
E. Luque, T. Margalef, and D. Benítez (Eds.): Euro-Par 2008, LNCS 5168, pp. 763–777, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Parallel Lattice Boltzmann Flow Simulation on Emerging
Multi-core Platforms

Liu Peng, Ken-ichi Nomura, Takehiro Oyakawa, Rajiv K. Kalia, Aiichiro Nakano,
and Priya Vashishta

Collaboratory for Advanced Computing and Simulations, Department of Computer Science,
Department of Physics & Astronomy, Department of Chemical

Engineering & Materials Science,
University of Southern California, Los Angeles, CA 90089-0242, USA

{liupeng,knomura,oyakawa,rkalia,anakano,priyav}@usc.edu

Abstract. A parallel Lattice Boltzmann Method (pLBM), which is based on hi-
erarchical spatial decomposition, is designed to perform large-scale flow simu-
lations. The algorithm uses critical section-free, dual representation in order to
expose maximal concurrency and data locality. Performances of emerging
multi-core platforms—PlayStation3 (Cell Broadband Engine) and Compute
Unified Device Architecture (CUDA)—are tested using the pLBM, which is
implemented with multi-thread and message-passing programming. The results
show that pLBM achieves good performance improvement, 11.02 for Cell over
a traditional Xeon cluster and 8.76 for CUDA graphics processing unit (GPU)
over a Sempron central processing unit (CPU). The results provide some in-
sights into application design on future many-core platforms.

Keywords: Lattice Boltzmann Method, Flow simulation, Parallel computing,
Hybrid thread + message passing programming, Spatial decomposition, Critical
section-free, dual representation, PlayStation3 cluster, Cell Broadband Engine
architecture, CUDA.

1 Introduction

We are witnessing a dramatic change into a multi-core paradigm, and computer indus-
try is facing a historical shift, in which Moore’s law due to ever increasing clock
speeds has been subsumed by increasing numbers of cores per microchip [1,2]. While
Intel is deploying multi-core processors across key product lines as a pivotal piece
[1], AMD begins its multi-core strategy by introducing quad-core processors, and
IBM, Sony, and Toshiba provide Cell, which is also an ideal application test bed to
prepare for coming many-core revolution [3,4]. The many-core revolution will mark
the end of the free-ride era (i.e., legacy software will run faster on newer chips),
resulting in a dichotomy—subsiding speed-up of conventional software and exponen-
tial speed-up of scalable parallel applications [5]. Recent progresses in high-
performance technical computing have identified key technologies for parallel
computing with portable scalability. An example is an Embedded Divide-and-
Conquer (EDC) algorithmic framework to design linear-scaling algorithms for broad

764 L. Peng et al.

scientific and engineering applications based on spatiotemporal locality principles [6].
The EDC framework maximally exposes concurrency and data locality, thereby
achieving reusable “design once, scale on new architectures” (or metascalable) appli-
cations. It is expected that such metascalable algorithms will continue to scale on fu-
ture many-core architectures.

As mentioned above, multi-core processor is the trend for future supercomputers,
and how to develop metascalable applications on such platforms is in great need. The
Lattice Boltzmann Method (LBM) for fluid simulations—which features robustness,
complicated geometry, multiphases, and ease of parallelization—is a representative of
this kind of applications. For example, Williams et al. studied performance optimiza-
tion of the LBM on multi-core platforms [7], while Stuermer implemented the LBM
on Cell [8,9] and Li et al. tested the LBM on graphics processing units (GPUs) [10].
In this paper, we present our design of a unified parallel implementation of the LBM
on several emerging platforms including a cluster of Cell-based PlayStation3 consoles
and Compute Unified Device Architecture (CUDA) based implementations on GPUs.
The paper is organized as follows. Section 2 describes the parallelization of the LBM
algorithm. The test beds, testing results, and performance analysis are presented in
Section 3. Conclusions and future directions are contained in Section 4.

