
Quantum Inf Process (2013) 12:2027–2070
DOI 10.1007/s11128-012-0506-4

Quantum adiabatic machine learning

Kristen L. Pudenz · Daniel A. Lidar

Received: 28 September 2012 / Accepted: 30 October 2012 / Published online: 21 November 2012
© Springer Science+Business Media New York 2012

Abstract We develop an approach to machine learning and anomaly detection via
quantum adiabatic evolution. This approach consists of two quantum phases, with
some amount of classical preprocessing to set up the quantum problems. In the train-
ing phase we identify an optimal set of weak classifiers, to form a single strong
classifier. In the testing phase we adiabatically evolve one or more strong classifiers
on a superposition of inputs in order to find certain anomalous elements in the classifi-
cation space. Both the training and testing phases are executed via quantum adiabatic
evolution. All quantum processing is strictly limited to two-qubit interactions so as to
ensure physical feasibility. We apply and illustrate this approach in detail to the prob-
lem of software verification and validation, with a specific example of the learning
phase applied to a problem of interest in flight control systems. Beyond this example,
the algorithm can be used to attack a broad class of anomaly detection problems.

Keywords Adiabatic quantum computation · Quantum algorithms ·
Software verification and validation · Anomaly detection

K. L. Pudenz (B)
Department of Electrical Engineering, Center for Quantum Information Science and Technology,
University of Southern California, Los Angeles, CA 90089, USA
e-mail: pudenz@usc.edu

D. A. Lidar
Departments of Electrical Engineering, Chemistry, and Physics,
Center for Quantum Information Science and Technology,
University of Southern California, Los Angeles, CA 90089, USA
e-mail: lidar@usc.edu

123

2028 K. L. Pudenz, D. A. Lidar

1 Introduction

Machine learning is a field of computational research with broad applications, rang-
ing from image processing to analysis of complex systems such as the stock mar-
ket. There is abundant literature concerning learning theory in the classical domain,
addressing speed and accuracy of the learning process for different classes of concepts
[1]. Groundwork for machine learning using quantum computers has also been laid,
showing that quantum machine learning, while requiring as much input information as
classical machine learning, may be faster and is capable of handling concepts beyond
the reach of any classical learner [2,3].

We consider the machine learning problem of binary classification, assigning a
data vector to one of two groups based on criteria derived from a set of training exam-
ples provided to the algorithm beforehand. The learning method we use is boosting,
whereby multiple weak classifiers are combined to create a strong classifier formula
that is more accurate than any of its components alone [4,5]. This method can be
applied to any problem where the separation of two groups of data is required, whether
it is distinguishing two species of plants based on their measurements or picking out
the letter “ a” from all other letters of the alphabet when it is scanned. Our approach
to classification is based on recent efforts in boosting using adiabatic quantum opti-
mization (AQO) which showed advantages over classical boosting in the sparsity of
the classifiers achieved and their accuracy (for certain problems) [6,7].

As a natural outgrowth of the classification problem, we also formulate a scheme for
anomaly detection using quantum computation. Anomaly detection has myriad uses,
some examples of which are detection of insider trading, finding faults in mechanical
systems, and highlighting changes in time-lapsed satellite imagery [8]. Specifically, we
pursue the verification and validation (V&V) of classical software, with programming
errors as the anomalies to be detected. This is one of the more challenging potential
applications of quantum anomaly detection, because programs are large, complex,
and highly irregular in their structure. However, it is also an important and currently
intractable problem for which even small gains are likely to yield benefits for the
software development and testing community.

The complexity of the V&V problem is easily understood by considering the number
of operations necessary for an exhaustive test of a piece of software. Covering every
possible set of inputs that could be given to the software requires a number of tests
that is exponential in the number of input variables, notwithstanding the complexity of
each individual test [9]. Although exhaustive testing is infeasible due to its difficulty,
the cost of this infeasibility is large—in 2002, NIST estimated that tens of billions of
dollars were lost due to inadequate testing [10].

The subject of how to best implement software testing given limited resources has
been widely studied. Within this field, efforts focused on combinatorial testing have
found considerable success and will be relevant to our new approach. Combinatorial
testing focuses on using the test attempts available to test all combinations of up to a
small number, t , of variables, with the idea that errors are usually caused by the inter-
action of only a few parameters [11,12]. This approach has found considerable success
[13,14], with scaling that is logarithmic in n, the number of software parameters, and
exponential in t .

123

Quantum adiabatic machine learning 2029

Currently, the use of formal methods in the coding and verification phases of soft-
ware development is the only way to guarantee absolute correctness of software with-
out implementing exhaustive testing. However, formal methods are also expensive
and time-consuming to implement. Model checking, a method of software analy-
sis which aims to ensure the validity of all reachable program states, solves n-bit
satisfiability problems (which are NP-complete), with n as a function of the number of
reachable states of the program [15]. Theorem proving, where a program is developed
alongside a proof of its own correctness, requires repeated interaction and correction
from the developer as the proof is formed, with the intermediate machine-provable
lemmas checked with a satisfiability solver [16].

We propose a new approach to verification and validation of software which makes
use of quantum information processing. The approach consists of a quantum learning
step and a quantum testing step. In the learning step, our strategy uses quantum opti-
mization to learn the characteristics of the program being tested and the specification
to which it is being tested. This learning technique is known as quantum boosting and
has been previously applied to other problems, in particular image recognition [6,17–
19]. Boosting consists of building up a formula to accurately sort inputs into one of
two groups by combining simple rules that sort less accurately, and in its classical
forms has been frequently addressed in the machine learning literature [4,5,20].

The testing step is novel, and involves turning the classifying formulas generated
by the learning step into a function that generates a lower energy when it is more
likely that its input represents a software error. This function is translated into the
problem Hamiltonian of an adiabatic quantum computation (AQC). The AQC allows
all potential software errors (indeed, as we will see, all possible operations of the
software) to be examined in quantum-parallel, returning only the best candidates for
errors which correspond to the lowest values of the classification function.

Both the learning and testing steps make use of AQC. An adiabatic quantum algo-
rithm encodes the desired result in the ground state of some problem Hamiltonian. The
computation is then performed by initializing a physical system in the easily prepared
ground state of a simpler Hamiltonian, then slowly changing the control parameters
of the system so that the system undergoes an adiabatic evolution to the ground state
of the difficult-to-solve problem Hamiltonian [21,22]. The adiabatic model of quan-
tum computation is known to be universal and equivalent to the circuit model with
a polynomial conversion overhead [23,24]. While it is not known at this time how
to make AQC fault tolerant, several error correction and prevention protocols have
been proposed for AQC [25,26], and it is known to exhibit a certain degree of natural
robustness [27,28].

In this article, Sect. 2 will begin by establishing the framework through which the
quantum V&V problem is attacked, and by defining the programming errors we seek to
eliminate. As we proceed with the development of a method for V&V using quantum
resources, Sect. 3 will establish an implementation of the learning step as an adiabatic
quantum algorithm. We develop conditions for ideal boosting and an alternate quantum
learning algorithm in Sect. 4. The testing step will be detailed in Sect. 5. We present
simulated results of the learning step on a sample problem in Sect. 6, and finish with
our conclusions and suggestions for future work in Sect. 7.

123

2030 K. L. Pudenz, D. A. Lidar

2 Formalization

In this section we formalize the problem of software error detection by first introducing
the relevant vector spaces and then giving a criterion for the occurrence of an error.

2.1 Input and output spaces

Consider an “ ideal” software program P̂ , where by ideal we mean the correct pro-
gram which a perfect programmer would have written. Instead, we are faced with the
actual implementation of P̂ , which we denote by P and refer to as the “implemented
program.” Suppose we wish to verify the operation of P relative to P̂ . All programs
have input and output spaces Vin and Vout, such that

P : Vin �→ Vout. (1)

Without loss of generality we can think of these spaces as being spaces of binary
strings. This is so because the input to any program is always specified within some
finite machine precision, and the output is again given within finite machine precision
(not necessarily the same as the input precision). Furthermore, since we are only
interested in inputs and outputs which take a finite time to generate (or “ write down”),
without loss of generality we can set upper limits on the lengths of allowed input and
output strings. Within these constraints we can move to a binary representation for
both input and output spaces, and take Nin as the maximum number of bits required
to specify any input, and Nout as the maximum number of bits required to specify any
output. Thus we can identify the input and output spaces as binary string spaces

Vin ∼= {0, 1}Nin , Vout ∼= {0, 1}Nout . (2)

It will be convenient to concatenate elements of the input and output spaces into
single objects. Thus, consider binary vectors x = (xin, xout), where xout = P(xin),
consisting of program input–output pairs:

x ∈ {0, 1}Nin × {0, 1}Nout = {0, 1}Nin+Nout ≡ V. (3)

2.2 Recognizing software errors

2.2.1 Validity domain and range

We shall assume without loss of generality that the input spaces of the ideal and
implemented programs are identical. This can always be ensured by extending the
ideal program so that it is well defined for all elements of Vin. Thus, while in general
not all elements of Vin have to be allowed inputs into P̂ (for example, an input vector
that is out of range for the ideal program), one can always reserve some fixed value for
such inputs (e.g., the largest vector in Vout) and trivially mark them as errors. The ideal

123

Quantum adiabatic machine learning 2031

program P̂ is thus a map from the input space to the space Rout of correct outputs:

P̂ : Vin �→ Rout ⊆ Vout. (4)

More specifically, P̂ computes an output string �̂xout for every input string xin, i.e., we
can write �̂xout = P̂(xin). Of course this map can be many-to-one (non-injective and
surjective), but not one-to-many (multi-valued).1 The implemented program P should
ideally compute the exact same function. In reality it may not. With this in mind, the
simplest way to identify a software error is to find an input vector xin such that

‖P̂(xin)− P(xin)‖
= 0. (5)

in some appropriate norm. This is clearly a sufficient condition for an error, since the
implemented program must agree with the ideal program on all inputs. However, for
our purposes a more general approach will prove to be more suitable.

2.2.2 Specification and implementation sets

A direct way to think about the existence of errors in a software program is to consider
two ordered sets within the space of input–output pairs, V . These are the set of ordered,
correct input–output pairs Ŝ according to the program specification P̂ , and the set of
input–output pairs S implemented by the real program P . We call Ŝ the “specification
set” and S the “implementation set”. The program under test is correct when

Ŝ = S. (6)

That is, in a correct program, the specification set of correct input–output pairs is
exactly the set that is implemented in code.

As stated, (6) is impractical since it requires knowledge of the complete structure
of the intended input and output spaces. Instead, we can also use the specification and
implementation sets to give a correctness criterion for a given input–output pair:

Definition 1 A vector x ∈ V is erroneous and implemented if

x /∈ Ŝ & x ∈ S. (7)

Input–output vectors satisfying (7) are the manifestation of software errors (“bugs”)
and their identification is the main problem we are concerned with here. Conversely,
we have

Definition 2 A vector x ∈ V is correct and implemented if

x ∈ Ŝ & x ∈ S. (8)

1 Random number generation may appear to be a counterexample, as it is multi-valued, but only over
different calls to the random-number generator.

123

2032 K. L. Pudenz, D. A. Lidar

Fig. 1 Schematic vector space representation showing regions of vectors satisfying the four definitions.
Region 1, of erroneous but implemented vectors, is the location of errors. Regions 2, 3, and 4 represent
vectors which are correct and implemented, correct and unimplemented, and erroneous and unimplemented,
respectively

Input–output vectors satisfying (8) belong to the “don’t-worry” class. The two
other possibilities belong to the “don’t-care” class:

Definition 3 A vector x ∈ V is correct and unimplemented if

x ∈ Ŝ & x /∈ S. (9)

Definition 4 A vector x ∈ V is erroneous and unimplemented if

x /∈ Ŝ & x /∈ S. (10)

A representation of the locations of vectors satisfying the four definitions for a
sample vector space can be found in Fig. 1. Our focus will be on the erroneous vectors
of Definition 1.

Note that Eq. (5) implies that the vector is erroneous and implemented, i.e., Defin-
ition 1. Indeed, let xin = P(xin), i.e., x = (xin, xout) ∈ S, but assume that xout
= �̂xout

where �̂xout = P̂(xin). Then x /∈ Ŝ, since xin pairs up with �̂xout in Ŝ. Conversely,
Definition 1 implies Eq. (5). To see this, assume that x = (xin, xout) ∈ S but
x = (xin, xout) /∈ Ŝ. This must mean that xout
= �̂xout, again because xin pairs up
with �̂xout in Ŝ. Thus Eq. (5) is in fact equivalent to Definition 1, but does not capture
the other three possibilities captured by Definitions 2–4.

Definitions 1–4 will play a central role in our approach to quantum V&V.

2.2.3 Generalizations

Note that it may well be advantageous in practice to consider a more general setup,
where instead of studying only the map from the input to the output space, we introduce

123

Quantum adiabatic machine learning 2033

intermediate maps which track intermediate program states. This can significantly
improve our error classification accuracy.2 Formally, this would mean that Eq. (4) is
replaced by

P̂ : Vin �→ I1 �→ · · · �→ IJ �→ Rout, (11)

where {I j }J
j=1 are intermediate spaces. However, we shall not consider this more

refined approach in this work.
As a final general comment, we reiterate that a solution of the problem we have

defined has implications beyond V&V. Namely, Definitions 1–4 capture a broad class
of anomaly (or outlier) detection problems [8]. From this perspective the approach we
detail in what follows can be described as “quantum anomaly detection”, and could be
pursued in any application which requires the batch processing of a large data space
to find a few anomalous elements.

3 Training a quantum software error classifier

In this section we discuss how to identify whether a given set of input–output pairs is
erroneous or correct, and implemented or unimplemented, as per Definitions 1–4. To
this end we shall require so-called weak classifiers, a strong classifier, a methodology
to efficiently train the strong classifier, and a way to efficiently apply the trained strong
classifier on all possible input–output pairs. Both the training step and the application
step will potentially benefit from a quantum speedup.

