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I
n 2019, the Event Horizon Telescope 
team gave the world the first glimpse 
of what a black hole actually looks like. 
But the image of a glowing, ring-shaped 
object that the group unveiled wasn’t a 
conventional photograph. It was com-
puted — a mathematical transformation 
of data captured by radio telescopes in 

the United States, Mexico, Chile, Spain and 
the South Pole1. The team released the pro-
gramming code it used to accomplish that 
feat alongside the articles that documented 
its findings, so the scientific community could 
see — and build on — what it had done. 

It’s an increasingly common pattern. From 
astronomy to zoology, behind every great 
scientific finding of the modern age, there is 
a computer. Michael Levitt, a computational 
biologist at Stanford University in California 
who won a share of the 2013 Nobel Prize in 
Chemistry for his work on computational 
strategies for modelling chemical struc-
ture, notes that today’s laptops have about 

10,000 times the memory and clock speed 
that his lab-built computer had in 1967, when 
he began his prizewinning work. “We really do 
have quite phenomenal amounts of comput-
ing at our hands today,” he says. “Trouble is, it 
still requires thinking.” 

Enter the scientist-coder. A powerful com-
puter is useless without software capable of 
tackling research questions — and researchers 
who know how to write it and use it. “Research 
is now fundamentally connected to software,” 
says Neil Chue Hong, director of the Software 
Sustainability Institute, headquartered in 
Edinburgh, UK, an organization dedicated to 
improving the development and use of soft-
ware in science. “It permeates every aspect of 
the conduct of research.” 

Scientific discoveries rightly get top bill-
ing in the media. But Nature this week looks 
behind the scenes, at the key pieces of code 
that have transformed research over the past 
few decades. 

Although no list like this can be definitive, 

TEN COMPUTER 
CODES THAT 
TRANSFORMED 
SCIENCE
From Fortran to preprint archives, these 
advances in programming and platforms  
sent biology, climate science and physics  
to new heights. By Jeffrey M. Perkel

we polled dozens of researchers over the past 
year to develop a diverse line-up of ten soft-
ware tools that have had a big impact on the 
world of science. 

Language pioneer:  
the Fortran compiler (1957) 
The first modern computers weren’t user-
friendly. Programming was literally done by 
hand, by connecting banks of circuits with 
wires. Subsequent machine and assembly lan-
guages allowed users to program computers in 
code, but both still required an intimate knowl-
edge of the computer’s architecture, putting 
the languages out of reach of many scientists. 

That changed in the 1950s with the devel-
opment of symbolic languages — in particular 
the ‘formula translation’ language Fortran, 
developed by John Backus and his team at IBM 
in San Jose, California. Using Fortran, users 
could program computers using human-read-
able instructions, such as x = 3 + 5. A compiler 
then turned such directions into fast, efficient 
machine code. 

It still wasn’t easy: in the early days, pro-
grammers used punch cards to input code, 
and a complex simulation might require tens of 
thousands of them. Still, says Syukuro Manabe, 
a climatologist at Princeton University in New 
Jersey, Fortran made programming accessible 
to researchers who weren’t computer scientists. 
“For the first time, we were able to program [the 
computer] by ourselves,” Manabe says. He and 
his colleagues used the language to develop one 
of the first successful climate models. 

Now in its eighth decade, Fortran is still widely 
used in climate modelling, fluid dynamics, 
computational chemistry — any discipline that 
involves complex linear algebra and requires 
powerful computers to crunch numbers 
quickly. The resulting code is fast, and there 
are still plenty of programmers who know how 
to write it. Vintage Fortran code bases are still 
alive and kicking in labs and on supercomput-
ers worldwide. “Old-time programmers knew 
what they were doing,” says Frank Giraldo, an 
applied mathematician and climate modeller 
at the Naval Postgraduate School in Monterey, 
California. “They were very mindful of memory, 
because they had so little of it.”