2 Parallel Lattice Boltzmann Flow Simulation Algorithm

2.1 Lattice Boltzmann Method

The essential quantity in the Lattice Boltzmann Method (LBM) [11] is a density
 function (DF) ��fi (

K�
x , t) on a discrete lattice, �

K�
x = (j∆x,k∆y, l∆z)

(],1[],,1[],,1[zyx NlNkNj ∈∈∈), with discrete velocity values �
K�
e i (i ∈ [0,N v −1]) at

time t. Here, each ��
K�
e i points from a lattice site to one of its Nv near-neighbor sites. Nx,

Ny, and Nz are the numbers of lattice sites in the x, y, and z directions, respectively,
with ∆x, ∆y and ∆z being the corresponding lattice spacings and Nv (= 18) being the
number of discrete velocity values. From the DF, we can calculate various physical
quantities such as fluid density ��ρ(

G�
x , t) and velocity �

K�
u (
G�
x , t) :

��
ρ(
G�
x , t) = fi

i
¦ (

G�
x , t) , (1)

��
ρ(
G�
x , t)

K�
u (
G�
x , t) = K�

e i fi (
G�
x , t)

i
¦ . (2)

The time evolution of the DF is governed by the Boltzmann equation in the Bhat-
nagar-Gross-Krook (BGK) model. The LBM simulation thus consists of a time-
stepping iteration, in which collision and streaming operations are performed as time
is incremented by ∆t at each iteration step:
Collision:

�
fi (
K�
x ,t+) ← fi (

K�
x , t) − 1

τ
fi (
K�
x ,t) − fi

eq (ρ(
K�
x),
G�
u (
K�
x))(), (3)

 Parallel Lattice Boltzmann Flow Simulation on Emerging Multi-core Platforms 765

Streaming:

��fi (
K�
x + K�e i , t + ∆t) ← fi (

K�
x , t+) . (4)

In Eq. (4), the equilibrium DF is defined as

�fi
eq (ρ,

K�
u) = ρ(A + B(

K�
e i ⋅ K�u) + C (

K�
e i ⋅ K�u)2 + D

K�
u 2) , (5)

where A, B, C and D are constants, and the time constant τ is related to the kinematic
viscosity ν through a relation ν = (τ −1/2)/3.

It should be noted that the collision step involves a large number of floating-point
operations that are strictly local to each lattice site, while the streaming step contains
no floating-point operation but solely memory copies between nearest-neighbor lattice
sites.

2.2 Parallel LBM Algorithm

Our parallel Lattice Boltzmann Method (pLBM) algorithm consists of three functions:
collision, streaming, and communication. The total simulation system ȍ is decom-
posed into several sub-domains ȍi, where Ω = ∪iΩ i , and each domain is mapped
onto a processor (see Fig. 1). The collision and streaming functions update DFs on a
single domain, while the communication function is responsible for inter-domain DF
migrations. To simplify discussion, Fig. 1 shows a schematic of a 2-dimentional sys-
tem (the actual implementation is for 3 dimensions). Here, the white squares denote
open nodes that have DFs, the black squares denote closed nodes that represent obsta-
cles (and hence no flow), and the gray squares denote buffer nodes that hold buffer
DFs for inter-domain communication, which are initialized with the corresponding
geometry information (open or closed) in neighbor domains at the beginning of simu-
lation. In the 2-dimensional example, a single domain consists of Nx × Ny nodes,
where Nx and Ny are the numbers of lattice sites in the x and y directions, respectively.

Fig. 1. Schematic of spatial decomposition in 2 dimensions with several (here is 4) domains.
White squares are open lattice sites that have the DFs of flow particles. Black squares represent
obstacles, where flow does not exist. Gray squares are buffer sites, where some of the DFs
move in after streaming function.

766 L. Peng et al.

Each domain is augmented with a surrounding buffer layer of one lattice spacing,
which is used for inter-domain DF migrations. A boundary condition is imposed on
DFs propagating toward the closed nodes: reflecting DFs propagation into the closed
nodes toward the opposite direction.

2.2.1 Parallel LBM Algorithm on PlayStation3
We use a Linux cluster consisting of PlayStation3 consoles. Within each PlayStation3
console, a main program runs on the Power Processing Element (PPE) and spawns
POSIX threads that run on multiple Synergistic Processing Elements (SPEs). Direct
Memory Access (DMA) commands are used for data transfer between the main
memory of the PPE and the local storage of the SPEs, since there is no access from
SPEs to main memory. (Either SPE or PPE can issue DMA commands, which include
a get command for retrieving memory contents, and a put command for writing data
into memory.) For inter-console message passing, we use the Message Passing Inter-
face (MPI). The hybrid thread + message passing programming thus combines: (1)
Inter-console parallelization with spatial decomposition into domains based on mes-
sage passing; and (2) intra-console parallelization through multi-thread processing of
interleaved rows of the lattice within each domain.

