃 ⁄' ) 𝑟#

#"#*$+	-./01$

× ⏞ρ
"%.1	+$2&3%4

= 6𝑟#
𝑁'/)/𝜌'/)

𝑃 ⁄' ) 𝜌

= 6𝑟#𝜌 ⁄6 ) 𝑁
𝑃

⁄' )∵
𝑁
𝐿! = 𝜌 ⇒ 𝐿" =

𝑁"/!

𝜌"/!

MPI_Allreduce()



Fixed Problem-Size Scaling
• Speedup: 

• Efficiency: 

   

pmd.c: N = 16,384, on HPC (predecessor of CARC)

Can’t do this for P = 1–106



Isogranular Scaling of Parallel MD
• n = N/P = constant: doable for arbitrarily large P 
• Efficiency: 

pmd.c: N/P = 16,384, on HPC (predecessor of CARC)
  



High-End Parallel MD

• 4.9 trillion-atom space-time multiresolution MD (MRMD) of SiO2
• 8.5 billion-atom fast reactive force-field (F-ReaxFF) RMD of RDX 
• 39.8 trillion grid points (50.3 million-atom) DC-DFT QMD of SiC

parallel efficiency 0.984 on 786,432 Blue Gene/Q cores
MD (molecular dynamics): MRMD
RMD (reactive molecular dynamics): F-ReaxFF
QMD (quantum molecular dynamics): DC-DFT

QMD
Weak scaling: N/P = 64

Nomura et al., IEEE/ACM SC14

http://cacs.usc.edu/education/cs653/Nomura-MetascalableQMD-SC14.pdf


Portable Parallel Efficiency

K. Liu et al., Shift-collapse acceleration of generalized polarizable reactive molecular dynamics 
for machine learning-assisted computational synthesis of layered materials, 

Proc. ScalA18 (IEEE, ’18)

• Weak-scaling parallel efficiency of 0.989 for a new generation of reactive 
molecular dynamics (RMD) on 131,072 Intel Knights Landing cores on 
Theta supercomputer at Argonne National Laboratory

Our simulation images 
featured on Theta 

http://cacs.usc.edu/education/cs653/Liu-ReaxPQ-SCALA18.pdf
http://cacs.usc.edu/education/cs653/Liu-ReaxPQ-SCALA18.pdf


Quantum MD@Scale
Quantum dynamics at scale: ultrafast control of emergent 

functional materials
S. C. Tiwari, P. Sakdhnagool, R. K. Kalia, A. Krishnamoorthy, M. Kunaseth, 

A. Nakano, K. Nomura, P. Rajak, F. Shimojo, Y. Luo & P. Vashishta
Best Paper in ACM HPC Asia 2020

19 years since

Scalable atomistic simulation algorithms
for materials research, A. Nakano et al., 
Best Paper, IEEE/ACM Supercomputing 2001, SC01

https://dl.acm.org/doi/10.1145/582034.582035
https://dl.acm.org/doi/10.1145/582034.582035


Neighbor
environment

Neural network

Symmetry functions

Interatomic
forces

Neural MD@Scale
• Neural-network quantum molecular dynamics (NNQMD) could 

revolutionize atomistic modeling of materials, providing quantum-
mechanical accuracy at a fraction of computational cost [Phys. Rev. Lett. 
126, 216403 (’21); J. Phys. Chem. Lett. 12, 6020 (’21); Nature Commun. 15, 3911 (’24)]

Neural network molecular dynamics at scale & Ex-NNQMD: extreme-scale neural network 
quantum molecular dynamics, 

P. Rajak et al., IEEE IPDPS ScaDL 20 & 21 

See also Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms 
with machine learning

W. Jia et al., ACM/IEEE Supercomputing, SC20

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.216403
https://pubs.acs.org/doi/full/10.1021/acs.jpclett.1c01272
https://www.nature.com/articles/s41467-024-48246-9
https://ieeexplore.ieee.org/document/9150357
https://ieeexplore.ieee.org/document/9460660
https://ieeexplore.ieee.org/document/9460660
https://dl.acm.org/doi/abs/10.5555/3433701.3433707
https://dl.acm.org/doi/abs/10.5555/3433701.3433707


Fast, Robust & Scalable: Allegro-Legato
• Allegro (fast) NNQMD: State-of-the-art accuracy & speed founded on group-

theoretical equivariance & local descriptors [Musaelian et al., Nat. Commun. 14, 579 (’23)]

• Fidelity-scaling problem: On massively parallel computers, growing number of 
unphysical (adversarial) force predictions prohibits simulations involving larger 
numbers of atoms for longer times

• Allegro-Legato (fast and “smooth”): Sharpness aware minimization (SAM) enhances 
the robustness of Allegro through improved smoothness of loss landscape

 𝐰∗ = argmin𝐰 𝐿 𝐰 + max∥𝛜∥!%& 𝐿 𝐰 + 𝛜 − 𝐿 𝐰   (L: loss; w: model parameters)

• Elongated time-to-failure scaling, 𝒕𝐟𝐚𝐢𝐥𝐮𝐫𝐞 = 𝑶(𝑵(𝜷), without sacrificing accuracy or 
speed, thereby achieving spectroscopically stable long-time Hamiltonian trajectory

H. Ibayashi et al., ISC23—LNCS 13948, 223 (’23); arXiv: 2303.08169 

🤝
https://github.com/mir-group/allegro


