
Parallel Molecular Dynamics

Aiichiro Nakano
Collaboratory for Advanced Computing & Simulations

Department of Computer Science
Department of Physics & Astronomy

Department of Quantitative & Computational Biology
 University of Southern California

Email: anakano@usc.edu

Objective: Operationally understand spatial decomposition (who does
what) & message passing using a real-world application (pmd.c)

https://aiichironakano.github.io/cs596/src/pmd
https://github.com/KenichiNomura/binary-LJ-pmd

https://aiichironakano.github.io/cs596/src/pmd
https://github.com/KenichiNomura/binary-LJ-pmd

Parallel Molecular Dynamics
Spatial decomposition (short-ranged):
1. Divide the physical space into subspaces of equal volume
2. Assign each subspace to a computing node (more generally, to a

process) in a parallel computer
3. Each node computes forces on the atoms in its subspace & updates

their positions & velocities Who does what

Map

Will learn other decomposition schemes later:
https://aiichironakano.github.io/cs596/NT.pdf

Spatial
subsystem

Computing
node

or MPI rank

https://aiichironakano.github.io/cs596/NT.pdf

Spatial Decomposition

• Process ID
 Vector
 px = p/(PyPz)
 py = (p/Pz) mod Py
 pz = p mod Pz
 Scalar
 p = px´PyPz + py´Pz + pz

In pmd.h
int vproc[3] = {1,1,2}, nproc = 2;

In pmd.c
MPI_Comm_rank(MPI_COMM_WORLD, &sid);
vid[0] = sid/(vproc[1]*vproc[2]);
vid[1] = (sid/vproc[2])%vproc[1];
vid[2] = sid%vproc[2];

nproc = vproc[0]´vproc[1] ´vproc[2]

Which 3D
subspace?

Rank

Px Py Pz

Map a spatial
subsystem to
a process!

rank

cf. MD lecture
slides 29 &30

https://aiichironakano.github.io/cs596/01MD-VG.pdf

Neighbor Process ID
p¢a(k) = [pa + da(k) + Pa] mod Pa (k = 0,...,5; a = x, y, z)
p¢ (k) = p¢x (k)´PyPz + p¢y(k)´Pz + p¢z(k)

In pmd.c
int iv[6][3]={{-1,0,0}, {1,0,0}, {0,-1,0}, {0,1,0}, {0,0,-1}, {0,0,1}};
...
for (ku=0; ku<6; ku++) {
 for (a=0; a<3; a++)
 k1[a] = (vid[a]+iv[ku][a]+vproc[a])%vproc[a];
 nn[ku] = k1[0]*vproc[1]*vproc[2]+k1[1]*vproc[2]+k1[2];
 for (a=0; a<3; a++) sv[ku][a] = al[a]*iv[ku][a];
}

Neighbor ID, κ

!

!

" = (δx, δy, δz)

!

!
" = (Δx, Δy, Δz)

0 (east)

1 (west)
2 (north)

3 (south)

4 (up)

5 (down)

(-1, 0, 0)

(1, 0, 0)
(0, -1, 0)

(0, 1, 0)

(0, 0, -1)

(0, 0, 1)

(-Lx, 0, 0)

(Lx, 0, 0)
(0, -Ly, 0)

(0, Ly, 0)

(0, 0, -Lz)

(0, 0, Lz)

destination rank
coordinate shift for
self-centric parallelization

• Lx, Ly & Lz are the box lengths per process in the x, y & z directions
• Atom coordinates are in the range [0, La] (a = x, y, z) in each process

wrap around

neighbor’s vector
process ID

neighbor’s rank

Neighbor Process ID Example

nn[0] nn[1]

nn[2]

nn[3]

nn[4] nn[5] Periodic boundary condition

nn[] is used to send messages

Parallel MD Concepts
Atom caching Atom migration

1. First half kick to obtain vi(t+Dt/2)
2. Update atomic coordinates to obtain ri(t+Dt)
3. atom_move(): Migrate the moved-out atoms to the neighbor processes
4. atom_copy(): Copy the surface atoms within distance rc from the neighbors
5. compute_accel(): Compute new accelerations, ai(t+Dt), including
 the contributions from the cached atoms
6. Second half kick to obtain vi(t+Dt)

rc

Data structure

Linked-List Cell Method

• Cell size
 Lca = ëLa /rcû
 rca = La/Lca (a = x, y, z)
• Cell index
 c = cx(Lcy+2)(Lcz+2) + cy(Lcz+2) + cz

 cx = c/[(Lcy+2)(Lcz+2)]
 cy = [c/(Lcz+2)] mod (Lcy+2)
 cz = c mod (Lcz+2)
• Atom → cell mapping
 ca = ë(ra+rca)/rcaû (a = x, y, z)