Collision
It is a challenging task to design a parallel algorithm due to Cell hardware restrictions.
Six SPE programs can be simultaneously performed using POSIX threads on Play-
Station3 (only 6 SPEs out of 8 are available for user programming). As mentioned in
previous researches, the partitioning of work among the SPEs for load balancing is cru-
cial to high performance [8]. For optimal load balancing, we parallelize by first dividing
the simulation problem into a large number (Nx) of chunks, where chunk ID j
(j ∈ [0,N x −1]) processes lattice sites �

K�
x = (j +1)∆x,k∆y, l∆z() (k ∈ [1,N y] ,

l ∈ [1,N z]). Here, Nx, Ny and Nz denote the numbers of lattice sites per domain in the x,
y and z directions, respectively. We then interleavingly assign chunks to threads, i.e.,
chunk ID j is assigned to SPE with thread ID j mod Nthread, j ∈ [0, Nthread−1]. In our case,
the number of threads Nthread is 6, so chunk 0 and chunk 6 are assigned to SPE 0, while
chunk 1 and chunk 7 are assigned to SPE 1. In Fig. 2(a), the area enclosed by the dotted
lines shows the computational task assigned to the first thread with thread ID 0.

One problem in the interleaved thread parallelization is that multiple threads may
update a common lattice site. To avoid such a critical section, we have designed a
double-layered DF consisting of two floating-point arrays DF0 and DF1, shown in
Fig. 2(b). (In Eqs. (3) and (4), ��fi (

K�
x , t) and �fi (

K�
x , t +) denote DF0 and DF1, respec-

tively.) In each LBM loop, the collision subroutine transfers DFs from the array DF0
to local store on SPE, updates the DFs, and subsequently copies it back to the array
DF1. The pseudo-code of collision subroutine is given in Table 1, where
fetchAddrData is the address for a DMA get operation from DF0 to local store of
SPE, fetchAddrFlag is the address for DMA get from main memory to local storage
of SPE, and putAddrData is the address for DMA put from DF1 to main memory. In
the table, geom(i,j) denotes the flags (open or closed) of the j-th cell in chunk i. We
have not used single instruction multiple data (SIMD) programming in the current
implementation.

 Parallel Lattice Boltzmann Flow Simulation on Emerging Multi-core Platforms 767

Fig. 2. (a) Schematic of a 2-dimensional system setup for each domain in spatial decomposi-
tion. White squares are open lattice sites that have the DF’s of flow particles. Black squares
represent obstacles in the system, where flow does not exist. Gray squares are buffer sites,
where some of the DFs move in after streaming. The simulation system is divided into Ny com-
putational chunks, each of which consists of NyNz lattice sites, and the chunks are interleavingly
assigned to SPEs. The numerals show thread ID responsible for each chunk. (b) Schematic of a
double-layered DF calculation comprising of two floating point arrays DF0 and DF1. The col-
lision function reads DF’s from the array DF0 to do updates, and then store the updated infor-
mation in the array DF1. Subsequently, the streaming function propagates DF’s from the array
DF1 to the array DF0.

Table 1. Collision calculation algorithm within SPE

Input:
Nx, Ny, Nz
{number of LBM lattice sites in the x, y and z directions}
Nthread {number of threads}
tID {thread ID}
array DF0 in PPE of size N
{array of density functions, where N = NxNyNz}
array geom {array of geometry flags}

Output:
array DF1in PPE of size N {array of density functions}

Steps:
1 chunkID ← tID
2 chunksize ← N/Nx
3 while chunkID < N/Nx do
4 fetchAddrData
 ← address of DF0 + chunkID×chunksize
5 fetchAddrFlag
 ← address of geom + chunkID×chunksize
6 putAddrData
 ← address of DF1 + chunkID×chunksize
7 initiate DMA transfers to get data
8 fetch data from DF0 and geom
9 wait for the data