Signal processor:  
fast Fourier transform (1965)
When radioastronomers scan the sky, they 
capture a cacophony of complex signals 
changing with time. To understand the 
nature of those radio waves, they need to see 
what those signals look like as a function of 
frequency. A mathematical process called a 
Fourier transform allows researchers to do 
that. The problem is that it’s inefficient, requir-
ing N2 calculations for a data set of size N.

In 1965, US mathematicians James Cooley 
and John Tukey worked out a way to acceler-
ate the process. Using recursion, a ‘divide and 
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conquer’ programming approach in which an 
algorithm repeatedly reapplies itself, the fast 
Fourier transform (FFT) simplifies the prob-
lem of computing a Fourier transform to just 
N log2(N) steps. The speed improves as N grows. 
For 1,000 points, the speed boost is about 
100-fold; for 1 million points, it’s 50,000-fold. 

The ‘discovery’ was actually a rediscovery 
— the German mathematician Carl Friedrich 
Gauss worked it out in 1805, but he never 
published it, says Nick Trefethen, a mathe-
matician at the University of Oxford, UK. But 
Cooley and Tukey did, opening applications 
in digital signal processing, image analysis, 
structural biology and more. “It’s really one of 
the great events in applied mathematics and 
engineering,” Trefethen says. FFT has been 
implemented many times in code. One popu-
lar option is called FFTW, the ‘fastest Fourier 
transform in the west’.

Paul Adams, who directs the molecular bio-
physics and integrated bioimaging division at 
Lawrence Berkeley National Laboratory in Cali-
fornia, recalls that when he refined the structure 
of the bacterial protein GroEL in 1995 (ref. 2), the 
calculation took “many, many hours, if not days”, 
even with the FFT and a supercomputer. “Trying 
to do those without the FFT, I don’t even know 
how we would have done that realistically,” he 
says. “It would have just taken forever.” 

Molecular cataloguers:  
biological databases (1965) 
Databases are such a seamless component of 
scientific research today that it can be easy to 
overlook the fact that they are driven by soft-
ware. In the past few decades, these resources 
have ballooned in size and shaped many fields, 
but perhaps nowhere has that transformation 
been more dramatic than in biology. 

Today’s massive genome and protein data-
bases have their roots in the work of Margaret 
Dayhoff, a bioinformatics pioneer at the 
National Biomedical Research Foundation in 
Silver Spring, Maryland. In the early 1960s, as 
biologists worked to tease apart proteins’ amino 
acid sequences, Dayhoff began collating that 
information in search of clues into evolutionary 
relationships between different species. Her 
Atlas of Protein Sequence and Structure, first pub-
lished in 1965 with three co-authors, described 
what was then known of the sequences, struc-
tures and similarities of 65 proteins. The collec-
tion was the first that “was not tied to a specific 
research question”, historian Bruno Strasser 
wrote in 2010 (ref. 3). And it encoded its data in 
punch cards, which made it possible to expand 
the database and search it.

Other computerized biological databases 
followed. The Protein Data Bank, which today 
details more than 170,000 macromolecular 
structures, went live in 1971. Russell Doolittle, 
an evolutionary biologist at the University of 
California, San Diego, created another protein 
database called Newat in 1981. And 1982 saw 

the release of the database that would become 
GenBank, the DNA archive maintained by the 
US National Institutes of Health. 

Such resources proved their worth in July 
1983, when separate teams led by Michael 
Waterfield, a protein biochemist at the Imperial 
Cancer Research Fund in London, and Doolittle 
independently reported a similarity between 
the sequences of a particular human growth 
factor and a protein in a virus that causes can-
cer in monkeys. The observation suggested a 
mechanism for oncogenesis-by-virus — that by 
mimicking a growth factor, the virus induces 
uncontrolled growth of cells4. “That set the 
light bulb off in some of the minds of biologists 
who were not into computers and statistics,” 
says James Ostell, former director of the US 
National Center for Biotechnology Informa-
tion (NCBI): “We can understand something 
about cancer from comparing sequences.” 