3.1 Weak classifiers

Consider a class of functions which map from the input–output space to the reals:

hi : V �→ R. (12)

We call these functions “weak classifiers” or “feature detectors,” where i ∈ {1, ..., N }
enumerates the features. These are some predetermined useful aggregate character-
istics of the program P which we can measure, such as total memory, or CPU time
average [29]. Note that N will turn out to be the number of qubits we shall require in
our quantum approach.

We can now formally associate a weak classification with each vector in the input–
output space.

Definition 5 Weak classification of x ∈ V .
Weakly classified correct (WCC): a vector x is WCC if hi (x) > 0.
Weakly classified erroneous (WCE): a vector x is WCE if hi (x) < 0.

2 One important consideration is that, as we shall see below, for practical reasons we may only be able
to track errors at the level of one-bit errors and correlations between bit-pairs. Such limited tracking can
be alleviated to some extent by using intermediate spaces, where higher order correlations between bits
appearing at the level of the output space may not yet have had time to develop.

123

2034 K. L. Pudenz, D. A. Lidar

Clearly, there is an advantage to finding “ smart” weak classifiers, so as to minimize
N . This can be done by invoking heuristics, or via a systematic approach such as one
we present below.

For each input–output pair x we have a vector h(x) = (h1(x), ..., hN (x)) ∈ R
N .

Such vectors can be used to construct geometric representations of the learning prob-
lem, e.g., a convex hull encompassing the weak classifier vectors of clustered correct
input–output pairs. Such a computational geometry approach was pursued in [29].

We assume that we can construct a “ training set”

T ≡ {xs, ys}|T |
s=1, (13)

where each xs ∈ V is an input–output pair and ys = y(xs) = +1 iff xs is correct
(whether implemented or not, i.e., xs ∈ Ŝ) while ys = −1 iff �xs is erroneous (again,
implemented or not, i.e., xs /∈ Ŝ). Thus, the training set represents the ideal program
P̂ , i.e., we assume that the training set can be completely trusted. Note that Eq. (4)
presents us with an easy method for including erroneous input pairs, by deliberately
misrepresenting the action of P̂ on some given input, e.g., by setting xout /∈ Rout(P̂).
This is similar to the idea of performing V&V by building invariants into a program
[30].

We are free to normalize each weak classifier so that hi ∈ [−1/N , 1/N] (the reason
for this will become clear below). Given Definition 5 we choose the sign of each weak
classifier so that hi (xs) < 0 for all erroneous training data, while hi (xs) > 0 for all
correct training data. Each point h(xs) ∈ [−1/N , 1/N]N (a hypercube) has associated
with it a label ys which indicates whether the point is correct or erroneous. The convex
hull approach to V&V [29] assumes that correct training points h(xs) cluster. Such an
assumption is not required in our approach.

3.2 Strong classifier

We would like to combine all the weak classifiers into a single “strong classifier” which,
given an input–output pair, will determine that pair’s correctness or erroneousness. The
problem is that we do not know in advance how to rank the weak classifiers by relative
importance. We can formally solve this problem by associating a weight wi ∈ R with
each weak classifier hi . The problem then becomes how to find the optimal set of
weights, given the training set.

The process of creating a high-performance strong classifier from many less accu-
rate weak classifiers is known as boosting in the machine learning literature. Boosting
is a known method for enhancing to arbitrary levels the performance of known sets
of classifiers that exhibit weak learnability for a problem, i.e., they are accurate on
more than half of the training set [20,31]. The most efficient method to combine weak
classifiers into a strong classifier of a given accuracy is an open question, and there
are many competing algorithms available for this purpose [32,33]. Issues commonly
considered in the development of such algorithms include identification of the data
features that are relevant to the classification problem at hand [34,35] and whether or
not provisions need to be taken to avoid overfitting to the training set (causing poor

123

Quantum adiabatic machine learning 2035

performance on the general problem space) [36,37]. We use an approach inspired by
recent quantum boosting results on image recognition [6,17–19]. This approach has
been shown to outperform classical boosting algorithms in terms of accuracy (but
not speed) on selected problems, and has the advantage of being implementable on
existing quantum optimization hardware [38–41].

Since we shall map thewi to qubits we use binary weightswi ∈ {0, 1}. It should be
straightforward to generalize our approach to a higher resolution version of real-valued
wi using multiple qubits per weight.

Let w = (w1, ..., wN) ∈ {0, 1}N , and let

Rw(x) ≡ w · h(x) =
N∑

i=1

wi hi (x) ∈ [−1, 1]. (14)

This range is a direct result of the normalization hi ∈ [−1/N , 1/N] introduced above.
We now define the weight-dependent “ strong classifier”

Qw(x) ≡ sign [Rw(x)] , (15)

and use it as follows:

Definition 6 Strong classification of x ∈ V .
Strongly classified correct (SCC): a vector x is SCC if Qw(x) = +1.
Strongly classified erroneous (SCE): a vector x is SCE if Qw(x) = −1.

There is a fundamental difference between the “ opinions” of the strong classifier, as
expressed in Definition 6, and the actual erroneousness/correctness of a given input–
output pair. The strong classifier associates an erroneous/correct label with a given
input–output pair according to a weighted average of the weak classifiers. This opinion
may or may not be correct. For the training set we actually know whether a given input–
output pair is erroneous or correct. This presents us with an opportunity to compare
the strong classifier to the training data. Namely, if ys Qw(�xs) = −1 then Qw(xs) and
ys have opposite sign, i.e., disagree, which means that Qw(xs) mistakenly classified
xs as a correct input–output pair while in fact it was erroneous, or vice versa. On the
other hand, if ys Qw(xs) = +1 then Qw(xs) and ys agree, which means that Qw(xs)

is correct. Formally,

ys Qw(xs) = +1 ⇐⇒
{
(xs is SCC) = true or
(xs is SCE) = true

(16a)

ys Qw(xs) = −1 ⇐⇒
{
(xs is SCC) = false or
(xs is SCE) = false

(16b)

The higher the number of true instances is relative to the number of false instances,
the better the strong classifier performance over the training set. The challenge is, of
course, to construct a strong classifier that performs well also beyond the training set.
To do so we must first solve the problem of finding the optimal set of binary weights w.

123

2036 K. L. Pudenz, D. A. Lidar

3.3 The formal weight optimization problem

Let H [z] denote the Heaviside step function, i.e., H [z] = 0 if z < 0 and
H [z] = 1 if z ≥ 0. Thus H [−ys Qw(xs)] = 1 if the classification of xs is
wrong, but H [−ys Qw(xs)] = 0 if the classification of �xs is correct. In this manner
H [−ys Qw(xs)] assigns a penalty of one unit for each incorrectly classified input–
output pair.

Consider

L(w) ≡
|T |∑

s=1

H [−ys Qw(xs)] . (17)

This counts the total number of incorrect classifications. Therefore minimization of
L(w) for a given training set {xs, ys}|T |

s=1 will yield the optimal set of weights wopt =
{wopt

i }N
i=1.

However, it is important not to overtrain the classifier. Overtraining means that
the strong classifier has poor generalization performance, i.e., it does not classify
accurately outside of the training set [37,42]. To prevent overtraining we can add a
penalty proportional to the Hamming weight of w, i.e., to the number of non-zero
weights ‖w‖0 = ∑N

i=1wi . In this manner an optimal balance is sought between the
accuracy of the strong classifier and the number of weak classifiers comprising the
strong classifier. The formal weight optimization problem is then to solve

w′opt = arg min
w

[L(w)+ λ‖w‖0] , (18)

where λ > 0 can be tuned to decide the relative importance of the penalty.

3.4 Relaxed weight optimization problem

Unfortunately, the formulation of (18) is unsuitable for adiabatic quantum computation
because of its discrete nature. In particular, the evaluation of the Heaviside function is
not amenable to a straightforward implementation in AQC. Therefore, following [6],
we now relax it by introducing a quadratic error measure, which will be implementable
in AQC.

Let y = (y1, ..., y|T |) ∈ {−1, 1}|T | and Rw = (Rw(x1), ..., Rw(x|T |)) ∈
[−1, 1]|T |. The vector y is the ordered label set of correct/erroneous input–output
pairs. The components Rw(x) of the vector Rw already appeared in the strong clas-
sifier (15). There we were interested only in their signs and in Eq. (16) we observed
that if ys Rw(xs) < 0 then xs was incorrectly classified, while if ys Rw(xs) > 0 then
xs was correctly classified.

We can consider a relaxation of the formal optimization problem (18) by replac-
ing the counting of incorrect classifications by a sum of the values of ys Rw(xs) over
the training set. This seems reasonable since we have normalized the weak clas-
sifiers so that Rw(x) ∈ [−1, 1], while each label ys ∈ {−1, 1}, so that all the

123

Quantum adiabatic machine learning 2037

terms ys Rw(xs) are in principle equally important. In other words, the inner prod-
uct y · Rw = ∑|T |

s=1 ys Rw(xs) is also a measure of the success of the classification,
and maximizing it (making y and Rw as parallel as possible) should result in a good
training set.

Equivalently, we can consider the distance between the vectors y and Rw and
minimize it by finding the optimal weight vector wopt, in general different from that
in Eq. (18). Namely, consider the Euclidean distance

δ(w) = ‖y − Rw‖2 =
|T |∑

s=1

∣∣∣∣∣ys −
N∑

i=1

wi hi (xs)

∣∣∣∣∣

2

= ‖y‖2 +
N∑

i, j=1

C ′
i jwiw j − 2

N∑

i=1

C ′
iywi , (19)

where hi = (hi (x1), ..., hi (x|T |)) ∈ [−1/N , 1/N]|T | and where

C ′
i j = hi · h j =

|T |∑

s=1

hi (xs)h j (xs), (20)

C ′
iy = hi · y =

|T |∑

s=1

hi (xs)ys (21)

can be thought of as correlation functions. Note that they are symmetric: C ′
i j = C ′

j i

and C ′
iy = C ′

yi . The term ‖y‖2 = |T | is a constant offset and can be dropped from the
minimization.

If we wish to introduce a sparsity penalty as above, we can do so again, and thus
ask for the optimal weight in the following sense:

wopt = arg min
w

[
δ(w)+ λ′‖w‖0

]

= arg min
w

⎡

⎣
N∑

i, j=1

C ′
i jwiw j + 2

N∑

i=1

(λ− C ′
iy)wi

⎤

⎦ , (22)

where λ′ = 2λ.

3.5 From QUBO to the Ising Hamiltonian

Equation (22) is a quadratic binary optimization (QUBO) problem [17]. One more
step is needed before we can map it to qubits, since we need to work with optimization
variables whose range is {−1, 1}, not {0, 1}. Define new variables qi = 2(wi −1/2) ∈
{−1, 1}. In terms of these new variables the minimization problem is

123

2038 K. L. Pudenz, D. A. Lidar

qopt = arg min
q

⎡

⎣1

4

N∑

i, j=1

C ′
i j (qi + 1)(q j + 1)+

N∑

i=1

(λ− C ′
iy)(qi + 1)

⎤

⎦

= arg min
q

⎡

⎣
N∑

i, j=1

Ci j qi q j +
N∑

i=1

(λ− Ciy)qi

⎤

⎦ , (23)

where in the second line we dropped the constant terms 1
4

∑N
i, j=1 C ′

i j and
∑N

i=1(λ−
C ′

iy), used the symmetry of C ′
i j for

∑N
i=1 qi

∑N
j=1 C ′

i j = ∑N
i, j=1 C ′

i j q j , and where
we defined

Ci j = 1

4
C ′

i j , Ciy = C ′
iy − 1

2

N∑

j=1

C ′
i j . (24)

Thus, the final AQC Hamiltonian for the quantum weight-learning problem is

HF =
N∑

i, j=1

Ci j Zi Z j +
N∑

i=1

(λ− Ciy)Zi , (25)

where Zi is the Pauli spin-matrix σz acting on the i th qubit. This represents Ising spin-
spin interactions with coupling matrix Ci j , and an inhomogeneous magnetic field
λ − Ciy acting on each spin. Note how HF encodes the training data {hi (xs), ys}i,s

via the coupling matrix Ci j = 1
4

∑|T |
s=1 hi (xs)h j (xs) and the local magnetic field

Ciy = ∑|T |
s=1 hi (xs)ys − 1

2

∑|T |
s=1 hi (xs)

∑N
j=1 h j (xs). Thus, in order to generate HF

one must first calculate the training data using the chosen set of weak classifiers.
In this final form (Eq. 25), involving only one and two-qubit Zi terms, the problem

is now suitable for implementation on devices such as D-Wave’s adiabatic quantum
optimization processor [19,39].

In Sect. 4.4 we shall formulate an alternative weight optimization problem, based
on a methodology we develop in Sect. 4 for pairing weak classifiers to guarantee the
correctness of the strong classifier.

3.6 Adiabatic quantum computation

The adiabatic quantum algorithm implements the time-dependent interpolation

H(t) = s(t)HI + [1 − s(t)]HF , (26)

where HI is a Hamiltonian which does not commute with HF and should have a
ground state (lowest-energy eigenvector) that is easily reachable, such as

HI = I −
N∑

i=1

Xi (27)

123

Quantum adiabatic machine learning 2039

where I is the identity operator and Xi is the Pauli σx acting on the i th qubit [21,22].
The interpolation function s(t) satisfies the boundary conditions s(0) = 1, s(T) = 0,
where T is the final time. Provided the evolution is sufficiently slow (in a manner
we shall quantify momentarily), the adiabatic theorem guarantees that the final state
|ψ(T)〉 reached by the algorithm is, with high probability, the one that minimizes the
energy of HF [43–45]. This means that, for HF chosen as in Eq. (25), it finds as a
ground state the optimal weights vector qopt as defined in (23). These weights can
then be “read off” by measuring the final states of each of the N qubits: |ψ(T)〉 =
|qopt

1 , ..., qopt
N 〉 = |qopt〉.