768 L. Peng et al.

Table 1. (continued)

10 for j ← 0 to chunksize−1
11 ��ρ(

G�
x , t) ← fi (

G�
x , t)i¦ {see Eq. (1)}

12 ��
K�
u (
G�
x , t) ← ρ−1(

G�
x , t)

K�
e i f i (

G�
x , t)

i¦ {see Eq. (2)}

13 ��fi(
K�
x ,t+)← fi(

K�
x ,t)−[fi (

K�
x ,t)− fi

eq(ρ(
K�
x),
G�
u (
K�
x))]/τ

 {see Eq. (3)}
14 if geom(chunkID, j) is open
 then update density functions
15 initiate DMA put for the computed results
16 chunckID ← chunkID + Nthread
17 synchronize using inter-SPE communication

Streaming
The streaming function propagates the DF according to their flow directions, see Eq.
(4). Here the DFs are copied from main memory to main memory, between array DF1
and array DF0 in Fig. 2(b). Before propagating DFs, a boundary condition such as
reflection rule must be considered according to the simulation geometry. In the case
of a static geometry, where the relation between source and destination lattice sites
does not change, we avoid repeated computing of boundary condition by defining
another array to keep the indices of destination lattice sites for each DF, which sig-
nificantly speeds up the streaming function. Furthermore, we find that the hardware-
supported threads on PPE improve the performance of the complicated memory copy.
We use two POSIX threads, each of which is responsible for half of the data transfer.
This improves the performance of the streaming computation by 20-30%.

Communication
After the streaming function, some of the DF’s move out of their domains. In the
communication function, DFs in the buffer lattice sites migrate to proper destination
domains. Figure 1 shows a schematic of the domain decomposition consisting of four
sub-domains Ω0-Ω3. We employ a 6-way dead-lock free communication scheme, in
which data transfer is completed in 6 steps. The inter-domain communication is im-
plemented with MPI.

2.2.2 Parallel LBM Algorithm on CUDA
Modern GPUs contain hundreds of arithmetic units to provide tremendous acceleration
for numerically intensive scientific applications. The high-level GPU programming lan-
guage, CUDA, has made this computational power more accessible to computational
scientists. We have implemented the pLBM algorithm on GPUs using CUDA.

Specifically, we test NVIDIA’s GeForce 8800 GTS that contains 96 stream proces-
sors. A block of threads (of which the number of threads per block is user-defined) is
processed by each stream processor, and while each block allows its threads to access
fast shared memory and communicate with each other, blocks do not have any
method of synchronizing with other blocks. Fortunately, the LBM allows each lattice
site to be solved independently of all the others during the collision phase, and it only
requires knowledge of other subdomains during the streaming phase.

 Parallel Lattice Boltzmann Flow Simulation on Emerging Multi-core Platforms 769

We test the performance of CUDA by implementing both the streaming and colli-
sion calculations independent of the CPU, that is, having each time step run entirely
on the GPU.

The GPU-based pLBM algorithm consists of two parts as shown in Table 2. First,
data is initialized and transferred to the GPU. Then, the collision and streaming com-
putation kernels are executed until the simulation ends. The kernels are designed so
that each thread solves one lattice site at a time. Subdomain size (i.e., the number of
blocks used) is taken to be the size of the system divided by the block size. Thread
management and synchronization, often a potential for major problems in large simu-
lations, is facilitated through CUDA’s _syncthreads() function. Because of CUDA’s
C-like syntax and behavior as well as allowing the GPU to perform the collision and
streaming functions entirely, the resulting code strongly resembles that of uniproces-
sor-based code. Moreover, since the data and programs are small, we put all of them
to the memory of GPU.