Search for pairs only within the nearest neighbor cells:
O(N2) → O(N)

cached resident

Only change from serial lmd.c in green:
Augmented cells to include cached atoms

cx

cy

List Construction Algorithm
/* Reset the headers, head */
for (c=0; c<lcxyz2; c++) head[c] = EMPTY;
/* Scan atoms to construct headers, head, & linked lists, lscl */
for (i=0; i<n+nb; i++) { Consider nb cached atoms
 /* Vector cell index to which this atom belongs */
 for (a=0; a<3; a++) mc[a] = (r[i][a]+rc[a])/rc[a]; Position offset by one cell
 /* Translate the vector cell index, mc, to a scalar cell index */
 c = mc[0]*lcyz2+mc[1]*lc2[2]+mc[2];
 /* Link to the previous occupant (or EMPTY if you're the 1st) */
 lscl[i] = head[c];
 /* The last one goes to the header */
 head[c] = i;
}

In the above:
lcyz2 = lc2[1]*lc2[2]

where
lc2[a] = lc[a]+2 (a = 0,1,2)
lcxyz2 = lcyz2*lc2[0]

Change from serial lmd.c in green

Interaction Computation
/* Scan inner cells (resident) */
for (mc[0]=1; mc[0]<=lc[0]; (mc[0])++)
for (mc[1]=1; mc[1]<=lc[1]; (mc[1])++)
for (mc[2]=1; mc[2]<=lc[2]; (mc[2])++) {
 /* Calculate a scalar cell index */
 c = mc[0]*lcyz2+mc[1]*lc2[2]+mc[2];
 /* Scan the neighbor cells (including itself) of cell c (resident + cached) */
 for (mc1[0]=mc[0]-1; mc1[0]<=mc[0]+1; (mc1[0])++)
 for (mc1[1]=mc[1]-1; mc1[1]<=mc[1]+1; (mc1[1])++)
 for (mc1[2]=mc[2]-1; mc1[2]<=mc[2]+1; (mc1[2])++) {
 /* Calculate the scalar cell index of the neighbor cell */
 c1 = mc1[0]*lcyz2+mc1[1]*lc2[2]+mc1[2];
 /* Scan atom i in cell c */
 i = head[c];
 while (i != EMPTY) {
 /* Scan atom j in cell c1 */
 j = head[c1];
 while (j != EMPTY) {
 ...
 if (i<j && rij<rc2) Process pair (i, j)
 ...
 j = lscl[j];
 }
 i = lscl[i];
 }
 }
}

Change from serial lmd.c in green

Who does what: Each rank computes forces
on the resident atoms in its subspace &
updates their positions & velocities

Resident atoms may interact
with cached atoms (cf. slide 7)

Parallel Interaction Computation

for resident cells, c {
 for neighbor (resident or cached) cells, c1 {
 scan atom i in cell c using c’s linked list {
 scan atom j in cell c1 using c1’s linked list {
 ...
 if (i<j && rij<rc2) {
 compute pair force aij & potential u(rij)
 bintra = j < n; // j is resident?
 ai += aij; if (bintra) aj -= aij;
 if (bintra) lpe += u(rij); else lpe += u(rij)/2;
 }
 }
 }
 }
}
MPI_Allreduce(&lpe, &potEnergy,...,MPI_SUM,...);

SPMD: Who does what?
Each process computes:
1. The forces on its resident atoms
2. The potential energy between resident pairs &

1/2 of that between resident-cached pairs

cx

cy

j bintra = (j < n)

Atom Caching: atom_copy()

Reset the number of received cache atoms, nbnew = 0
for x, y, and z directions
 Make boundary-atom lists, lsb, for lower and higher directions including both
 resident, n, and cache, nbnew, atoms (within rc from boundary)
 for lower and higher directions
 Send/receive boundary-atom coordinates to/from the neighbor
 Increment nbnew;
 endfor
endfor
nb = nbnew

Caching from 26 neighbors in 6 steps (by forwarding)

Implementing Atom Caching

Copying condition
bbd(ri[],ku) {
 kd = ku / 2 (= 0|1|2)
 kdd = ku % 2 (= 0|1)
 if (kdd == 0)
 return ri[kd] < RCUT
 else
 return al[kd] – RCUT < ri[kd]
}