Beyond that, Ostell says, the discovery 
marked “an advent of objective biology”. In 
addition to designing experiments to test 
specific hypotheses, researchers could mine 
public data sets for connections that might 
never have occurred to those who actually col-
lected the data. That power grows drastically 
when different data sets are linked together 
— something NCBI programmers achieved in 
1991 with Entrez, a tool that allows research-
ers to freely navigate from DNA to protein to 
literature and back. 

Stephen Sherry, current acting director of 
the NCBI in Bethesda, Maryland, used Entrez 
as a graduate student. “I remember at the time 
thinking it was magic,” he says. 

Forecast leader:  
the general circulation model (1969)
At the close of the Second World War, com-
puter pioneer John von Neumann began turn-
ing computers that a few years earlier had been 

calculating ballistics trajectories and weapon 
designs towards the problem of weather pre-
diction. Up until that point, explains Manabe, 
“weather forecasting was just empirical”, using 
experience and hunches to predict what would 
happen next. Von Neumann’s team, by con-
trast, “attempted to do numerical weather 
prediction based upon laws of physics”.

The equations had been known for dec-
ades, says Venkatramani Balaji, head of the 
Modeling Systems Division at the National 
Oceanographic and Atmospheric Administra-
tion’s Geophysical Fluid Dynamics Laboratory 
in Princeton, New Jersey. But early meteorol-
ogists couldn’t solve them practically. To do 
so required inputting current conditions, 
calculating how they would change over a 
short time period, and repeating — a process 
so time-consuming that the mathematics 
couldn’t be completed before the weather 
itself caught up. In 1922, the mathematician 
Lewis Fry Richardson spent months crunching 
a six-hour forecast for Munich, Germany. The 
result, according to one history, was “wildly 
inaccurate”, including predictions that “could 
never occur under any known terrestrial condi-
tions”. Computers made the problem tractable. 

In the late 1940s, von Neumann established 
his weather-prediction team at the Institute for 
Advanced Study at Princeton. In 1955, a second 
team — the Geophysical Fluid Dynamics Lab-
oratory — began work on what he called “the 
infinite forecast” — that is, climate modelling.

Manabe, who joined the climate modelling 
team in 1958, set to work on atmospheric mod-
els; his colleague Kirk Bryan addressed those 
for the ocean. In 1969, they successfully com-
bined the two, creating what Nature in 2006 
called a “milestone” in scientific computing.

Today’s models can divide the planet’s 
surface into squares measuring 25 × 25 kilo-
metres, and the atmosphere into dozens 
of levels. By contrast, Manabe and Bryan’s 
combined ocean–atmosphere model5 used 
500-km squares and 9 levels, and covered 
just one-sixth of the globe. Still, says Balaji, 
“that model did a great job”, allowing the team 
to test for the first time the impact of rising 
carbon dioxide levels in silico. 

Number cruncher:  
BLAS (1979) 
Scientific computing typically involves rela-
tively simple mathematical operations using 
vectors and matrices. There are just a lot of 
them. But in the 1970s, there was no universally 
agreed set of computational tools for perform-
ing such operations. As a result, programmers 
working in science would spend their time 
devising efficient code to do basic mathemat-
ics rather than focusing on scientific questions. 

What the programming world needed was 
a standard. In 1979, it got one: Basic Linear 
Algebra Subprograms, or BLAS6. The stand-
ard, which continued to evolve up to 1990, 

Molecules such as those in this bacterial 
‘expressome’ can be explored using the 
Protein Data Bank.
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defined dozens of fundamental routines for 
vector and, later, matrix mathematics.

In effect, BLAS reduced matrix and vector 
mathematics to a basic unit of computation 
as fundamental as addition and subtraction, 
says Jack Dongarra, a computer scientist at 
the University of Tennessee in Knoxville who 
was a member of the BLAS development 
team. 