It should be noted that while the number of weak classifiers that can be selected from
using this algorithm may appear to be limited by the number of qubits available for
processing, this is not in fact the case. By performing multiple rounds of optimization,
each time filling in the spaces left by classifiers that were assigned weight 0 in the
previous round, an optimized group of N weak classifiers can be assembled. If the
performance of the strong classifier is unsatisfactory with N weak classifiers, multiple
groups of N found in this manner may be used together.

The scaling of the computation time tF with the number of qubits (or weak classi-
fiers, in our case), N , is determined by the inverse of the minimal ground state energy
gap of H(t). There are many variants of the adiabatic theorem, differing mostly in
assumptions about boundary conditions and differentiability of H(t). Most variants
state that, provided

tF � ‖Ḣ‖α
εΔα+1 , (28)

then

|〈ψ(tF)|φ(tF)〉| � 1 − εβ. (29)

The left-hand side of Eq. (29) is the fidelity of the actual state |ψ(tF)〉 obtained
under quantum evolution subject to H(t)with respect to the desired final ground state
|φ(tF)〉. More precisely, |ψ(t)〉 is the solution of the time-dependent Schrödinger
equation ∂|ψ(t)〉/∂t = −i H(t)|ψ(t)〉 (in h̄ ≡ 1 units), and |φ(t)〉 is the instantaneous
ground state of H(t), i.e., the solution of H(t)|φ(t)〉 = E0(t)|φ(t)〉, where E0(t) is the
instantaneous ground state energy [the smallest eigenvalue of H(t)]. The parameter ε,
0 ≤ ε ≤ 1, measures the quality of the overlap between |ψ(tF)〉 and |φ(tF)〉, Ḣ is the
derivative with respect to the dimensionless time t/tF , Δ is the minimum energy gap
between the ground state |φ(t)〉 and the first excited state of H(t) (i.e., the difference
between the two smallest equal-time eigenvalues of H(t), for t ∈ [0, tF]), The values
of the integersα andβ depend on the assumptions made about the boundary conditions
and differentiability of H(t) [43–45]; typically α ∈ {0, 1, 2}, while β can be tuned
between 1 and arbitrarily large values, depending on boundary conditions determining
the smoothness of H(t) (see, e.g., Theorem 1 in Ref. [45]). The crucial point is that
the gap Δ depends on N , typically shrinking as N grows, while the numerator ‖Ḣ‖
typically has a mild N -dependence (bounded in most cases by a function growing as
N 2 [45]). Consequently a problem has an efficient, polynomial time solution under

123

2040 K. L. Pudenz, D. A. Lidar

AQC ifΔ scales 1/poly(N). However, note that an inverse exponential gap dependence
on N can still result in a speedup, as is the case, e.g., in the adiabatic implementation of
Grover’s search problem [46,47], where the speedup relative to classical computation
is quadratic.

As for the problem we are concerned with here, finding the ground state of HF as
prescribed in Eq. (25) in order to find the optimal weight set for the (relaxed version
of the) problem of training a software error-classifier, it is not known whether it is
amenable to a quantum speedup. A study of the gap dependence of our Hamiltonian
H(t) on N , which is beyond the scope of the present work, will help to determine
whether such a speedup is to be expected also in the problem at hand. A related image
processing problem has been shown numerically to require fewer weak classifiers than
in comparable classical algorithms, which gives the strong classifier a lower Vapnik-
Chernovenkis dimension and therefore a lower generalization error [7,18]. Quantum
boosting applied to a different task, 30-dimensional clustering, demonstrated increas-
ingly better accuracy as the overlap between the two clusters grew than that exhibited by
the classical AdaBoost algorithm [6]. More generally, numerical simulations of quan-
tum adiabatic implementations of related hard optimization problems (such as Exact
Cover) have shown promising scaling results for N values of up to 128 [22,48,40].
We shall thus proceed here with the requisite cautious optimism.

4 Achievable strong classifier accuracy

We shall show in this section that it is theoretically possible to construct a perfect,
100 % accurate majority-vote strong classifier from a set of weak classifiers that are
more than 50 % accurate—if those weak classifiers relate to each other in exactly the
right way. Our construction in this section is analytical and exact; we shall specify a set
of conditions weak classifiers should satisfy for perfect accuracy of the strong classifier
they comprise. We shall also show how to construct an imperfect strong classifier, with
bounded error probability, by a relaxation of the conditions we shall impose on the
weak classifiers. We expect the quantum algorithm to find a close approximation to
this result.

Consider a strong classifier with a general binary weight vector w ∈ {0, 1}N , as
defined in Eq. (14). Our approach will be to show that the strong classifier in Eq. (14)
is completely accurate if a set of three conditions is met. The conditions work by using
pairs of weak classifiers which both classify some x correctly and which disagree for
all other x. An accurate strong classifier can be constructed by covering the entire
space V with the correctly classifying portions of such weak classifier pairs.

To start, every vector x ∈ V has a correct classification, as determined by the
specification set:

x ∈ Ŝ ⇐⇒ y(x) = +1, (30a)

x /∈ Ŝ ⇐⇒ y(x) = −1 (30b)

A strong classifier is perfect if

Qw(x) = y(x) ∀x ∈ V. (31)

123

Quantum adiabatic machine learning 2041

The weak classifiers either agree or disagree with this correct classification. We define
the correctness value of a weak classifier for a given input x:

ci (x) = hi (x)y(x) =
{+1 hi (x) = y(x)

−1 hi (x)
= y(x)
(32)

Thus, similarly to the strong classifier case (Eq. (16)) we have, formally,

ci (x) = +1 ⇐⇒
{
(x is WCC) = true or
(x is WCE) = true

(33a)

ci (x) = −1 ⇐⇒
{
(x is WCC) = false or
(x is WCE) = false

(33b)

where WCC and WCE stand for weakly classified correct and weakly classified erro-
neous, respectively (Definition 5).

A given input–output vector x receives either a true or false vote from each weak
classifier comprising the strong classifier. Let us denote the index set of the weak
classifiers comprising a given strong classifier by I. If the majority of the votes given
by the weak classifiers in I are true then the vector receives a strong classification that
is true. Let us loosely denote by w ∈ I the set of weak classifiers whose indices all
belong to I. Thus

∑

i∈I
ci (x) > 0 �⇒ Qw(x) = y(x) if w ∈ I. (34)

It follows from Eq. (31) that if we can find a set of weak classifiers for which∑
i∈I ci (x) > 0 for all input–output vectors x, then the corresponding strong classifier

is perfect. This is what we shall set out to do in the next subsection.

4.1 Conditions for complete classification accuracy

First, we limit our working set to those weak classifiers with greater than 50 % accuracy.
This is a prerequisite for the feasibility of the other conditions. To ensure that at
least half the initial dictionary of weak classifiers is more than 50 % accurate, we
include each potential weak classifier in the dictionary, as well as its opposite. The
opposite classifier follows the same rule as its counterpart, but makes the opposite
binary decision every time, making each right where the other is wrong and ensuring
that at least one of them will have 50 % or greater accuracy. Condition 1, therefore,
defines the set A,

A ⊆ D ≡ {1, ..., N }, (35)

of sufficiently accurate weak classifiers, where D is the set of all possible values of
the index i of weak classifiers in Eq. (14).

123

2042 K. L. Pudenz, D. A. Lidar

Condition 1 For an input–output vector x ∈ V selected uniformly at random

A = {i : P[ci (x) = 1] > 1/2}. (36)

P[ω] denotes the probability of event ω. We use a probabilistic formulation for our
conditions since we imagine the input–output space V to be very large and accessed
by random sampling.

Conditions 2 and 3 (or 3a) specify the index set

J ⊆ A × A, (37)

labeling pairs of weak classifiers which will make up the final strong classifier. Con-
dition 2 groups the weak classifiers into pairs which classify the minimal number
of vectors x correctly at the same time and give opposite classifications on all other
vectors. Condition 3 completes the specification of the index set J : it states that the
subsets of vectors x that are classified correctly by the classifier pairs in J must cover
the entire space V .

Condition 2 If (j, j ′) ∈ J then

P
[(

c j (x) = 1
) ∩ (

c j ′(x) = 1
)] = P

[
c j (x) = 1

] + P
[
c j ′(x) = 1

] − 1 (38)

for an input–output vector x ∈ V selected uniformly at random.

This condition has the following simple interpretation, illustrated in Fig. 2. Suppose
the entire input–output space V is sorted lexicographically (e.g., according to the binary
values of the vectors x ∈ V) so that the j th weak classifier is correct on all first N j

vectors but erroneous on the rest, while the j ′th weak classifier is correct on all last N j ′
vectors but erroneous on the rest. Thus the fraction of correctly classified vectors by
the j th classifier is (1 − η j) = N j/|V|, the fraction of correctly classified vectors by
the j ′th classifier is (1−η j ′) = N j ′/|V|, and they overlap on a fraction of 1−η j −η j ′
vectors (all vectors minus each classifier’s fraction of incorrectly classified vectors), as
illustrated in the top part of Fig. 2. By “pushing classifier j ′ to the left”, as illustrated
in the bottom part of Fig. 2, the overlap grows and is no longer minimal. This is what
is expressed by Eq. (38).

Condition 2 considers only one pair of weak classifiers at a time, which does
not suffice to cover all of V . Consider a set of weak classifier pairs each satisfying
Condition 2 which, together, do cover all of V . Such a set would satisfy

∑

(j, j ′)∈J
P

[(
c j (x) = 1

) ∩ (
c j ′(x) = 1

)] = 1

for a randomly chosen x ∈ V . This is illustrated in Fig. 3. However, it is also possible
for two or more pairs to overlap, a situation we would like to avoid as much as possible,
i.e., we shall impose minimal overlap similarly to Condition 2. Thus we arrive at:

123

Quantum adiabatic machine learning 2043

Fig. 2 Illustration of Condition 2. Two pairs of classifiers showing regions of correct (green) and incorrect
(red) classification along a line representing a lexicographical ordering of all vectors within V . The top
pair, compliant with Condition 2, provides two correct classifications for the minimum possible number
of vectors, voting once correctly and once incorrectly on all other vectors. The bottom pair, violating
Condition 2, provides two correct votes for more vectors than does the top pair, but also undesirably
provides two incorrect votes for some vectors; this is why paired weak classifiers must coincide in their
classifications on as few vectors as possible (Color figure online)

Fig. 3 Illustration of Condition 3 without the subtracted term. Five pairs of 60 % accurate weak classifiers
combine to form a completely accurate majority-vote strong classifier. Moving from top to bottom through
the pairs and from left to right along the vectors in the classification space, each pair of weak classifiers
provides two correct votes for 20 % of the vector space and neutral votes otherwise. This means that the
majority vote is correct for the entire space because no two pairs vote correctly at once

Condition 3

∑

(j, j ′)∈J
P

[(
c j (x) = 1

) ∩ (
c j ′(x) = 1

)] −
∑

(j, j ′)
=(k,k′)∈J
P

[(
c j (x) = 1

)

∩ (
c j ′(x) = 1

) ∩ (ck(x) = 1) ∩ (ck′(x) = 1)
] = 1, (39)

where the overlap between two pairs of weak classifiers with labels (j, j ′) and (k, k′)
is given by the subtracted terms. Condition 3 is illustrated in Fig. 4.

It is possible to substitute a similar Condition 3a for the above Condition 3 to create a
different, yet also sufficient set of conditions for a completely accurate strong classifier.
The number of weak classifiers required to satisfy the alternate set of conditions is
expected to be smaller than the number required to satisfy the original three conditions.

123

2044 K. L. Pudenz, D. A. Lidar

Fig. 4 Illustration of Condition 3 with the subtracted term. Three pairs of 70 % accurate weak classifiers
combined to form a completely accurate majority-vote strong classifier. In this case, each pair votes twice
correctly on 40 % of the vector space, which makes it necessary for the correct portions of the second and
third pairs from the top to overlap. Because they only overlap by the minimum amount necessary, V as a
whole is still covered by a correct majority vote

This is due to the fact that the modified conditions make use of one standalone weak
classifier to cover a larger portion of the space correctly than is possible with a pair of
weak classifiers.

Condition 3a
∑

(j, j ′)∈J
P

[(
c j (x) = 1

) ∩ (
c j ′(x) = 1

)] + P [ca(x) = 1]

−
∑

(j, j ′)
=(k,k′)∈J
P

[(
c j (x) = 1

) ∩ (
c j ′(x) = 1

) ∩ (ck(x) = 1) ∩ (ck′(x) = 1)
]

−
∑

(j, j ′)∈J
P

[
(ca(x) = 1) ∩ (

c j (x) = 1
) ∩ (

c j ′(x) = 1
)] = 1 (40)

This condition is illustrated in Fig. 5. Its interpretation is similar to that of Condi-
tion 3, except that the standalone classifier with the subscript a is added to the other
classifier pairs, and its overlap with them is subtracted separately in the last line.

The perfect strong classifier can now be constructed from the weak classifiers in
the set J defined by the conditions above. Define JL as the set of all j from pairs
(j, j ′) ∈ J . Similarly, define JR as the set of all j ′ from pairs (j, j ′) ∈ J . Note
that, since any pair for which j = j ′ would not have minimum correctness overlap
and therefore could not be in J , it follows that j
= j ′ for all pairs (j, j ′), i.e., JL ∩
JR = ∅. The strong classifier is then (14) with each wi being one of the elements of
a pair, i.e.,

wi =
{

1 i ∈ (JL ∪ JR)

0 otherwise
(41)

4.2 Perfect strong classifier theorem

We will now prove that any strong classifier satisfying Conditions 1–3, or 1–3a, is
completely accurate.