Table 2. GPU-based pLBM algorithm

Steps:
1 initialize data to send to GPU
2 define block and thread parameters initialized
3 for each time step
4 execute collision kernel
5 execute streaming kernel

3 Experiments

3.1 Experimental Test Bed

PlayStation3 Cluster
The Sony Toshiba IBM (STI) Cell processor is the heart of the Sony PlayStation3
(PS3) video game console, whose design is intended to meet the demanding computa-
tional requirements of video games. Cell adopts a heterogeneous approach to multi-
core, with one conventional processor core (Power Processing Element, PPE) to
handle OS and control functions, combined with up to eight simpler SIMD cores
(Synergistic Processing Elements, SPEs) for the computationally intensive work [11,
12]. The SPEs differ considerably from conventional core architectures due to their
use of a disjoint software-controlled local memory instead of the conventional hard-
ware-managed cache hierarchy employed by the PPE. Rather than using prefetch to
hide latency, the SPEs have efficient software-controlled DMA engines that asyn-
chronously fetch data from DRAM into the 256KB local store. This approach allows
more efficient use of available memory bandwidth than is possible with standard pre-
fetch schemes on conventional cache hierarchies, but also makes the programming
model more complex. In particular, the hardware provides enough concurrency to
satisfy Little’s law [2] and conflict misses, while potentially eliminating write fills,
however capacity misses must be handled in software.

770 L. Peng et al.

We connect nine PlayStation3 consoles via a Gigabit Ethernet switch, where each
PlayStation3 contains: (1) a 3.2 GHz 64-bit RISC PowerPC processor (PPE) with
32KB L1 and 512KB L2 caches and 256MB main memory; and (2) eight 3.2GHz 32-
bit SPEs with 256KB of local store (LS) and Memory Flow Controller (MFC). The
PPE, SPEs, and main memory are interconnected by a fast internal bus called
the Elemental Interface Bus (EIB), with the peak bandwidth of 2,048GB/s, while the
memory and I/O interface controller (MIC) supports a peak bandwidth of 25GB/s
inbound and 35GB/s outbound. Each PlayStation3 has a Gigabit Ethernet port.

We have installed a Fedora Core 6 Linux OS distribution with libraries and infra-
structure to support the IBM Cell Software Development Kit (SDK) version 2.1. The
SDK offers an IBM compiler and the GNU Compiler Collection for the Cell proces-
sor. Message Passing Interface (MPI) is installed as in a standard Linux cluster. We
use the Cell SDK for instruction-level profiling and performance analysis of the code.
The code is compiled using GNU C compiler (gcc) with optimization option ‘-O3’
and MPI version 1.2.6.

NVIDIA GPU platform
The GeForce 8800 GTS contains 96 stream processors running at 1.35 GHz. While
the memory clock is 800MHz and the memory size is 640MB, the memory interface
is 320bit and the memory bandwidth is 64GB/sec.

The system used to run the simulation consists of an AMD Sempron 3500+ CPU
with 1 GB of RAM and an NVIDIA GeForce 8800 GTS. The operating system used
is Fedora Core 7, kernel version 2.6.23.1-21.fc7. NVIDIA’s CUDA is used to develop
the application, and nvcc version 1.0 is used to compile the software.

3.2 Performance Test Results

3.2.1 Performance of PlayStation3 Cluster
We first test the intra-processor scalability of pLBM based on multithreading on a
single Playstation3 console. Figure 3(a) shows the running time for the collision func-
tion as a function of the number of SPEs, S, from 1 to 6 for a simulation system with
643 lattice sites. Figure 3(b) shows the corresponding strong-scaling speed-up, i.e., the
running time on a single SPE divided by that on S SPEs. The algorithm scales nearly
linearly with the number of SPEs. On 6 SPEs, the speed-up is 5.29, and the parallel
efficiency (defined as the speed-up divided by S) is 0.882.

Then we implemented our pLBM both on the PlayStation3 cluster as well as on a
Xeon cluster to assess the comparative performance of the PlayStation3 cluster and a
conventional Linux cluster. The latter is composed of 256 computation nodes, with
each node having two processors of 2.8GHz and 512KB L1 cache, where the nodes
are connected via 4 Gbit/s Myrinet. (We make comparison using one node.) In Fig.
4(a), the running time of PlayStation3 is compared with that of Xeon for various sys-
tem sizes from 83 to 643 lattice points. Figure 4(b) shows the speed-up of PlayStation3
over Xeon.

 Parallel Lattice Boltzmann Flow Simulation on Emerging Multi-core Platforms 771

Fig. 3. (a) Running time for the pLBM flow simulation involving 643 lattice sites on a single
PlayStation3 console as a function of the number of SPEs. (b) Strong-scaling speed-up of the
pLBM algorithm (circles) on a single PlayStation3 console as a function of the number of
SPEs. The solid line shows the ideal speed-up.