BLAS was “probably the most consequential 
interface to be defined for scientific comput-
ing”, says Robert van de Geijn, a computer 
scientist at the University of Texas at Austin. 
In addition to providing standardized names 
for common functions, researchers could be 
sure BLAS-based code would work in the same 
manner on any computer. The standard also 
enabled computer manufacturers to optimize 
BLAS implementations for speedy operation 
on their hardware. 

More than 40 years on, BLAS represents 
the heart of the scientific computing stack, 
the code that makes scientific software tick. 
Lorena Barba, a mechanical and aerospace 
engineer at George Washington University in 
Washington DC, calls it “the machinery inside 
five layers of code”. 

Says Dongarra, “It provides the fabric on 
which we do computing.” 

Microscopy must-have:  
NIH Image (1987)
In the early 1980s, programmer Wayne 
Rasband was working with a brain-imaging 
lab at the US National Institutes of Health in 
Bethesda, Maryland. The team had a scanner 
to digitize X-ray films, but no way to display or 
analyse them on their computer. So Rasband 
wrote a program to do just that. 

The program was specifically designed for 
a US$150,000 PDP-11 minicomputer — a rack-
mounted, decidedly non-personal computer. 
Then, in 1987, Apple released its Macintosh II, 
a friendlier and much more affordable option. 
“It seemed obvious to me that that would work 
a lot better as a kind of laboratory image anal-
ysis system,” Rasband says. He ported his soft-
ware to the new platform and rebranded it, 
seeding an image-analysis ecosystem. 

NIH Image and its descendants empowered 
researchers to view and quantify just about any 
image, on any computer. The software fam-
ily includes ImageJ, a Java-based version that 
Rasband wrote for Windows and Linux users, 
and Fiji, a distribution of ImageJ developed by 
Pavel Tomancak’s group at the Max Planck Insti-
tute of Molecular Cell Biology and Genetics 
in Dresden, Germany, that includes key plug-
ins. “ImageJ is certainly the most foundational 
tool that we have,” says Beth Cimini, a compu-
tational biologist who works on the Imaging 
Platform of the Broad Institute in Cambridge, 
Massachusetts. “I’ve literally never spoken to 
a biologist who has used a microscope but not 
ImageJ or its offshoot project, Fiji.”

That’s partly because these tools are free, 
Rasband says. But it’s also because it’s easy 
for users to customize the tool to their needs, 
says Kevin Eliceiri, a biomedical engineer at 
the University of Wisconsin–Madison, whose 
team has taken the lead on ImageJ develop-
ment since Rasband’s retirement. ImageJ 
features a deceptively simple, minimalist 
user interface that has remained largely 
unchanged since the 1990s. Yet the tool is 
infinitely extensible thanks to its built-in 
macro recorder (which allows a user to 
save workflows by recording sequences of 
mouse clicks and menu selections), extensive 
file-format compatibility and flexible plug-in 
architecture. “Hundreds of people” have con-
tributed plug-ins, says Curtis Rueden, the 
programming lead in Eliceiri’s group. These 
additions have greatly expanded the tool-
set for researchers, with functions to track 
objects over time in videos or automatically 
identify cells, for instance.

“The point of the program isn’t to be the 
be-all and end-all,” Eliceiri says, “it’s to serve 
the purpose of its users. And unlike Photoshop 
and other programs, ImageJ can be whatever 
you want it to be.”

Sequence searcher:  
BLAST (1990) 
There might be no better indicator of cultural 
relevance than for a software name to become 
a verb. For search, think Google. And for 
genetics, think BLAST. 

Evolutionary changes are etched into molec-
ular sequences as substitutions, deletions, 
gaps and rearrangements. By searching for 
similarities between sequences — particularly 
among proteins — researchers can discover 
evolutionary relationships and gain insight 
into gene function. The trick is to do so quickly 
and comprehensively across rapidly balloon-
ing databases of molecular information. 

Dayhoff provided one crucial piece of the 
puzzle in 1978. She devised a ‘point accepted 
mutation’ matrix that allowed researchers to 
score the relatedness of two proteins based 
not only on how similar their sequences 
are, but also on the evolutionary distance 
between them. 