123

Quantum adiabatic machine learning 2045

Fig. 5 Illustration of Condition 3a. Two pairs and one single weak classifier form a completely accurate
majority-vote strong classifier. The two pairs cover 40 % of the vector space with correct votes, and the
single weak classifier (the first element of the fourth pair in Fig. 3; the faded-out classifiers in the third,
fourth, and fifth pairs are omitted from this strong classifier) provides an extra correct vote to tip the balance
in the remaining 60 % to a correct overall classification

Lemma 1 Assume Condition 1 and (j, j ′) ∈ J . Then the sum of the correctness val-
ues of the corresponding weak classifiers is nonnegative everywhere with probability
1, namely

P
[
c j (x)+ c j ′(x) ≥ 0

] = 1 (42)

for an input–output vector x ∈ V selected uniformly at random.

Proof For any pair (j, j ′) ∈ J we have

P
[(

c j (x) = 1
) ∪ (

c j ′(x) = 1
)] = P

[
c j (x) = 1

] + P
[
c j ′(x) = 1

]

−P
[(

c j (x)=1
) ∩ (

c j ′(x)=1
)]=1 (43)

by Condition 2. Equation (43) means that at least one of the two weak classifiers
evaluates to 1. Since by definition ci (x) ∈ {−1, 1}∀i , the sum is 2 or 0 with probability
1, i.e.,

P
[
c j (x)+ c j ′(x) ∈ {0, 2}] = 1. (44)

Recall that if the majority of the votes given by the weak classifiers comprising a
given strong classifier is true then the input–output vector being voted on receives a
strong classification that is true (Eq. 34), and that if this is the case for all input–output
vectors then the strong classifier is perfect (Eq. 31). We are now in a position to state
that this is the case with certainty provided the weak classifiers belong to the set J
defined by the conditions given above.

123

2046 K. L. Pudenz, D. A. Lidar

Theorem 1 A strong classifier comprised solely of a set of weak classifiers satisfying
Conditions 1–3 is perfect.

Proof It suffices to show that the correctness sum is at least 2 with probability 1 when
Conditions 1–3 are met, namely that

P

⎡

⎣
∑

(j, j ′)∈J

(
c j (x)+ c j ′(x)

) ≥ 2

⎤

⎦ = 1. (45)

Now,

P
[⋃

(j, j ′)∈J
(
c j (x)+ c j ′(x) = 2

)]

= P

⎡

⎣
⋃

(j, j ′)∈J

(
c j (x) = 1

) ∩ (
c j ′(x) = 1

)
⎤

⎦ (46a)

≥
∑

(j, j ′)∈J
P

[(
c j (x) = 1

) ∩ (
c j ′(x) = 1

)]

−
∑

(j, j ′)
=(k,k′)∈J
P

[(
c j (x) = 1

) ∩ (
c j ′(x) = 1

)

∩ (ck(x) = 1) ∩ (ck′(x) = 1)
]

(46b)

= 1 by Cond. 3. (46c)

where equality (46c) holds for the inequality (46b)3 because the probability of an event
cannot be greater than 1.

Thus, for any randomly selected vector x ∈ V , the correctness sum of at least one
of the pairs is 2, i.e.,

P
[∃(j, j ′) ∈ J : (

c j (x)+ c j ′(x) = 2
)] = 1. (47)

Lemma 1 tells us that the correctness sum of each pair of weak classifiers is positive,
while Eq. (47) states that for at least one pair this sum is not just positive but equal
to 2. Therefore the correctness sum of all weak classifiers in J is at least 2, which is
Eq. (45).

Theorem 2 A strong classifier comprised solely of a set of weak classifiers satisfying
Conditions 1, 2, and 3a is perfect.

3 This inequality reflects the fact that for n overlapping sets, P
[⋃n

i=1 si
] = ∑n

i=1 P[si] − ∑
i
= j P[si ∩

s j] + ∑
i
= j
=k P[si ∩ s j ∩ sk] − ∑

i
= j
=k
=m P[si ∩ s j ∩ sk ∩ sm] + . . . Each term is larger than the next
in the series; n + 1 sets cannot intersect where n sets do not. Our truncation of the series is greater than or
equal to the full value because we stop after a subtracted term.

123

Quantum adiabatic machine learning 2047

Proof It suffices to show that the correctness sum is at least 1 with probability 1 when
Conditions 1, 2, and 3a are met, namely that

P

⎡

⎣
∑

(j, j ′)∈J

(
c j (x)+ c j ′(x)

) + ca(x) ≥ 1

⎤

⎦ = 1. (48)

We proceed similarly to the proof of Theorem 1.

P

⎡

⎣
⋃

(j, j ′)∈J

(
c j (x)+ c j ′(x) = 2

) ∪ (ca(x) = 1)

⎤

⎦

= P

⎡

⎣
⋃

(j, j ′)∈J

(
c j (x) = 1

) ∩ (
c j ′(x) = 1

) ∪ (ca(x) = 1)

⎤

⎦

=
∑

(j, j ′)∈J

P
[(

c j (x) = 1
) ∩ (

c j ′(x) = 1
)] + P [ca(x) = 1]

−
∑

(j, j ′)
=(k,k′)∈J
P

[(
c j (x) = 1

) ∩ (
c j ′(x) = 1

) ∩ (ck(x) = 1) ∩ (ck′(x) = 1)
]

−
∑

(j, j ′)∈J
P

[
(ca(x) = 1) ∩ (

c j (x) = 1
) ∩ (

c j ′(x) = 1
)]

= 1 by Cond. 3. (49)

Thus the correctness sum of at least one of the pairs together with the singled-out weak
classifier is greater than or equal to 1, i.e.,

P
[∃(j, j ′) ∈ J : (

c j (x)+ c j ′(x) = 2
)∪ (ca(x) = 1)

] = 1. (50)

This result, together with Lemma 1, implies the correctness sum of all weak classifiers
in J is at least 1, which is Eq. (48).

4.3 Imperfect strong classifier theorem

Because the three conditions on the set J of weak classifiers guarantee a completely
accurate strong classifier, errors in the strong classifier must mean that the conditions
are violated in some way. For instance, Condition 2 could be replaced by a weaker
condition which allows for more than minimum overlap of vectors x categorized
correctly by both weak classifiers in a pair.

Condition 2a If (j, j ′) ∈ J then

P
[(

c j (x) = 1
) ∩ (

c j ′(x) = 1
)] = P

[
c j (x) = 1

] + P
[
c j ′(x) = 1

] − 1 + ε j j ′ (51)

for an input–output vector x ∈ V selected uniformly at random.

123

2048 K. L. Pudenz, D. A. Lidar

The quantity ε j j ′ is a measure of the “overlap error”. We can use it to prove relaxed
versions of Lemma 1 and Theorem 1.

Lemma 1a Assume Condition 1 and (j, j ′) ∈ J . Then the sum of the correctness val-
ues of the corresponding weak classifiers is nonnegative everywhere with probability
1 − ε j j ′ , namely

P
[
c j (x)+ c j ′(x) ≥ 0

] = 1 − ε j j ′ (52)

for an input–output vector x ∈ V selected uniformly at random.

Proof The proof closely mimics that of Lemma 1.

P
[(

c j (x) = 1
) ∪ (

c j ′(x) = 1
)]

= P
[
c j (x) = 1

] + P
[
c j ′(x) = 1

] − P
[(

c j (x) = 1
) ∩ (

c j ′(x) = 1
)]

= P
[
c j (x) = 1

] + P
[
c j ′(x) = 1

] − P
[
c j (x) = 1

] − P
[
c j ′(x) = 1

] + 1 − ε j j ′

= 1 − ε j j ′ (53)

by Condition 2a. As in the proof of Lemma 1, this implies

P
[
c j (x)+ c j ′(x) ∈ {0, 2}] = 1 − ε j j ′ . (54)

We can now replace Theorem 1 by a lower bound on the success probability when
Condition 2 is replaced by the weaker Condition 2a. Let us first define an imperfect
strong classifier as follows:

Definition 7 A strong classifier is ε-perfect if, for x ∈ V chosen uniformly at random,
it correctly classifies x [i.e., Qw(x) = y(x)] with probability at least 1 − ε.

Theorem 3 A strong classifier comprised solely of a set of weak classifiers satisfying
Conditions 1, 2a and 3 is ε-perfect, where ε = ∑

(j, j ′)∈J ε j j ′ .

Proof It suffices to show that the correctness sum is positive with probability 1 minus
the sum of the overlap errors when Conditions 1, 2a and 3 are satisfied, namely

P

⎡

⎣
∑

(j, j ′)∈J
c j (x)+ c j ′(x) > 0

⎤

⎦ ≥ 1 −
∑

(j, j ′)∈J
ε j j ′ . (55)

Now, by definition c j (x)+c j ′(x) ∈ {−2, 0, 2}, and the correctness sum of at least one
of the pairs must be negative in order for the correctness sum over all weak classifiers
in J to be negative, so that

P

⎡

⎣
∑

(j, j ′)∈J
c j (x)+ c j ′(x) < 0

⎤

⎦ (56a)

≤ P
[∃(j, j ′) ∈ J : c j (x)+ c j ′(x) = −2

]
. (56b)

123

Quantum adiabatic machine learning 2049

However, we also need to exclude the case of all weak classifier pairs summing to zero
(otherwise the strong classifier can be inconclusive). This case is partially excluded by
virtue of Condition 3, which tells us that V as a whole is always covered by a correct
majority vote. Formally,

P

⎡

⎣
∑

(j, j ′)∈J
c j (x)+ c j ′(x) = 0

⎤

⎦ = P

⎡

⎣
⋂

(j, j ′)∈J

(
c j (x)+ c j ′(x)

) = 0

⎤

⎦

= 1 − P
[∃(j, j ′) ∈ J : c j (x)+ c j ′(x) > 0

]

= 0, (57)

where in the last equality we invoked the calculation leading from Eqs. (46c) to (47),
which only required Condition 3. Alternatively, we could use Condition 3a to prove that

P
[∑

(j, j ′)∈J c j (x)+ c j ′(x)+ca(x) = 0
]

= 0. There is another way for the classifier

to return an inconclusive result: if one weak classifier pair has a correctness sum of 2
and another weak classifier pair has a correctness sum of −2. This case is included in
the bound in Eq. (56b) because one of the weak classifier pairs in this scenario has a
negative correctness sum. We can thus conclude that the strict inequality in Eq. (56a)
can be replaced by ≤.

Now, the probability of there being one weak classifier pair such as in Eq. (56b)
cannot be greater than the probability of at least one of the pairs having a negative
correctness sum, which in turn—by the union bound—cannot be greater than the sum
of such probabilities:

Eq. (56b) ≤ P

⎡

⎣
⋃

(j, j ′)∈J

(
c j (x)+ c j ′(x) = −2

)
⎤

⎦

≤
∑

(j, j ′)∈J
P

[
c j (x)+ c j ′(x) = −2

]

=
∑

(j, j ′)∈J
ε j j ′ , (58)

where the last equality follows from Lemma 1a. This proves Eq. (55).

It is interesting to note that—as alluded to in this proof—if we were to drop Con-
ditions 3 and 3a, then Eq. (55) would become

P

⎡

⎣
∑

(j, j ′)∈J
c j (x)+ c j ′(x) ≥ 0

⎤

⎦ ≥ 1−
∑

(j, j ′)∈J
ε j j ′

(note the change from > to ≥), so that Theorem 3 would change to a statement about
inconclusive ε-perfect strong classifiers, which can—with finite probability—yield a
“don’t-know” answer. This may be a useful tradeoff if it turns out to be difficult to
construct a set of weak classifiers satisfying Condition 3 or 3a.

123

2050 K. L. Pudenz, D. A. Lidar

4.4 An alternate weight optimization problem

The conditions and results established in the previous subsection for correctness of
the strong classifier suggest the creation of an alternate weight optimization problem
to select the weak classifiers that will be included in the final majority vote, replacing
the optimization problem of Sect. 3.4. The new optimization problem is defined over
the space of pairs of weak classifiers, rather than singles, which can be constructed
using elements of the set A×A, with A as defined in Condition 1. We define the ideal
pair weight as

w̃i j =
{

1 (i, j) ∈ J × J
0 otherwise

, (59)

Since we do not know the set J a priori, we shall define a QUBO whose solutions
wi j ∈ {0, 1}, with (i, j) ∈ A×A, will be an approximation to the ideal pair weights
w̃i j . In the process, we shall map the pair weight bits wi j to qubits. Each wi j deter-
mines whether its corresponding pair of weak classifiers, hi and h j , will be included
in the new strong classifier, which can thus be written as:

Qpair(x) = sign
[
Rwpair (x)

]

= sign

⎡

⎣
∑

(i, j)∈A×A
wi j

(
hi (x)+ h j (x)

)
⎤

⎦ (60)

Recall that we do not know the wi j a priori; they are found in our approach via the
solution of a QUBO, which we set up as follows:

wopt
pair = arg min

w

⎡

⎣
∑

(i, j)∈A×A
αi jwi j +

∑

(i, j)
=(k,l)∈A×A
Ji jklwi jwkl

⎤

⎦ , (61)

where the second term is a double sum over all sets of unequal pairs. The solution of this
QUBO will provide us with an approximation to the set J , which yields the desired set
of weak classifiers as in Eq. (41). Sparsity can be enforced as in Eq. (22) by replacing
αi j with αi j+λ, where λ > 0, i.e., by including a penalty proportional to ‖w‖0.