Fig. 4. (a) Total running time of the pLBM flow simulation on Xeon and Cell platforms with
different problem sizes. (b) Speed-up of the pLBM flow simulation of Cell over Xeon with
different problem sizes.

772 L. Peng et al.

Fig. 5. (a) The running time of the collision function for pLBM flow simulation on Xeon and
Cell platforms with different problem sizes. (b) Speed-up of the collision function for pLBM
flow simulation of Cell over Xeon with different problem sizes.

Fig. 6. (a) The running time of the streaming function for pLBM flow simulation on Xeon and
Cell platforms with different problem sizes. (b) Speed-up of the streaming function for pLBM
flow simulation of Cell over Xeon with different problem sizes.

 Parallel Lattice Boltzmann Flow Simulation on Emerging Multi-core Platforms 773

Fig. 7. (a) The running time of the communication part for pLBM flow simulation on Xeon and
Cell platforms with different problem sizes. (b) Speed-up of the communication part for pLBM
flow simulation of Cell over Xeon with different problem sizes.

To study the performance of individual functions of the pLBM, Figs. 5(a), 6(a) and
7(a) show the running time of the collision function, the streaming function and the
communication part on the PlayStation3 cluster and the Xeon cluster for various prob-
lem sizes. In addition, Figs. 5(b), 6(b) and 7(b) show the corresponding speed-ups of
the PlayStation3 cluster over the Xeon cluster.

3.2.2 Performance of GPU
We have compared the comparative performance of the GPU (NVIDIA 8800 GTS)
using CUDA and a conventional CPU (Sempron 3500+) for pLBM. Here, the running
time of each function as well as the speed-up of GPU over CPU are measured for
various problem sizes from 83 to 643 lattice points.

Figures 8(a), 9(a) and 10(a) show the running time of the entire program, the
collision function, and the streaming function, respectively, on GPU and CPU. In
addition, Figs. 8(b), 9(b) and 10(b) show the corresponding speedup of GPU over
CPU for the entire program, the collision function, and the streaming function,
respectively. Figure 11 shows the running time of the preparation part of pLBM on
the two platforms.

774 L. Peng et al.

Fig. 8. (a) Total running time of pLBM flow simulation on CPU and GPU with different prob-
lem sizes. (b) Speed-up of the total pLBM flow simulation of GPU over CPU with different
problem sizes.

Fig. 9. (a) The running time of the collision function for pLBM flow simulation on CPU and
GPU with different problem sizes. (b) Speed-up of the collision function for pLBM flow simu-
lation of GPU over CPU with different problem sizes.

 Parallel Lattice Boltzmann Flow Simulation on Emerging Multi-core Platforms 775

Fig. 10. (a) The running time of the streaming function for pLBM flow simulation on CPU and
GPU with different problem sizes. (b) Speed-up of the Streaming function in pLBM flow simu-
lation of GPU over CPU with different problem sizes.

Fig. 11. Preparation time for pLBM flow simulation on CPU and GPU with different problem
sizes

4 Conclusions

From the performance test results discussed above, we can draw several conclusions.
For the compute-intensive collision part, PlayStation3 outperforms the traditional

776 L. Peng et al.

Xeon cluster when the problem size is larger than 1024, and the larger the problem
size, the better the performance of PlayStation3 over that of Xeon cluster. For the
steaming part, which mainly deals with memory access, the performance of Play-
Station3 is also better than Xeon when the problem size is larger than 2048, and the
speed-up also increases with the problem size. However, for the communication part,
the PlayStation3 cluster is not as good as Xeon cluster due to the limited bandwidth of
the low-price Ethernet switch.

In general, the PlayStation3 cluster outperforms the Xeon cluster when the prob-
lem size is large enough in compute and memory-access intensive applications, and
the performance enhancement is an increasing function of the problem size. This indi-
cates that the DMA efficiency increases with the data size. For the largest problem
size, the performance enhancement of PlayStation3 over Xeon for pLBM is 11.02.

Regarding GPU using CUDA, the performance of GPU is much better than that
of CPU in all problem sizes we have tested, despite the large preparation time of
GPU. The best speed-up we obtain is 8.76.