In 1985, William Pearson at the University of 
Virginia in Charlottesville and David Lipman at 
the NCBI introduced FASTP, an algorithm that 
combined Dayhoff’s matrix with the ability to 
perform rapid searches. 

Years later, Lipman, along with Warren 
Gish and Stephen Altschul at the NCBI, Webb 
Miller at Pennsylvania State University in Uni-
versity Park, and Gene Myers at the University 
of Arizona, Tucson, developed an even more 
powerful refinement: the Basic Local Align-
ment Search Tool (BLAST). Released in 1990, 
BLAST combined the search speed required to 
handle fast-growing databases with the ability 
to pick up matches that were more evolution-
arily distant. At the same time, the tool could 
calculate how likely it is that those matches 
occurred by chance. 

The result was incredibly fast, Altschul 
says. “You could put in your search, take one 
sip of coffee, and your search would be done.” 
But more importantly, it was easy to use. In 
an era when databases were updated by 
post, Gish established an e-mail system and 
later a web-based architecture that allowed 
users to run searches on the NCBI computers 
remotely, thus ensuring their results were 
always up-to-date. 

The system gave the then-budding field 
of genome biology a transformative tool, 
says Sean Eddy, a computational biologist at 
Harvard University in Cambridge, Massachu-
setts — a way to work out what unknown genes 
might do on the basis of the genes they were 
related to. And for sequencing labs every-
where, it provided a clever neologism: “It’s 

A Cray-1 supercomputer at Lawrence Livermore National Laboratory in California in 1983.
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just one of these things that became a verb,” 
Eddy says. “You just talked about BLASTing 
your sequences.” 

Preprint powerhouse:  
arXiv.org (1991)
In the late 1980s, high-energy physicists rou-
tinely sent physical copies of their submitted 
manuscripts to colleagues by post for com-
ment and as a courtesy — but only to a select 
few. “Those lower in the food chain relied on 
the beneficence of those on the A-list, and 
aspiring researchers at non-elite institutions 
were frequently out of the privileged loop 
entirely,” wrote physicist Paul Ginsparg in 
2011 (ref. 7). 

In 1991, Ginsparg, then at Los Alamos 
National Laboratory in New Mexico, wrote an 
e-mail autoresponder to level the playing field. 
Subscribers received daily lists of preprints, 
each associated with an article identifier. With 
a single e-mail, users across the world could 
submit or retrieve an article from the lab’s 
computer system, get lists of new articles or 
search by author or title. 

Ginsparg’s plan was to retain articles for three 
months, and to limit content to the high-energy 
physics community. But a colleague convinced 
him to retain the articles indefinitely. “That was 
the moment it transitioned from bulletin board 
to archive,” he says. And papers flooded in from 
much farther afield than Ginsparg’s own disci-
pline. In 1993, Ginsparg migrated the system to 
the Internet, and in 1998 he gave it the name it 
goes by today: arXiv.org.

Now in its thirtieth year, arXiv houses some 
1.8 million preprints — all available for free — 
and attracts more than 15,000 submissions 
and some 30 million downloads per month. 
“It’s not hard to see why the arXiv is such a pop-
ular service,” the editors of Nature Photonics 
wrote8 a decade ago on the occasion of the 
site’s twentieth anniversary: “The system pro-
vides researchers with a fast and convenient 
way to plant a flag that shows what they did and 
when, avoiding the hassle and time required 
for peer review at a conventional journal.” 

The site’s success catalysed a boom in sis-
ter archives in biology, medicine, sociology 
and other disciplines. The impact can be seen 
today in tens of thousands of preprints that 
have been published on the virus SARS-CoV-2.

“It’s gratifying to see a methodology, 
considered heterodox outside of the 
particle-physics community 30 years ago, 

now more generally viewed as obvious and 
natural,” Ginsparg says. “In that sense, it’s like 
a successful research project.”