The terms αi j and Ji jkl reward compliance with Conditions 2 and 3, respectively.
To define αi j , we first define the modified correctness function c′

i : T �→ {0, 1}, where
T is the training set (13):

c′
i (xs, ys) = 1

2
(hi (xs)ys + 1) =

{
1 hi (xs) = ys

0 hi (xs)
= ys
(62)

Below we write c′
i (s) in place of c′

i (xs, ys) for notational simplicity. The term αi j

rewards the pairing of weak classifiers which classify the minimal number of vectors x
incorrectly at the same time, as specified by Condition 2. Each pair included gains neg-
ative weight for the training set vectors its members classify correctly, but is also given

123

Quantum adiabatic machine learning 2051

a positive penalty for any vectors classified incorrectly by both weak classifiers at once:

αi j = − 1

|T |
|T |∑

s=1

[
c′

i (s)+ c′
j (s)− (

1 − c′
i (s)

) (
1 − c′

j (s)
)]

(63)

The term Ji jkl penalizes the inclusion of pairs that are too similar to each other, as
codified in Condition 3. This is accomplished by assigning a positive weight for each
vector that is classified correctly by two pairs at once:

Ji jkl = 1

|T |
|T |∑

s=1

c′
i (s)c

′
j (s)c

′
k(s)c

′
l(s) (64)

We now have a QUBO for the alternate weight optimization problem. This can
be translated to the Ising Hamiltonian as with the original optimization problem in
Sect. 3.5. We again map from our QUBO variableswi j to variables qi j = 2(wi j −1/2),
yielding the following optimization function:

qopt
pair = arg min

q

⎡

⎣1

2

∑

(i, j)∈A×A
βi j qi j + 1

4

∑

(i, j)
=(k,l)∈A×A
Ji jklqi j qkl

⎤

⎦ , (65)

where

βi j = αi j + 1

2

⎛

⎝
∑

(k,l)∈A×A;(k,l)
=(i, j)

Ji jkl + Jkli j

⎞

⎠ . (66)

Constant terms were omitted because they have no bearing on the minimization. This
optimization function is now suitable for direct translation to the final Hamiltonian
for an AQC:

HF = 1

2

∑

(i, j)∈A×A
βi j Zi j + 1

4

∑

(i, j)
=(k,l)∈A×A
Ji jkl Zi j Zkl . (67)

The qubits now represent weights on pairs rather than on an individual classifier.
Zi j is therefore the Pauli σz operator on the qubit assigned to the pair (i, j) ∈ A×A.
Using |A|2 qubits, this approach will give the optimal combination of weak classifier
pairs over the training set according to the conditions set forth previously.

5 Using strong classifiers in quantum-parallel

Now let us suppose that we have already trained our strong classifier and found the opti-
mal weight vector wopt or wopt

pair. For simplicity we shall henceforth limit our discussion

to wopt. We can use the trained classifier to classify new input–output pairs x /∈ T to

123

2052 K. L. Pudenz, D. A. Lidar

decide whether they are correct or erroneous. In this section we shall address the ques-
tion of how we can further obtain a quantum speedup in exhaustively testing all expo-
nentially many (2Nin+Nout) input–output pairs x. The key observation in this regard is
that if we can formulate software error testing as a minimization problem over the space
V of all input–output pairs x, then an AQC algorithm will indeed perform a quantum-
parallel search over this entire space, returning as the ground state an erroneous state.

5.1 Using two strong binary classifiers to detect errors

Recall that we are concerned with the detection of vectors x ∈ V that are erroneous and
implemented (Eq. 7). To accomplish this, we use two strong classifiers. The specifica-
tion classifier is the binary classifier developed in Sect. 3. Ideally, it behaves as follows:

Qw(x) =
{

1 x ∈ Ŝ
−1 x /∈ Ŝ

(68)

The second classifier, which we will call the implementation classifier, determines
whether or not an input–output vector is in the program as implemented. It is con-
structed in the same way as Qw(x), but with its own appropriate training set. Ideally,
it behaves as follows:

Tz(x) =
{

1 x /∈ S
−1 x ∈ S

(69)

The four possible combinations represented by Eqs. (68) and (69) correspond to the
four cases covered by Definitions 1–4. The worrisome input–output vectors, those that
are erroneous and implemented, cause both classifiers to evaluate to −1.

5.2 Formal criterion

As a first step, suppose we use the optimal weights vector in the original strong spec-
ification classifier. We then have, from (15),

Qopt(x) = sign
[
Rwopt (x)

] = sign

[
N∑

i=1

w
opt
i hi (x)

]
(70)

This, of course, is imprecise since our adiabatic algorithm solves a relaxed optimiza-
tion problem (i.e., returns wopt, not w′opt), but we shall assume that the replacement
is sufficiently close to the true optimum for our purposes. With this caveat, Eq. (70) is
the optimal strong specification classifier for a given input–output vector x, with the
classification of x as erroneous if Qopt(x) = −1 or as correct if Qopt(x) = +1.

123

Quantum adiabatic machine learning 2053

The strong implementation classifier is constructed similarly to the specification
classifier:

T opt(x) = sign
[
Uzopt (x)

] = sign

[
N∑

i=1

zopt
i hi (x)

]
(71)

Here, hi are the same weak classifiers as those used to train the specification classifier,
but T opt is constructed independently from a training set T ′ which may or may not
overlap with T . This training set is labeled according to the possibility or impossibility
of producing the input–output pairs in T ′ from the implemented program. The result
of this optimization is the weight vector zopt.

Given the results of the classifiers Qopt(x) and T opt(x) for any vector x, the V&V
task of identifying whether or not x ∈ (S ∩ ¬Ŝ) reduces to the following. Any vector
x is flagged as erroneous and implemented if Qopt(x) + T opt(x) = −2. We stress
once more that, due to our use of the relaxed optimization to solve for wopt and zopt,
a flagged x may in fact be neither erroneous nor implemented, i.e., our procedure is
susceptible to both false positives and false negatives.

5.3 Relaxed criterion

As was the case with Eq. (18), Qopt +T opt is unfortunately not directly implementable
in AQC, but a simple relaxation is. The trick is again to remove the sign function, this
time from (70) and (71), and consider the sum of the two classifiers’ majority vote
functions directly as an energy function:

Copt(x) = Rwopt (x)+ Uzopt (x) (72)

The combination of the two classifiers gives different results for vectors falling under
each of the Definitions from Sect. 2.2.2.

Case 1: x /∈ Ŝ and x ∈ S
The vector x is an error implemented in the program and manifests a software error.

These vectors gain negative weight from both classifiers Rwopt and Uzopt . Vectors falling
under this definition should receive the lowest values of Copt, if any such vectors exist.

Case 2: x ∈ Ŝ and x ∈ S
The vector x satisfies the don’t-worry condition, that is, it is a correct input–output

string, part of the ideal program P̂ . In this case, Rwopt > 0 and Uzopt < 0. In the pro-
grams quantum V&V is likely to be used for, with very infrequent, elusive errors, the
specification and implementation will be similar and the negative weight of Uzopt < 0
should be moderated enough by the positive influence of Rwopt > 0 that don’t-worry
vectors should not populate the lowest-lying states.

Case 3: x ∈ Ŝ and x /∈ S
The input portion of the vector x is a don’t-care condition. It does not violate any

program specifications, but is not important enough to be specifically addressed in the
implementation. This vector will gain positive weight from both Rwopt and Uzopt and
should therefore never be misidentified as an error.

123

2054 K. L. Pudenz, D. A. Lidar

Case 4: x /∈ Ŝ and x /∈ S
The vectors x in this category would be seen as erroneous by the program specifica-

tion - if they ever occurred. Because they fall outside the program implementation S,
they are not the errors we are trying to find. This case is similar to the don’t-worry sit-
uation in that the two strong classifiers will have opposite signs, in this case Rwopt < 0
and Uzopt > 0. By the same argument as Definitions 2 and 4 vectors should not receive
more negative values of Copt than the targeted errors.

Having examined the values of Copt(x) for the relevant categories of x, we can
formulate error detection as the following minimization problem:

xe = arg min
x

Copt(x). (73)

Suppose the algorithm returns a solution xe (e for “error”). We then need to test that it
is indeed an error, which amounts to checking that it behaves incorrectly when consid-
ered as an input–output pair in the program implementation P . Note that testing that
Rwopt (�xe) < 0 is insufficient, since our procedure involved a sequence of relaxations.

5.4 Adiabatic implementation of the relaxed criterion

In order to implement the error identification strategy (73) we need to consider

Copt(x) =
N∑

i=1

(w
opt
i + zopt

i)hi (x) (74)

as an energy function. We then consider Copt(�x) as the final Hamiltonian HF for an
AQC, with Hilbert space spanned by the basis {|x〉}. The AQC will then find the state
which minimizes Copt(x) out of all 2Nin+Nout basis states and thus identify an error
candidate. Because the AQC always returns some error candidate, our procedure never
generates false negatives. However, Cases 2 and 4 would correspond to false positives,
if an input–output vector satisfying either one of these cases is found as the AQC output.

We can rely on the fact that the AQC actually returns a (close approximation to the)
Boltzmann distribution

Pr[x] = 1

Z
exp[−Copt(x)/(kB T)], (75)

where kB is the Boltzmann constant, T is the temperature, and

Z =
∑

x

exp[−Copt(x)/(kB T)] (76)

is the partition function. For sufficiently low temperature this probability distribu-
tion is sharply peaked around the ground state, with contributions from the first few
excited states. Thus we can expect that even if there is a low-lying state that has
been pushed there by only one of the two binary classifiers Qopt or T opt, the AQC

123

Quantum adiabatic machine learning 2055

will return a nearby state which is both erroneous and implemented some of the
time and an error will still be detected. Even if the undesirable state [x ∈ Ŝ and
x ∈ S, or x /∈ Ŝ and x /∈ S] is the ground state, and hence all erroneous states
[x /∈ Ŝ and x ∈ S] are excited states, their lowest energy member will be found
with a probability that is e−Δ(tF)/(kB T) smaller than the unlooked-for state, where
Δ(tF) is the energy gap to the first excited state at the end of the computation.
Provided kB T and Δ(tF) are of the same order, this probability will be apprecia-
ble.

To ensure that errors which are members of the training set are never identified
as ground states we construct the training set T so that it only includes correct
states, i.e., ys = +1 ∀s. This has the potential drawback that the classifier never
trains directly on errors. It is in principle possible to include errors in the training
set (ys = −1) by adding another penalty term to the strong classifier which directly
penalizes such training set members, but whether this can be done without intro-
ducing many-body interactions in HF is a problem that is beyond the scope of this
work.

Also beyond the scope of this work is an analysis of the gap for the quantum
testing step of the algorithm. The problems are simply too large to solve analyti-
cally, and too dependent on the outcome of the learning step to be easily attacked
numerically. However, verification and validation of software is such an impor-
tant problem that quantum formulations must be explored. Even if the scaling of
the algorithm proves unfavorable for the V&V problem, other anomaly detection
applications may exhibit better scaling due to different outcomes from the learning
step.

5.5 Choosing the weak classifiers

Written in the form
∑N

i=1(w
opt
i +zopt

i)hi (x), the energy function Copt(x) is too general,
since we haven’t yet specified the weak classifiers hi (x). However, we are free to
choose these so as to mold Copt(x) into a Hamiltonian that is physically implementable
in AQC.

Suppose, e.g., that hi (x) measures a Boolean relationship defined by a function
fi : {0, 1}� �→ {0, 1} between several bits of the input–output vector; xk = bitk(x),
the kth bit of x ∈ V . For example,

hi (x) = (xi3 == fi (xi1 , xi2)), (77)

where “a == b” evaluates to 1 if a = b or to 0 if a
= b. Here i1 and i2 are the positions
of two bits from the input vector �xin and i3 is the position of a bit from the output
vector xout, so that hi measures a correlation between inputs and outputs. The choice
of this particular form for the weak classifiers is physically motivated, as it corre-
sponds to at most three-body interactions between qubits, which can all be reduced to
two-body interaction by the addition of ancilla qubits (see below). Let us enumerate

123

2056 K. L. Pudenz, D. A. Lidar

these weak classifiers. The number of different Boolean functions fi is 22� [49].4

Much more efficient representations are possible under reasonable assumptions [50],
but for the time being we shall not concern ourselves with these. In the example of
the classifier (77) there are Nin(Nin − 1) input bit combinations for each of the Nout
output bits. The number of different Boolean functions in this example, where � = 2,
is 222 = 16. Thus the dimension of the “dictionary” of weak classifiers is

N = 16Nin(Nin − 1)Nout (78)

for the case of Eq. (77).
We wish to find a two-local quantum implementation for each hi (x) in the dictio-

nary. It is possible to find a two-local implementation for any three-local Hamiltonian
using so-called “perturbation gadgets”, or three ancilla bits for each three-local term
included [51], but rather than using the general method we rely on a special case
which will allow us to use only one ancilla bit per three-local term. We first devise an
intermediate form function using products of the same bits xi ∈ {0, 1} used to define
the logical behavior of each weak classifier. This function will have a value of 1 when
the Boolean relationship specified for hi (x) is true, and −1 otherwise. For example,
consider function number 8, xi3 == xi1 ∧ xi2 , the AND function. Its intermediate
form is 4xi1 xi2 xi3 − 2

(
xi3 + xi1 xi2

) + 1. For the bit values (xi1 , xi2 , xi3) = (0, 0, 0),
the value of the intermediate function is 1, and the Boolean form is true: 0 AND 0
yields 0. If instead we had the bit values (xi1 , xi2 , xi3) = (0, 0, 1), the intermediate
form would yield −1, and the Boolean form would be false, because the value for xi3

does not follow from the values for xi1 and xi2 .
The two-body implementation form is obtained in two steps from the intermediate

form. First, an ancilla bit tied to the product of the two input bits, xa = xi1 xi2 ,
is substituted into any intermediate form expressions involving three-bit products.
This is permissible because such an ancilla can indeed be created by introducing a
penalty into the final Hamiltonian for any states in which the ancilla bit is not equal
to the product xi1 xi2 . We detail this method below. Then, the modified intermediate
expression is translated into a form that uses bits valued as x ′

i ∈ {−1, 1} rather than
xi ∈ {0, 1} using the equivalence xi = 2x ′

i − 1. The modified intermediate form is
now amenable to using the implemented qubits. Note that the Pauli matrix Zi acts on
a basis ket |x〉 as

Zi |x〉 = (−1)biti (x)|x〉. (79)

This means that we can substitute Zi for x ′
i and Zi ⊗ Z j for x ′

i x ′
j in the intermediate

form, resulting in the implementation form given in Column 4 of Table 1. Some weak
classifiers do not involve three-bit interactions. Their implementation forms were
devised directly, a simple process when there is no need for inclusion of an ancilla.