Fig. 12. Visualization of pLBM simulation of fluid flow in fractured silica on the PlayStation3
cluster, where the magnitude of the fluid velocity is color-coded

The pLBM code has been applied to simulate fluid flow in fractured glass. Figure
12 visualizes our pLBM simulation of fluid flow through fractured silica glass, where
the fractured surface is prepared through voxelation of atomistic simulation data [13].
Such flow simulation in a complex geometry is important in many areas, e.g., for
maximizing oil recovery in petroleum industry.

Acknowledgements

This work was partially supported by Chevron-CiSoft, ARO-MURI, DOE-
SciDAC/BES, DTRA, and NSF-ITR/PetaApps/CSR. Numerical tests were performed

 Parallel Lattice Boltzmann Flow Simulation on Emerging Multi-core Platforms 777

using a Playstation3 cluster at the Collaboratory for Advanced Computing and Simu-
lations and a CPU-GPU system at the Information Sciences Institute at the University
of Southern California. We thank Prof. Robert Lucas and Mr. John Tran for providing
access to their CPU-GPU system.

References

[1] Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K., Patter-
son, D.A., Pishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The landscape of paral-
lel computing research: a view from Berkeley. University of California, Berkeley (2006)

[2] Shalf, J.: The new landscape of parallel computer architecture. J Phys: Conf Series 78,
012066 (2007)

[3] Buttari, A., Luszczek, P., Kurzak, J., Dongarra, J., Bosilca, G.: SCOP3: A Rough Guide to
Scientific Computing On the PlayStation 3. University of Tennessee, Knoxville (2007)

[4] Johns, C.R., Brokenshire, D.A.: Introduction to the cell broadband engine architecture.
IBM Journal of Research and Development 51, 503 (2007)

[5] Dongarra, J., Gannon, D., Fox, G., Kennedy, K.: The impact of multicore on computa-
tional science software. CTWatch Quarterly 3, 11 (2007)

[6] Nakano, A., Kalia, R.K., Nomura, K., Sharma, A., Vashishta, P., Shimojo, F., van Duin,
A.C.T., Goddard, W.A., Biswas, R., Srivastava, D., Yang, L.H.: De novo ultrascale atom-
istic simulations on high-end parallel supercomputers. International Journal of High Per-
formance Computing Applications 22, 113 (2008)

[7] Williams, S., Carter, J., Oliker, L., Shalf, J., Yelick, K.: Lattice Boltzmann simulation op-
timization on leading multicore platforms. International Parallel & Distributed Processing
Symposium (IPDPS) (to appear, 2008)

[8] Stuermer, M.: Fluid simulation using the Lattice Boltzmann Method on the Cell Proces-
sor, Vortrag: Einladung, Zentralinstitut fur Angewandte Mathematik des Forschungszen-
trum Juelich (11.04.2007)

[9] Stuermer, M.: Optimizing fluid simulation and other scientific applications on the Cell,
Vortrag: Einladung vom SFB 716 der Universität Stuttgart, SFB 716, Stuttgart
(14.06.2007)

[10] Li, W., Wei, X., Kaufman, A.: Implementing Lattice Boltzmann computation on graphics
hardware. The Visual Computer (to appear)

[11] Ladd, A.J.C., Verberg, R.: Lattice-Boltzmann simulations of particle-fluid suspensions.
Journal of Statistical Physics 104, 1191 (2001)

[12] Bader, D.A., Agarwal, V.: FFTC: fastest Fourier transform for the IBM Cell Broadband
Engine. In: Proceedings of the International Conference on High Performance Computing
(HiPC). IEEE, Los Alamitos (2007)

[13] Chen, Y.C., Lu, Z., Nomura, K., Wang, W., Kalia, R.K., Nakano, A., Vashishta, P.: Inter-
action of voids and nanoductility in silica glass. Physical Review Letters 99, 155506
(2007)

	Parallel Lattice Boltzmann Flow Simulation on Emerging Multi-core Platforms
	Introduction
	Parallel Lattice Boltzmann Flow Simulation Algorithm
	Lattice Boltzmann Method
	Parallel LBM Algorithm

	Experiments
	Experimental Test Bed
	Performance Test Results

	Conclusions
	References