Data explorer:  
IPython Notebook (2011)
Fernando Pérez was a graduate student “in 
search of procrastination” in 2001 when 
he decided to take on a core component of 
Python. 

Python is an interpreted language, which 
means programs are executed line by line. 
Programmers can use a kind of computational 
call-and-response tool called a read–evaluate–
print loop (REPL), in which they type code and 
a program called an interpreter executes it. A 
REPL allows for quick exploration and iteration, 
but Pérez noted that Python’s wasn’t built for 
science. It didn’t allow users to easily preload 
modules of code, for instance, or keep data visu-
alizations open. So Pérez wrote his own version.

The result was IPython, an ‘interactive’ 
Python interpreter that Pérez unveiled in 
December 2001 — all 259 lines of it. A decade 
later, Pérez, working with physicist Brian 
Granger and mathematician Evan Patterson, 
migrated that tool to the web browser, launch-
ing the IPython Notebook and kick-starting a 
data-science revolution.

Like other computational notebooks, 
IPython Notebook combined code, results, 
graphics and text in a single document. But 
unlike other such projects, IPython Notebook 
was open-source, inviting contributions from 
a vast developer community. And it supported 
Python, a popular language for scientists. In 
2014, IPython evolved into Project Jupyter, 
supporting some 100 languages and allowing 
users to explore data on remote supercomput-
ers as easily as on their own laptops. 

“For data scientists, Jupyter has emerged 
as a de facto standard,” Nature wrote in 2018 
(ref. 9). At the time, there were 2.5 million Jupy-
ter notebooks on the GitHub code-sharing 
platform; today, there are nearly 10 million, 
including the ones that document the 2016 
discovery of gravitational waves and the 2019 
imaging of a black hole. “That we made a small 
contribution to those projects is extremely 
rewarding,” Pérez says. 

Fast learner:  
AlexNet (2012)
Artificial intelligence (AI) comes in two 
flavours. One uses codified rules, the other 

enables a computer to ‘learn’ by emulating the 
neural structure of the brain. For decades, says 
Geoffrey Hinton, a computer scientist at the 
University of Toronto, Canada, AI research-
ers dismissed the latter approach as “non-
sense”. In 2012, Hinton’s graduate students 
Alex Krizhevsky and Ilya Sutskever proved 
otherwise. 

The venue was ImageNet, an annual com-
petition that challenges researchers to train 
an AI on a database of one million images of 
everyday objects, then test the resulting algo-
rithm on a separate image set. At the time, 
the best algorithms miscategorized about 
one-quarter of them, Hinton says. Krizhevsky 
and Sutskever’s AlexNet, a ‘deep-learning’ 
algorithm based on neural networks, reduced 
that error rate to 16% (ref. 10). “We basically 
halved the error rate, or almost halved it,” 
notes Hinton.

Hinton says the team’s success in 2012 
reflected the combination of a big-enough 
training data set, great programming and the 
newly emergent power of graphical process-
ing units — the processors that were originally 
designed to accelerate computer video per-
formance. “Suddenly we could run [the algo-
rithm] 30 times faster,” he says, “or learn on 
30 times as much data.” 

The real algorithmic breakthrough, Hinton 
says, actually occurred three years earlier, 
when his lab created a neural network that 
could recognize speech more accurately than 
could conventional AIs that had been refined 
over decades. “It was only slightly better,” Hin-
ton says. “But already that was the writing on 
the wall.” 

Those victories heralded the rise of 
deep learning in the lab, the clinic and 
more. They’re why mobile phones are able 
to understand spoken queries and why 
image-analysis tools can readily pick out 
cells in photo micrographs. And they are 
why AlexNet takes its place among the many 
tools that have fundamentally transformed 
science, and with them, the world.

Jeffrey M. Perkel is technology editor at 
Nature.

Take a survey at go.nature.com/10-computer-
codes to weigh in on our code selections.
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The ImageJ tool can analyse microscope images and automatically identify cell nuclei, as here.
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