4 Any Boolean function of � variables can be uniquely expanded in the form fi (x1, . . . , x�) =
∑2�−1
α=0 εiαsα , where εiα ∈ {0, 1} and sα are the 2� “simple” Boolean functions s0 = x1x2 · · · x�,

s1 = x1x2 · · · x�, . . . , s2�−1 = x1 x2 · · · x�, where x denotes the negation of the bit x . Since each εiα

can assume one of two values, there are 22� different Boolean functions.

123

Quantum adiabatic machine learning 2057

Ta
bl

e
1

A
ll

16
B

oo
le

an
fu

nc
tio

ns
f i

of
tw

o
bi

na
ry

va
ri

ab
le

s,
an

d
th

ei
r

im
pl

em
en

ta
tio

n
fo

rm
in

te
rm

s
of

th
e

Pa
ul

i
m

at
ri

ce
s

Z
i j

ac
tin

g
on

si
ng

le
qu

bi
ts

or
pa

ir
s

of
qu

bi
ts

j
∈{

1,
2,

3}
Fu

nc
tio

n
#

B
oo

le
an

lo
gi

c
In

te
rm

ed
ia

te
fo

rm
Im

pl
em

en
ta

tio
n

fo
rm

i
=

0
x i

3
==

0
N

ot
ap

pl
ic

ab
le

−Z
i 3

i
=

1
x i

3
==

(x i
1

∨
x i

2

)
4

(x i
1

x i
2

x i
3

−
x i

1
x i

3
−

x i
2

x i
3

) −
2

(x i
1

x i
2

−
x i

1
−

x i
2

−
x i

3

) −
1

Z
a

⊗
Z

i 3
−

Z
i 1

⊗
Z

i 3
−

Z
i 2

⊗
Z

i 3

i
=

2
x i

3
==

x i
1

∧
x i

2
4(

−x
i 1

x i
2

x i
3

+
x i

2
x i

3
)
+

2(
−x

i 3
+

x i
1

x i
2

−
x i

2
)
+

1
−Z

a
⊗

Z
i 3

+
Z

i 2
⊗

Z
i 3

−
Z

i 3

i
=

3
x i

3
==

x i
1

N
ot

ap
pl

ic
ab

le
−Z

i 3
⊗

Z
i 1

i
=

4
x i

3
==

x i
1

∧
x i

2
4(

x i
1

x i
3

−
x i

1
x i

2
x i

3
)
−

2(
x i

1
−

x i
1

x i
2

+
x i

3
)
+

1
Z

i 1
⊗

Z
i 3

−
Z

a
⊗

Z
i 3

−
Z

i 3

i
=

5
x i

3
==

x i
2

N
ot

ap
pl

ic
ab

le
−Z

i 3
⊗

Z
i 2

i
=

6
x i

3
==

x i
1

⊕
x i

2
−8

x i
1

x i
2

x i
3

+
4(

x i
1

x i
3

+
x i

2
x i

3
+

x i
1

x i
2
)
−

2(
x i

1
+

x i
2

+
x i

3
)
+

1
−2

Z
a

⊗
Z

i 3
+

Z
i 1

⊗
Z

i 3
+

Z
i 2

⊗
Z

i 3
−

Z
i 3

i
=

7
x i

3
==

(x i
1

∧
x i

2

)
−4

x i
1

x i
2

x i
3

+
2(

x i
3

+
x i

1
x i

2
)
−

1
−Z

a
⊗

Z
i 3

i
=

8
x i

3
==

x i
1

∧
x i

2
4x

i 1
x i

2
x i

3
−

2(
x i

3
+

x i
1

x i
2
)
+

1
Z

a
⊗

Z
i 3

i
=

9
x i

3
==

(x i
1

⊕
x i

2

)
8x

i 1
x i

2
x i

3
−

4(
x i

1
x i

3
+

x i
2

x i
3

+
x i

1
x i

2
)
+

2(
x i

1
+

x i
2

+
x i

3
)
−

1
2

Z
a

⊗
Z

i 3
−

Z
i 1

⊗
Z

i 3
−

Z
i 2

⊗
Z

i 3
+

Z
i 3

i
=

10
x i

3
==

x i
2

N
ot

ap
pl

ic
ab

le
Z

i 3
⊗

Z
i 2

i
=

11
x i

3
==

x i
1

∨
x i

2
−4
(x

i 1
x i

3
−

x i
1

x i
2

x i
3
)
+

2(
x i

1
−

x i
1

x i
2

+
x i

3
)
−

1
−Z

i 1
⊗

Z
i 3

+
Z

a
⊗

Z
i 3

+
Z

i 3

i
=

12
x i

3
==

x i
1

N
ot

ap
pl

ic
ab

le
Z

i 3
⊗

Z
i 1

i
=

13
x i

3
==

x i
1

∨
x i

2
−4
(−

x i
1

x i
2

x i
3

+
x i

2
x i

3
)
−

2(
−x

i 3
+

x i
1

x i
2

−
x i

2
)
−

1
Z

a
⊗

Z
i 3

−
Z

i 2
⊗

Z
i 3

+
Z

i 3

i
=

14
x i

3
==

x i
1

∨
x i

2
−4

(x i
1

x i
2

x i
3

−
x i

1
x i

3
−

x i
2

x i
3

) +
2

(x i
1

x i
2

−
x i

1
−

x i
2

−
x i

3

) +
1

−Z
a

⊗
Z

i 3
+

Z
i 1

⊗
Z

i 3
+

Z
i 2

⊗
Z

i 3

i
=

15
x i

3
==

1
N

ot
ap

pl
ic

ab
le

Z
i 3

T
he

su
bs

cr
ip

ta
in

th
e

im
pl

em
en

ta
tio

n
fo

rm
co

lu
m

n
de

no
te

s
an

an
ci

lla
qu

bi
t,

tie
d

to
qu

bi
ts

i 1
an

d
i 2

vi
a

x a
=

x i
1

x i
2

,u
se

d
to

re
du

ce
al

lq
ub

it
in

te
ra

ct
io

ns
to

at
m

os
tt

w
o-

bo
dy

123

2058 K. L. Pudenz, D. A. Lidar

We have reduced the dictionary functions from three-bit to two-bit interactions by
adding an ancilla bit to represent the product of the two input bits involved in the
function. Therefore, the maximum number of qubits needed to implement this set of
weak classifiers on a quantum processor is Q = Nin + Nout + N 2

in. In practice, it is
likely to be significantly less because not every three-bit correlation will be relevant
to a given classification problem.

Let us now discuss how the penalty function is introduced. For example, consider
again the implementation of weak classifier function i = 8, whose intermediate form
involves three-qubit products, which we reduced to two-qubit interactions by including
xa .

We ensure that xa does indeed represent the product it is intended to by making
the function a sum of two terms: the product of the ancilla qubit and the remaining
qubit from the original product, and a term that adds a penalty if the ancilla is not
in fact equal to the product of the two qubits it is meant to represent, in this case
fpenalty = xi1 xi2 − 2(xi1 + xi2)xa + 3xa . In the case where (xi1 , xi2 , xa) = (1, 0, 0),
fpenalty = 0, but in a case where xa does not represent the intended product such as
(xi1 , xi2 , xa) = (1, 0, 1), fpenalty = 1. In fact, the penalty function behaves as follows:

fpenalty =
{

0 xa = xi1 xi2

positive otherwise
(80)

In the end, we have the modified intermediate form f8 = 4xa xi3 − 2
(
xi3 + xa

)+ 1 +
fpenalty, which involves only two-qubit interactions. This would be implemented on
the quantum computer as the sum of two Hamiltonian terms:

H8 = Za ⊗ Zi3 , (81)

from the implementation column of Table 1, and

Hpenalty(i1, i2) = 1

4
Zi1 ⊗ Zi2 − 1

2
Zi1 ⊗ Za − 1

2
Zi2 ⊗ Za

−1

4
Zi1 − 1

4
Zi2 + 1

2
Za + 3

4
, (82)

the implementation form of fpenalty, so a Hamiltonian to find input–output vectors
classified negatively by this weak classifier would be

Hweak = H8 + Hpenalty(i1, i2). (83)

When the strong classifier is implemented as a whole, multiple weak classifiers
with weight 1 may use the same two input bits, and therefore share an ancilla bit that
is the product of those input bits. When this is the case, it is sufficient to add the penalty
function to the final Hamiltonian once, though the ancilla is used multiple times.

The inclusion of ancilla qubits tied to products of other qubits and their associated
penalties need not interfere with the solution of the V&V problem, although the ancilla
penalty terms must appear in the same final Hamiltonian as this optimization. If the

123

Quantum adiabatic machine learning 2059

ancilla penalty terms are made reasonably large, they will put any states in which the
ancillas do not represent their intended products (states which are in fact outside of V)
far above the levels at which errors are found. For instance, consider an efficient, nearly
optimal strong classifier closely approximating the conditions set forth in Sect. 4. Such
a classifier makes its decision on the strength of two simultaneously true votes. If two
such classifiers are added together, as in the verification problem, the lowest energy
levels will have an energy near −4. If the penalty on a forbidden ancilla state is more
than a reasonable 4 units, such a state should be well clear of the region where errors
are found.

This varied yet correlation-limited set of weak classifiers fits nicely with the idea of
tracking intermediate spaces (Eq. 11), where we can use an intermediate space I j to
construct a set of weak classifiers feeding into the next intermediate space I j+1. This
is further related to an obvious objection to the above classifiers, which is that they
ignore any correlations involving four or more bits, without one-, two-, or three-bit
correlations. By building a hierarchy of weak classifiers, for intermediate spaces, such
correlations can hopefully be accounted for as they build up by keeping track instead
of one-, two-, and three-bit terms as the program runs.

5.6 QUBO-AQC quantum parallel testing

With the choice of Boolean functions for the weak classifiers, the quantum implemen-
tation of the energy function Copt(x) (Eq. 74) becomes

H test
F =

N∑

i=1

(w
opt
i + zopt

i)Hi +
∑

j
=k

Hpenalty(j, k), (84)

where Hi denotes the implemented form given in the third column of Table 1, and the
indices j, k ∈ {1, . . . , Nin} denote all possible pairings of input qubits tied to ancillas.
The ground state of H test

F , which corresponds to the optimal weight sets wopt
i and zopt

i
derived from the set of weak classifiers detailed in Sect. 5.5, is an erroneous state,
which, by construction, is not a member of the training set T .

How do we construct the AQC such that all input–output pairs x are tested in
parallel? This is a consequence of the adiabatic interpolation Hamiltonian (26), and in
particular the initial Hamiltonian HI of the type given in Eq. (27). The ground state of
this positive semi-definite HI is an equal superposition over all input–output vectors,
i.e., HI

∑
x∈V |x〉 = 0, and hence when we implement the AQC every possible x starts

out as a candidate for the ground state. The final (Boltzmann) distribution of observed
states strongly favors the manifold of low energy states, and by design these will be
implemented erroneous states, if they exist.

6 Sample problem implementation

In order to explore the practicality of our two-step adiabatic quantum approach to
finding software errors, we have applied the algorithm to a program of limited size
containing a logical error. We did this by calculating the results of the algorithm

123

2060 K. L. Pudenz, D. A. Lidar

assuming perfect adiabatic quantum optimization steps on a processor with few (N <

30) available qubits. Preliminary characterizations of the accuracy achievable using
such an algorithm given a set of weak classifiers with certain characteristics are also
presented.

6.1 The triplex monitor miscompare problem

The problem we chose to implement is a toy model of program design practices used
in mission critical software systems.5 This program monitors a set of three redundant
variables {At , Bt ,Ct } for internal consistency. The variables could represent, e.g., sen-
sor inputs, control signals, or particularly important internal program values. If one
value is different from the other two over a predetermined number of snapshots in
time t , a problem in the system is indicated and the value of the two consistent redun-
dant variables is propagated as correct. Thus the program is supposed to implement a
simple majority-vote error-detection code.

We consider only the simplest case of two time snapshots, i.e., t = 1, 2. As just
explained, a correct implementation of the monitoring routine should fail a redundant
variable A, B, or C if that same variable miscompares with both of the other variables in
each of the two time frames. The erroneous implemented program we shall consider has
the logical error that, due to a mishandled internal implementation of the miscompare
tracking over multiple time frames, it fails a redundant variable any time there has
been a miscompare in both time frames, even if the miscompare implicated a different
variable in each time frame.

In order to facilitate quantum V&V using the smallest possible number of qubits,
we assume the use of classical preprocessing to reduce the program to its essential
structure. The quantum algorithm does not look at the values of the three redundant
variables in each time frame. Instead, it sees three logical bits per snapshot, telling it
whether each pair of variables is equal. This strategy is also reflected in the program
outputs, which are three logical bits indicating whether or not each redundant vari-
able is deemed correct by the monitoring routine. Thus there are nine logical bits, as
specified in Table 2.

In terms of Boolean logic, the two behaviors are as follows:
Program Specification

x7 = x1 ∧ x3 ∧ x4 ∧ x6, (85a)

x8 = x1 ∧ x2 ∧ x4 ∧ x5, (85b)

x9 = x2 ∧ x3 ∧ x5 ∧ x6, (85c)

i.e., a variable is flagged as incorrect if and only if it has miscompared with all other
variables in all time frames.