3 phases of message passing
1. Message buffering: dbuf ← r-sv (shift), gather
2. Message passing: dbufr ← dbuf
 Send dbuf
 Receive dbufr
3. Message storing: r ← dbufr, append after the residents

shift

x|y|z
lower|higher

I210

Self-centric coordinate systems

See atom_copy() in pmd.c

https://aiichironakano.github.io/cs596/src/pmd/

Deadlock Avoidance

1. Message buffering: dbuf ← r, gather
2. Message passing: dbufr ← dbuf
 /* Even node: send & recv, if not empty */
 if (myparity[kd] == 0) {
 MPI_Send(dbuf,3*nsd,MPI_DOUBLE,inode,120,MPI_COMM_WORLD);
 MPI_Recv(dbufr,3*nrc,MPI_DOUBLE,MPI_ANY_SOURCE,120,
 MPI_COMM_WORLD,&status);
 }
 /* Odd node: recv & send, if not empty */
 else if (myparity[kd] == 1) {
 MPI_Recv(dbufr,3*nrc,MPI_DOUBLE,MPI_ANY_SOURCE,120,
 MPI_COMM_WORLD,&status);
 MPI_Send(dbuf,3*nsd,MPI_DOUBLE,inode,120,MPI_COMM_WORLD);
 }
 /* Single layer: Exchange information with myself */
 else
 for (i=0; i<3*nrc; i++) dbufr[i] = dbuf[i];
3. Message storing: r ← dbufr, append

3-phase (deadlock-free) message passing

Cyclic dependence vproc[0|1|2] must be 1
or even

Break cyclic dependence!

myparity[0]

myparity[2]

x

z

ANL IBM SP1 User’s Guide (’94)

pmd.c

assignment

MPI_Irecv();
MPI_Send();
MPI_Wait();

Digress: Polyacetylene & Peierls Distortion

Nature’s spontaneous even-odd
symmetry breaking

Atom Migration: atom_move()

Reset the number of received new immigrants, newim = 0
for x, y, and z directions
 Make moving-atom lists, mvque, for lower and higher directions including both
 resident, n, and immigrant, newim, atoms but excluding those already moved out
 for lower and higher directions
 Send/receive moving-atom coordinates to/from the neighbor
 (When moving, r[][0] ← MOVED_OUT = -1010)
 Increment newim
 endfor
endfor
Compress the r array to eliminate the moved-out atoms

Moved out
Moved in

Implementing Atom Migration
Moving condition
bmv(ri[],ku) {
 kd = ku / 2 (= 0|1|2)
 kdd = ku % 2 (= 0|1)
 if (kdd == 0)
 return ri[kd] < 0.0
 else
 return al[kd] < ri[kd]
}

3 phases of message passing
1. Message buffering: dbuf ← r-sv (shift) & rv, gather
 Mark MOVED_OUT in r
2. Message passing: dbufr ← dbuf
 Send dbuf
 Receive dbufr
3. Message storing: r & rv ← dbufr, append after the residents

See atom_move() in pmd.c

https://aiichironakano.github.io/cs596/src/pmd/

Bottom Line: Parallel MD

Parallel computing:
Specifies who does what — decomposition

Parallel molecular dynamics (spatial decomposition):
Who does what = each processor computes forces on
only resident atoms in the subspace assigned to it &
updates their positions & velocities

Scalability Metrics for
Parallel Molecular Dynamics

Aiichiro Nakano
Collaboratory for Advanced Computing & Simulations

Department of Computer Science
Department of Physics & Astronomy

Department of Quantitative & Computational Biology
 University of Southern California

Email: anakano@usc.edu

Objective: Consolidate your understanding of scalability analysis
(e.g., fixed-problem vs. isogranular scaling) using a real-world

example of pmd.c

Recap: Parallel Efficiency

• Execution time: T(W,P)
 W: Workload
 P: Number of processors

• Speed:

• Speedup:

• Efficiency:

How to scale WP with P?

Parallel computing = solving a big problem (W) in a short time
(T) using many processors (P)

Fixed Problem-Size (Strong) Scaling

WP = W—constant (strong scaling)

• Speedup:

• Efficiency:

• Amdahl’s law: f (= sequential fraction of the workload)
limits the asymptotic speedup

Solve the same problem faster using more processors
𝑺𝑷 =

𝑻(𝑾,𝟏)
𝑻(𝑾,𝑷)

≤ 𝑷

Isogranular (Weak) Scaling

WP = Pw (weak scaling)
w = constant workload per processor (granularity)

• Speedup:

• Efficiency:

Solve a larger problem within the same time
duration using more processors 𝑬𝑷 =

𝑻(𝒘,𝟏)
𝑻(𝑷𝒘,𝑷)

≤ 𝟏

Analysis of Parallel MD
• Parallel execution time:
 Workload µ Number of atoms, N (linked-list cell algorithm)

⏞6
!"#$%& 𝐿'

𝑃 ⁄') 𝑟#

#"#*$+	-./01$

× ⏞ρ
"%.1	+$2&3%4

= 6𝑟#
𝑁'/)/𝜌'/)

𝑃 ⁄') 𝜌

= 6𝑟#𝜌 ⁄6) 𝑁
𝑃

⁄')∵
𝑁
𝐿! = 𝜌 ⇒ 𝐿" =

𝑁"/!

𝜌"/!