5 We are grateful to Greg Tallant from the Lockheed Martin Corporation for providing us with this problem
as an example of interest in flight control systems.

123

Quantum adiabatic machine learning 2061

Table 2 Logical bits and their
significance in terms of variable
comparison in the Triplex
Miscompare problem

Bit Significance

x1 A1
= B1

x2 B1
= C1

x3 A1
= C1

x4 A2
= B2

x5 B2
= C2

x6 A2
= C2

x7 A failed

x8 B failed

x9 C failed

Erroneous Program Implementation

x7 = ((x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x1 ∧ x3)) ∧ x4 ∧ x6, (86a)

x8 = ((x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x1 ∧ x3)) ∧ x4 ∧ x5, (86b)

x9 = ((x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x1 ∧ x3)) ∧ x5 ∧ x6, (86c)

i.e., a variable is flagged as incorrect if it miscompares with the other variables in the
final time frame and if any variable has miscompared with the others in the previous
time frame.

6.2 Implemented algorithm

The challenges before us are to train classifiers to recognize the behavior of both
the program specification and the erroneous implementation, and then to use those
classifiers to find the errors. These objectives have been programmed into a hybrid
quantum-classical algorithm using the quantum techniques described in Sects. 3 and 5
and classical strategy refinements based on characteristics of available resources (for
example, the accuracy of the set of available weak classifiers). The performance of this
algorithm has been tested through computational studies using a classical optimization
routine in place of adiabatic quantum optimization calls.

The algorithm takes as its inputs two training sets, one for the specification classifier
and one for the implementation classifier. The two strong classifiers are constructed
using the same method, one after the other, consulting the appropriate training set.

When constructing a strong classifier, the algorithm first evaluates the performance
of each weak classifier in the dictionary over the training set. Weak classifiers with
poor performance, typically those with over 40 % error, are discarded. The resulting,
more accurate dictionary is fed piecewise into the quantum optimization algorithm.

Ideally, the adiabatic quantum optimization using the final Hamiltonian (25) would
take place over the set of all weak classifiers in the modified, more accurate dictionary.
However, the reality of quantum computation for some time to come is that the number
of qubits available for processing will be smaller than the number of weak classifiers

123

2062 K. L. Pudenz, D. A. Lidar

in the accurate dictionary. This problem is addressed by selecting random groups of
Q classifiers (the number of available qubits) to be optimized together. An initial
random group of Q classifiers is selected, the optimal weight vector qopt is calculated
by classically finding the ground state of HF , and the weak classifiers which receive
weight 0 are discarded. The resulting spaces are filled in with weak classifiers randomly
selected from the set of those which have not yet been considered, until all Q classifiers
included in the optimization return a weight of 1. This procedure is repeated until all
weak classifiers in the accurate dictionary have been considered, at which time the
most accurate group of Q generated in this manner is accepted as the strong classifier
for the training set in question. Clearly, alternative strategies for combining subsets of
Q weak classifiers could be considered, such as genetic algorithms, but this was not
attempted here.

Both the specification and implementation strong classifiers are generated in this
way, resulting in

RwQ (x) =
N∑

i=1

w
Q
i hi (x) (87)

TzQ (x) =
N∑

i=1

zQ
i hi (x) (88)

wherewQ
i and zQ

i take the value 1 if the corresponding weak classifier hi (x) is selected
using the iterative procedure described in the preceding paragraph, and are zero oth-
erwise. This is the same structure as that seen in Eqs. (70) and (71), but with different
vectors w and z due to the lack of available qubits to perform a global optimization
over the accurate dictionary.

The two strong classifiers of Eqs. (87) and (88) are summed as in Eq. (72) to create
a final energy function that will push errors to the bottom part of the spectrum. This is
translated to a final Hamiltonian HF as in Eq. (84) and the result of the optimization
(i.e., the ground state of this HF) is returned as the error candidate. This portion of
the algorithm makes it crucial to employ intelligent classical preprocessing in order
to keep the length of the input and output vectors as small as possible, because each
bit in the input–output vector corresponds to a qubit, and the classical cost of finding
the ground state of HF grows exponentially with the number of qubits.

6.3 Simulation results

Our simulation efforts have focused on achieving better accuracy from the two strong
classifiers. If the strong classifiers are not highly accurate, the second part of the
algorithm, the quantum-parallel use of the classifiers, will not produce useful results
because input–output vectors the classifiers do not handle correctly could occupy the
low-lying spectrum.

In the interest of pushing the limits of accuracy of the strong classifiers, some
simulations were performed on the miscompare problem in a single time frame. Under

123

Quantum adiabatic machine learning 2063

0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

λ

av
er

ag
e

va
lid

 c
la

ss
ifi

er
 e

rr
or

 fr
ac

tio
n

0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

λ

va
lid

 c
la

ss
ifi

er
 e

rr
or

 fr
ac

tio
n

Fig. 6 Error fractions in 16-member specification classifier calculations; Left: average over 50. Right: best
of 50

0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

λ

av
er

ag
e

im
pl

em
en

ta
tio

n
cl

as
si

fie
r

er
ro

r
fr

ac
tio

n

0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

λ

im
pl

em
en

ta
tio

n
cl

as
si

fie
r

er
ro

r
fr

ac
tio

n

Fig. 7 Error fractions in 16-member implementation classifier calculations; Left: average over 50. Right:
best of 50

this simplification, the program specification and implementation are identical (the
error arises over multiple time frames), and indeed the numerical results will show
that the results for the two classifiers are the same (see Figs. 6, 7, right).

The algorithm described in Sect. 6.2 was run 50 times, each time producing two
strong classifiers comprising 16 or fewer weak classifier members. The figure of 16
qubits was chosen because it allowed the computations to be performed in a reasonable
amount of time on a desktop computer while still allowing for some complexity in
the makeup of the strong classifiers. This set of 50 complete algorithmic iterations
was performed for 26 values of λ, the sparsity parameter introduced in Eq. (18). The
average percentage of error for both strong classifiers was examined, as was the best
error fraction achieved in the 50 iterations. These two quantities are defined as follows:

erravg = 1

50

50∑

i=1

Li (wopt) (89)

errmin = min
i

Li (wopt), (90)

where L is the function that counts the total number of incorrect classifications,
Eq. (17). The weight vector zopt can be substituted for wopt in Eqs. (89) and (90)

123

2064 K. L. Pudenz, D. A. Lidar

16 18 20 22 24 26
0.26

0.28

0.3

0.32

0.34

0.36

0.38

number of qubits

va
lid

 c
la

ss
ifi

er
 e

rr
or

 p
er

ce
nt

ag
e

16 18 20 22 24 26
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

number of qubits

im
pl

em
en

ta
tio

n
cl

as
si

fie
r

er
ro

r
pe

rc
en

ta
ge

Fig. 8 Error fractions of specification (left) and implementation (right) classifiers, for an increasing number
of qubits

if the strong classifier being analyzed is the implementation rather than the specifica-
tion classifier.

Both the average and minimum error for the specification and implementation
classifiers are plotted in Figs. 6 and 7, respectively, as a function of λ.

As shown in Figs. 6 and 7, while the average percent error for both classifiers
hovered around 25 %, the best percent error was consistently just below 16 % for both
the specification and implementation classifiers. The consistency suggests two things:
that the randomness of the algorithm can be tamed by looking for the best outcome
over a limited number of iterations, and that the sparsity parameter, λ, did not have
much effect on classifier accuracy.

Noting in particular the lack of dependency on λ, we move forward to examine the
results of simulations on more difficult and computationally intensive applications of
the algorithm. These results address the triplex monitor miscompare problem exactly
as described in Sect. 6.1 and increase the number of qubits as far as 26. The error
fractions of the best strong classifiers found, defined as

errmin(Q) = min
i

Li (wopt) i ∈ {1, . . . , nsim(Q)} (91)

where nsim(Q) is the number of simulations performed at Q qubits, are plotted in
Fig. 8 as a function of the number of qubits allowed in the simulation.

For Q = 16 through Q = 23, the error fraction shown is for the best-performing
classifier, selected from 26 iterations of the algorithm that were calculated using dif-
ferent values of λ. The consistently observed lack of dependence on λ in these and
other simulations (such as the 50-iteration result presented above) justifies this choice.
For Q = 24 to Q = 26, it was too computationally intensive to run the algorithm
multiple times, even on a high performance computing cluster, so the values plotted
are from a single iteration with λ assigned to zero. This was still deemed to be useful
data given the uniformity of the rest of the simulation results with respect to λ. The
dependence on the parity of the number of qubits is a result of the potential for the
strong classifier to return 0 when the number of weak classifiers in the majority vote is
even. Zero is not technically a misclassification in that the classifier places the vector

123

Quantum adiabatic machine learning 2065

x in the wrong class, but neither does the classifier give the correct class for x. Rather,
we obtain a “ don’t-know” answer from the classifier, which we do not group with the
misclassifications because it is not an outright error in classification. It is a different,
less conclusive piece of information about the proper classification of x which may in
fact be useful for other applications of such classifiers.

The important conclusion to be drawn from the data quantifying strong classifier
errors as a function of the number of available qubits is that performance seems to be
improving only slightly as the number of available qubits increases. This may indicate
that even with only 16 qubits, if the algorithm is iterated a sufficient number of times
to compensate for its random nature, the accuracy achieved is close to the limit of what
can be done with the current set of weak classifiers. This is encouraging in the context
of strong classifier generation and sets a challenge for improving the performance of
weak classifiers or breaking the problem into intermediate stages.

6.4 Comparison of results with theory

In light of the conditions for an ideal strong classifier developed in Sect. 4, it is rea-
sonable to ask the following questions: How close do the weak classifiers we have
for the problem studied here come to satisfying the conditions? What sort of accu-
racy can we expect our simulations to yield? Figure 9 and a few related calculations
shed some light on the answers. In the figure, each row of pixels represents a sin-
gle weak classifier in the dictionary and each column represents one vector in the
input–output space. Horizontal red lines divide the different levels of performance
exhibited by the weak classifiers. White pixels represent a given weak classifier cate-
gorizing a given input–output vector correctly. Black pixels represent incorrect clas-
sifications.

The problematic aspect of Fig. 9 is the vertical bars of white and black exhibited
by some of the more accurate classifiers. The method detailed above for constructing
a completely accurate strong classifier relies on pairs of classifiers which are correct
where others fall short, and which do not both classify the same input–output vector
incorrectly. This is impossible to find in the most accurate group of weak classifiers
alone, given that there are black bars of erroneous classifications spanning the entire
height of the set.

For numerical analysis of the performance of the set of Boolean weak classifiers
on the sample problem, we relate the statistics of the dictionary on the input–output
vector space V to Conditions 2 and 2a. Three quantities will be useful for this analysis.
The first is the error fraction of an individual weak classifier

η j = 1 − 1

|T |
|T |∑

s=1

H
[
ysh j (xs)

]
, (92)

that is, the fraction of the training set incorrectly classified by the weak classifier h j (x).
We use the Heaviside step function to count the number of vectors correctly classified.

123

2066 K. L. Pudenz, D. A. Lidar

Fig. 9 Accuracy of weak
classifier dictionary on
input–output vector space.
White/black pixels represent a
weak classifier hi (x) (all weak
classifiers meeting Condition 1
indexed in order of increasing
error η j as in Eq. (92) on
vertical axis) categorizing an
input–output vector (indexed in
lexicographical order on
horizontal axis, there are 29

vectors arising from the 9
Boolean variables in the sample
problem) correctly/incorrectly,
respectively. These
classifications were to determine
whether an input–output pair
was correct or erroneous, i.e., we
are analyzing the performance of
the specification classifier

Next is the minimum possible overlap of correctly classified vectors for a pair of
weak classifiers over V:

φ j j ′ = 1 − η j − η j ′ (93)

In Eq. (93), we add the correctness fraction (1 − η j) of each weak classifier, then
subtract 1 to arrive at the number of vectors that must be classified correctly by both
weak classifiers at once.

123

Quantum adiabatic machine learning 2067

The next definition we shall require is that of the actual overlap of correct classifi-
cations:

γ j j ′ = 1

|T |
|T |∑

s=1

H
[
ys

(
h j (xs)+ h j ′(xs)

)] ≡ φ j j ′ + ε j j ′ (94)

In Eq. (94), we count the number of vectors that are actually classified correctly by
both weak classifiers.

If the minimum possible and actual overlaps are the same, i.e., ε j j ′ = 0, then
Condition 2 holds, and the weak classifier pair has minimum correctness overlap.
Otherwise, if φ j j ′
= γ j j ′ , only the weaker Condition 2a is satisfied, so the weak
classifier pair has a greater than minimal correctness overlap and a forced overlap of
incorrect classifications ε j j ′ > 0 (see Fig. 2) that could cancel out the correct votes
of a different weak classifier pair and cause the strong classifier to be either incorrect
or inconclusive.

Our numerical analysis of the weak classifiers satisfying Condition 1 (having η j <

0.5) showed that the average correctness overlap γ j j ′ between any two weak classifiers
was 0.3194. The maximum correctness overlap for any pair of weak classifiers was
γ j j ′ = 0.6094. The minimum was γ j j ′ = 0.1563, between two weak classifiers with
respective error fractions (amount of the training set misclassified by each individual
weak classifier) of η j = 0.4844 and η j ′ = 0.4531. Compare this to the minimum
possible overlap with two such classifiers, φ j j ′ = 0.0625, and it becomes apparent
that this set of weak classifiers falls short of ideal, given that ε j j ′ = 0.0938 for the
weak classifier pair with minimum overlap.

When only the most accurate weak classifiers (η j = 0.3906; above the top red
horizontal line in Fig. 9) were included, the average correctness overlap was γ j j ′ =
0.4389, the maximum was γ j j ′ = 0.6094, and the minimum was γ j j ′ = 0.3594.
In order to come up with a generous estimate for the accuracy achievable with this
group of weak classifiers, we focus on the minimum observed correctness overlap.
The minimum possible correctness overlap for two classifiers with η j = 0.3906
is φ j j ′ = 0.2188. With an ideal set of weak classifiers of error η j = 0.3906 and
correctness overlap φ j j ′ = 0.2188, it would take seven weak classifiers to construct
a completely accurate strong classifier: three pairs of two classifiers each to cover a
fraction 0.6564 of the solution space with a correctness overlap from one of the pairs,
and one more weak classifier to provide the extra correct vote on the remaining 0.3436
fraction of the space. Assuming that three pairs of weak classifiers with minimum
overlap and optimal relationships to the other weak classifier pairs could be found,
there will still be a significant error due to the overlap fractions of the pairs being
larger than ideal. In fact, each pair of weak classifiers yields an error contribution of
ε j j ′ = 0.1406, guaranteeing that a fraction 3ε j j ′ = 0.4218 of the input–output vectors
will be classified incorrectly by the resulting strong classifier. This is not far from the
simulation results for odd-qubit strong classifiers (Fig. 8, left), which suggests that
the algorithm currently in use is producing near-optimal results for the dictionary of
weak classifiers it has access to.

123

2068 K. L. Pudenz, D. A. Lidar

7 Conclusions

We have developed a quantum adiabatic machine learning approach and applied it
to the problem of training a quantum software error classifier. We have also shown
how to use this classifier in quantum-parallel on the space of all possible input–output
pairs of a given implemented software program P . The training procedure involves
selecting a set of weak classifiers, which are linearly combined, with binary weights,
into two strong classifiers.

The first quantum aspect of our approach is an adiabatic quantum algorithm which
finds the optimal set of binary weights as the ground state of a certain Hamiltonian.
We presented two alternatives for this algorithm. The first, inspired by [6,17], gives
weight to single weak classifiers to find an optimal set. The second algorithm for
weak classifier selection chooses pairs of weak classifiers to form the optimal set and
is based on a set of sufficient conditions for a completely accurate strong classifier
that we have developed.

The second quantum aspect of our approach is an explicit procedure for using the
optimal strong classifiers in order to search the entire space of input–output pairs
in quantum-parallel for the existence of an error in P . Such an error is identified by
performing an adiabatic quantum evolution, whose manifold of low-energy final states
favors erroneous states.

A possible improvement of our approach involves adding intermediate training
spaces, which track intermediate program execution states. This has the potential to
fine-tune the weak classifiers, and overcome a limitation imposed by the desire to
restrict our Hamiltonians to low-order interactions, yet still account for high-order
correlations between bits in the input–output states.

An additional improvement involves finding optimal interpolation paths s(t) (26)
from the initial to the final Hamiltonian [52,53], for both the classifier training and
classifier implementation problems.

We have applied our quantum adiabatic machine learning approach to a problem
with real-world applications in flight control systems, which has facilitated both algo-
rithmic development and characterization of the success of training strong classifiers
using a set of weak classifiers involving minimal bit correlations.

Acknowledgments The authors are grateful to the Lockheed Martin Corporation for financial support
under the URI program. KP is also supported by the NSF under a graduate research fellowship. DAL
acknowledges support from the NASA Ames Research Center.

References

1. Vapnik, V.N.: Statistical Learning Theory. Wiley, London (1998)
2. Servedio, R.A., Gortler, S.J.: Equivalences and separations between quantum and classical learnability.

SIAM J. Comput. 33, 1067 (2004)
3. Aïmeur, E., Brassard, G., Gambs, S.: Machine learning in a quantum world. In: Lamontagne, L.,

Marchand, M. (eds.) Advances in Artificial Intelligence, vol. 4013 of Lecture Notes in Computer
Science, p. 431. Springer, Berlin (2006)

123

Quantum adiabatic machine learning 2069

4. Meir, R., Rätsch, G.: An introduction to boosting and leveraging. In: Mendelson, S., Smola, A. (eds.)
Advanced Lectures on Machine Learning, vol. 2600 of Lecture Notes in Computer Science, p. 118.
Springer, Berlin (2003)

5. Freund, Y., Schapire, R., Abe, N.: A short introduction to boosting. J. Jpn. Soc. Artif. Intell. 14, 771
(1999)

6. Neven, H., Denchev, V.S., Rose, G., Macready, W.G.: Training a binary classifier with the quantum
adiabatic algorithm. eprint arXiv:0811.0416

7. Neven, H., Denchev., V.S., Drew-Brook, M., Zhang, J., Macready, W.G., Rose, G.: NIPS 2009 demon-
stration: Binary classification using hardware implementation of quantum annealing (2009)

8. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Comput. Surv. (CSUR)
41(3), 15 (2009)

9. Dijkstra, E.W.: Notes on structured programming. In: Dahl, O.-J., Dijkstra, E.W., Hoare, C.A.R. (eds.)
Structured Programming, p. 1. Academic Press, New York (1972)

10. Tassey, G.: The economic impacts of inadequate infrastructure for software testing. National Institute
of Standards and Technology, RTI Project 7007.011 (2002)

11. Bryce, R., Kuhn, R., Lei, Y., Kacker, R.: Combinatorial testing. In: Ramachandran, M., de Carvalho,
R.A. (eds.) Handbook of Software Engineering Research and Productivity Technologies, p. 196. IGI
Global (2009)

12. Kuhn, D.R., Kacker, R.N., Lei, Y.: Practical combinatorial testing. NIST Special, Publication 800–142
(2010)

13. Grindal, M., Offutt, J., Andler, S.F.: Combination Testing Strategies: A survey. GMU Technical, Report
ISE-TR-04-05 (2004)

14. Cohen, D.M., Dalal, S.R., Parelius, J., Patton, G.C.: The combinatorial design approach to automatic
test generation. Softw. IEEE 13, 83 (1996)

15. D’Silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques for formal software
verification. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27, 1165 (2008)

16. Weber, T., Amjad, H.: Efficiently checking propositional refutations in HOL theorem provers. J. Appl.
Log. 7, 26 (2009)

17. Neven, H., Rose, G., Macready, W.G.: Image recognition with an adiabatic quantum computer I.
mapping to quadratic unconstrained binary optimization. eprint arXiv:0804.4457

18. Neven, H., Denchev, V.S., Rose, G., Macready, W.G.: Training a large scale classifier with the quantum
adiabatic algorithm. eprint arXiv:0912.0779

19. Bian, Z., Chudak, F., Macready, W.G., Rose, G.: The Ising model: teaching an old problem new tricks.
D-Wave Systems (2010)

20. Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5, 197 (1990)
21. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution. eprint

quant-ph/0001106
22. Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quantum adiabatic evolution

algorithm applied to random instances of an NP-complete problem. Science 292(5516), 472 (2001)
23. Aharonov, D., van Dam, W., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adiabatic quantum compu-

tation is equivalent to standard quantum computation. SIAM J. Comput. 37, 166 (2007)
24. Mizel, A., Lidar, D.A., Mitchell, M.: Simple proof of equivalence between adiabatic quantum compu-

tation and the circuit model. Phys. Rev. Lett. 99, 070502 (2007)
25. Jordan, S.P., Farhi, E., Shor, P.W.: Error-correcting codes for adiabatic quantum computation. Phys.

Rev. A 74, 052322 (2006)
26. Lidar, Daniel A.: Towards fault tolerant adiabatic quantum computation. Phys. Rev. Lett. 100, 160506

(2008)
27. Childs, Andrew M., Edward, Farhi, John, Preskill: Robustness of adiabatic quantum computation.

Phys. Rev. A 65, 012322 (2001)
28. Sarandy, M.S., Lidar, D.A.: Adiabatic quantum computation in open systems. Phys. Rev. Lett. 95,

250503 (2005)
29. Stehle, E., Lynch, K., Shevertalov, M., Rorres, C., Mancoridis, S.: On the use of computational geometry

to detect software faults at runtime. ICAC10, June 711. Washington, DC, USA (2010)
30. Le Traon, Y., Baudry, B., Jezequel, J.-M.: Design by contract to improve software vigilance. IEEE

Trans. Softw. Eng. 32, 571 (2006)

123

2070 K. L. Pudenz, D. A. Lidar

31. Mannor, S., Meir, R.: Geometric bounds for generalization in boosting. In: Helmbold, D., Williamson,
B. (eds.) Computational Learning Theory, vol. 2111 of Lecture Notes in Computer Science, pp. 461–
472. Springer, Berlin (2001)

32. Kotsiantis, S.B.: Supervised machine learning: A review of classification techniques. Informatica 31,
249 (2007)

33. Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn.
Res. 5, 1205 (2004)

34. Zhang, S., Zhang, C., Yang, Q.: Data preparation for data mining. Appl. Artif. Intell. 17, 375 (2003)
35. Cheng, H., Yan, X., Han, J., Hsu, C.-W.: Discriminative frequent pattern analysis for effective classi-

fication. In: International Conference on Data Engineering, p. 716 (2007)
36. Breiman, L.: Arcing classifiers. Ann. Stat. 26, 801 (1998)
37. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s razor. Inf. Process. Lett. 24, 377

(1987)
38. Biamonte, J.D., Peter, Love: Realizable Hamiltonians for universal adiabatic quantum computers. Phys.

Rev. A 78, 012352 (2008)
39. Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter setting problem.

Quantum Inf. Process. 7, 193 (2008)
40. Karimi, K., Dickson, N.G., Hamze, F., Amin, M.H.S., Drew-Brook, M., Chudak, F.A., Bunyk, P.I.,

Macready, W.G., Rose, G.: Investigating the performance of an adiabatic quantum optimization proces-
sor. Quantum Inf. Process. 11(1), 77 (2012)

41. Harris, R., Johnson, M.W., Lanting, T., Berkley, A.J., Johansson, J., Bunyk, P., Tolkacheva, E., Ladizin-
sky, E., Ladizinsky, N., Oh, T., Cioata, F., Perminov, I., Spear, P., Enderud, C., Rich, C., Uchaikin, S.,
Thom, M.C., Chapple, E.M., Wang, J., Wilson, B., Amin, M.H.S., Dickson, N., Karimi, K., Macready,
W., Truncik, C.J.S., Rose, G.: Experimental investigation of an eight-qubit unit cell in a superconduct-
ing optimization processor. Phys. Rev. B 82, 024511 (2010)

42. Cheng, H., Yan, X., Han, J., Hsu, C.-W.: Discriminative frequent pattern analysis for effective classi-
fication. In: IEEE 23rd International Conference on Data Engineering, Istanbul, Turkey (2007)

43. Teufel, S.: Adiabatic Perturbation Theory in Quantum Dynamics. Springer, Berlin (2003)
44. Jansen, S., Ruskai, M.-B., Seiler, R.: Bounds for the adiabatic approximation with applications to

quantum computation. J. Math. Phys. 48, 102111 (2007)
45. Lidar, D.A., Rezakhani, A.T., Hamma, A.: Adiabatic approximation with exponential accuracy for

many-body systems and quantum computation. J. Math. Phys. 50, 102106 (2009)
46. Roland, J., Cerf, N.J.: Quantum search by local adiabatic evolution. Phys. Rev. A 65, 042308 (2002)
47. Rezakhani, A.T., Pimachev, A.K., Lidar, D.A.: Accuracy versus run time in an adiabatic quantum

search. Phys. Rev. A 82, 052305 (2010)
48. Young, A.P., Knysh, S., Smelyanskiy, V.N.: Size dependence of the minimum excitation gap in the

quantum adiabatic algorithm. Phys. Rev. Lett. 101, 170503 (2008)
49. Slepian, D.: On the number of symmetry types of Boolean functions of N variables. Can. J. Math. 5,

185 (1953)
50. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. C–35,

677 (1986)
51. Jordan, Stephen P., Edward, Farhi: Perturbative gadgets at arbitrary orders. Phys. Rev. A 77, 062329

(2008)
52. Rezakhani, A.T., Kuo, W.-J., Hamma, A., Lidar, D.A., Zanardi, P.: Quantum adiabatic brachistochrone.

Phys. Rev. Lett. 103, 080502 (2009)
53. Rezakhani, A.T., Abasto, D.F., Lidar, D.A., Zanardi, P.: Intrinsic geometry of quantum adiabatic

evolution and quantum phase transitions. Phys. Rev. A 82, 012321 (2010)

123

	Quantum adiabatic machine learning
	Abstract
	1 Introduction
	2 Formalization
	2.1 Input and output spaces
	2.2 Recognizing software errors
	2.2.1 Validity domain and range
	2.2.2 Specification and implementation sets
	2.2.3 Generalizations

	3 Training a quantum software error classifier
	3.1 Weak classifiers
	3.2 Strong classifier
	3.3 The formal weight optimization problem
	3.4 Relaxed weight optimization problem
	3.5 From QUBO to the Ising Hamiltonian
	3.6 Adiabatic quantum computation

	4 Achievable strong classifier accuracy
	4.1 Conditions for complete classification accuracy
	4.2 Perfect strong classifier theorem
	4.3 Imperfect strong classifier theorem
	4.4 An alternate weight optimization problem

	5 Using strong classifiers in quantum-parallel
	5.1 Using two strong binary classifiers to detect errors
	5.2 Formal criterion
	5.3 Relaxed criterion
	5.4 Adiabatic implementation of the relaxed criterion
	5.5 Choosing the weak classifiers
	5.6 QUBO-AQC quantum parallel testing

	6 Sample problem implementation
	6.1 The triplex monitor miscompare problem
	6.2 Implemented algorithm
	6.3 Simulation results
	6.4 Comparison of results with theory

	7 Conclusions
	Acknowledgments
	References