MPI_Allreduce()

Fixed Problem-Size Scaling
• Speedup:

• Efficiency:

pmd.c: N = 16,384, on HPC (predecessor of CARC)

Can’t do this for P = 1–106

Isogranular Scaling of Parallel MD
• n = N/P = constant: doable for arbitrarily large P
• Efficiency:

pmd.c: N/P = 16,384, on HPC (predecessor of CARC)

High-End Parallel MD

• 4.9 trillion-atom space-time multiresolution MD (MRMD) of SiO2
• 8.5 billion-atom fast reactive force-field (F-ReaxFF) RMD of RDX
• 39.8 trillion grid points (50.3 million-atom) DC-DFT QMD of SiC

parallel efficiency 0.984 on 786,432 Blue Gene/Q cores
MD (molecular dynamics): MRMD
RMD (reactive molecular dynamics): F-ReaxFF
QMD (quantum molecular dynamics): DC-DFT

QMD
Weak scaling: N/P = 64

Nomura et al., IEEE/ACM SC14

http://cacs.usc.edu/education/cs653/Nomura-MetascalableQMD-SC14.pdf

Portable Parallel Efficiency

K. Liu et al., Shift-collapse acceleration of generalized polarizable reactive molecular dynamics
for machine learning-assisted computational synthesis of layered materials,

Proc. ScalA18 (IEEE, ’18)

• Weak-scaling parallel efficiency of 0.989 for a new generation of reactive
molecular dynamics (RMD) on 131,072 Intel Knights Landing cores on
Theta supercomputer at Argonne National Laboratory

Our simulation images
featured on Theta

http://cacs.usc.edu/education/cs653/Liu-ReaxPQ-SCALA18.pdf
http://cacs.usc.edu/education/cs653/Liu-ReaxPQ-SCALA18.pdf

Quantum MD@Scale
Quantum dynamics at scale: ultrafast control of emergent

functional materials
S. C. Tiwari, P. Sakdhnagool, R. K. Kalia, A. Krishnamoorthy, M. Kunaseth,

A. Nakano, K. Nomura, P. Rajak, F. Shimojo, Y. Luo & P. Vashishta
Best Paper in ACM HPC Asia 2020

19 years since

Scalable atomistic simulation algorithms
for materials research, A. Nakano et al.,
Best Paper, IEEE/ACM Supercomputing 2001, SC01

https://dl.acm.org/doi/10.1145/582034.582035
https://dl.acm.org/doi/10.1145/582034.582035

Neighbor
environment

Neural network

Symmetry functions

Interatomic
forces

Neural MD@Scale
• Neural-network quantum molecular dynamics (NNQMD) could

revolutionize atomistic modeling of materials, providing quantum-
mechanical accuracy at a fraction of computational cost [Phys. Rev. Lett.
126, 216403 (’21); J. Phys. Chem. Lett. 12, 6020 (’21); Nature Commun. 15, 3911 (’24)]

Neural network molecular dynamics at scale & Ex-NNQMD: extreme-scale neural network
quantum molecular dynamics,

P. Rajak et al., IEEE IPDPS ScaDL 20 & 21

See also Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms
with machine learning

W. Jia et al., ACM/IEEE Supercomputing, SC20

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.216403
https://pubs.acs.org/doi/full/10.1021/acs.jpclett.1c01272
https://www.nature.com/articles/s41467-024-48246-9
https://ieeexplore.ieee.org/document/9150357
https://ieeexplore.ieee.org/document/9460660
https://ieeexplore.ieee.org/document/9460660
https://dl.acm.org/doi/abs/10.5555/3433701.3433707
https://dl.acm.org/doi/abs/10.5555/3433701.3433707

Fast, Robust & Scalable: Allegro-Legato
• Allegro (fast) NNQMD: State-of-the-art accuracy & speed founded on group-

theoretical equivariance & local descriptors [Musaelian et al., Nat. Commun. 14, 579 (’23)]

• Fidelity-scaling problem: On massively parallel computers, growing number of
unphysical (adversarial) force predictions prohibits simulations involving larger
numbers of atoms for longer times

• Allegro-Legato (fast and “smooth”): Sharpness aware minimization (SAM) enhances
the robustness of Allegro through improved smoothness of loss landscape

 𝐰∗ = argmin𝐰 𝐿 𝐰 + max∥𝛜∥!%& 𝐿 𝐰 + 𝛜 − 𝐿 𝐰 (L: loss; w: model parameters)

• Elongated time-to-failure scaling, 𝒕𝐟𝐚𝐢𝐥𝐮𝐫𝐞 = 𝑶(𝑵(𝜷), without sacrificing accuracy or
speed, thereby achieving spectroscopically stable long-time Hamiltonian trajectory

H. Ibayashi et al., ISC23—LNCS 13948, 223 (’23); arXiv: 2303.08169

🤝
https://github.com/mir-group/allegro

