Quantum Computing Basics: Qubits and Quantum Gates

Basis set of a two-dimensional vector space

o= [4s -]

Qubit = complex vector

[1(8,#)) = cos (3) 0) +sin (3) e®|1); 6 € [0,7], ¢ € [0,2]

Fig. 1: Bloch sphere representation of a qubit.
(Example) Note e'® = cos(¢) + isin(¢)
Classical bits: | (0,0)) = |0); [¢(m, 0)) = |1)

Superposed states:|1p(§, 0)> = %(|0) + |1)); |1/J(§,T[)> = %QO) — 1))
Quantum gate = matrix

Pauli X (NOT) gate  Spin flip

_[0 1
1 orF
thus

_ [0 177111 _ 107 _ 4\, _ [0 177071 _ 117 _
X100 = 1 o] [0] - [1] = 1D X1 = 1 0 [1] B [0] = 10).
Hadamard (H) gate Important for generating superposition states for quantum parallelism
_1M1 1
H=% [1 —1]
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Two-qubit state = tensor product

|x)®y) = |x)|y) = [xy) =

(x = al0) + b|1))(y = c|0) + d|1)) = ac|00) + ad|01) + bc|10) + bd|11). (7)
Flat vector representation of tensor product uses the following basis set
1 0 0 0
Ol =100); 3] =101y 9] = 1203 (9] = 111) (8)
0 0 0 1
and thus
acy100 =0)
518 &l 1)~ [oe 110 =2 g
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Both binary and decimal indices are shown for the flat vector representation of the tensor-product state in Eq. (9).

Two-qubit gate: Controlled NOT (CNOT or controlled X) Essential for computation
xy x@v Truth table

0 0
control qubit target qubit 1 y 1
~ ]

CNOT ~
lx}y) — CNOT |c) ly) =x)xdy) 0
1

(10)
1 Yo

where @ is the logical exclusive OR operator (defined by the truth table, in which — is the logical
negation operator), or more specifically

CNOT(]00))= |00); CNOT(]01))= |01); CNOT(|10))=|11); CNOT(|11))= |10); (11)
Matrix notation of CNOT

00 01 10 11 :.

1 0 0 O

Unor= [0 1 0 0 01 =
0 0 0 1

0O 01 O 11

where / is the 2X2 identity matrix. The last notation represents the 4 X 4 matrix as 2X2 blocks,
with each block being a 2X2 matrix.
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Fig. 2: Operation of CNOT gate.

In Eq. (12), the most|least significant bit in a binary matrix row or column index (i.e., 00, 01, 10, 11) specifies
inter|intra-block index for the first|second qubit.



Circuit example (try it at https://quantum-computing.ibm.com using Composer)

This circuit generates a correlated 2-qubit state, (|00) + |11))/v/2, called Bell state.
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Fig. 3: Hadamard and CNOT gates example.
Operations 40 © Leftalignment v Inspect D Qiskit v Read only

Search 8= oo qle] - ﬁ Open in Quantum Lab
1 from qiskit import QuantumRegister,

. E E é a2 6 ClassicalRegister, QuantumCircuit

from numpy import pi
EEEEEE -

greg_q = QuantumRegistexr(2, 'q')
. . . - . . creg_c = ClassicalRegister(4, 'c')
circuit = QuantumCircuit(qreg_q,
+
3 I 3 0 o

8  circuit.h(qreg_q[0])
9  circuit.cx(qreg_q[0], qreg_q[1])
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Fig. 4: Hadamard and CNOT gates example using IBM Q Composer.
Q-sphere (it’s not the 1-qubit Bloch sphere) visually represents a state of n (< 5) qubits. The north|south pole signifies

the state where all qubits are 0|1 (e.g., |000)||111)), and the latitude is the Hamming distance from the all-zero state
(i.e., how many qubits are not zero).



Tensor product of one-qubit quantum gates (matrices)

Consider quantum gates 4 and B independently operating on the first and second qubits:

_[®11 Q2] , by, b12]
A_[a21 aZZ]' B by1 by
ay1b11  apibiy by agabyy
a.B a,B a1b a.1b a,»b a,b
— A Bz[ll 12]: 11021 11022 12021 12022 13
® a; B a;;B az1b11  Az1b1p;  aAzbi1 agyby (13)
Az1by1  Qp1byp  Azbyy  Apzby;
See Appendix for detailed explanation of Eq. (13).
(Example: quantum parallelism) HQH where H = % [1 _11]
1 1 1 1
_1[H HJ1_111 -1 1 -1
H®H_ﬁ[H —glTI 1 -1 41 (14
1 -1 -1 1

This circuit transforms a pure state to a superposition of all possible states, which is a way to
achieve quantum parallelism, e.g., HQH|00) = %(|00) +]01) + |10) + |11)).
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Fig. 5: An example tensor product of quantum operators.

(Application for quantum circuit reduction)

A:l[H H”I O”H H :l[H HX [H H]_1[l+HXH |—-HXH (15)
2lH -HIl0O XIlH —-H! 2lH —-HXIIH -H! 2l—-HXH I+ HXH
— H H —
Fig. 6: Quantum circuit A in Eq. (15).
Here, we have used the identity,
2_ 171 1721 171_21[2 01_1[1 0]_
H _\/5[1 —1]\/5[1 —1]_2[0 2]_[0 1]_1’ (16)
i.e., H is a symmetric orthogonal matrix (H = HT and HTH = HHT = I).
In Eq. (15),

R HA L[N R R [ 0 T A B A Pt



where Z denotes Pauli Z gate.

Substituting Eq. (17) to (15), we obtain

00 01 10 11 i
1 0 0 O 00
1fH HIJ[I OlJ[H H 1i[l+7Z 1—-27
A=> = =10 0 0 1| 01, (18)
Z[H —H”O X”H —H 2l —-Z I+7 00 1 0 10
01 0 0 11
where we have used the relation
10
1 _1[1+1 0 1_Jlo o
0 1
Equation (18) states that
A]00) = |00); A|10) = |10); A]01) = |11); A|11) = |01) (20)
or
Ax,y) =x @ y,y 20
which is CNOT gate, where the second qubit acts as the conditional qubit. Graphically, thus
- H 4 H p=—
2D
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Fig. 7: Quantum-circuit equivalence.
Measurement gate

Measurement operator M projects a qubit |Y) to the Z basis, i.e., eigenvectors |0) and |1) with
corresponding eigenvalues 1 and —1.

My) = |z){z[y) = Y(2)|z) (22)
Each measurement gate irreversibly returns the measured value, z = 0 or 1, with the probability”
WIMp) = Wlz)zlyp) = [Y(2)]* = P(2). (23)

* We need to run each circuit many times to obtain the probability.



Measurement example (try it at https://quantum-computing.ibm.com using Composer)

Consider a two-qubit circuit, where both qubits (named go and ¢1) are initialized to |0) by default.
This is simply the equivalent circuit in Fig. 7, after g1 was flipped to |1). The CNOT gate
conditional to ¢ then flips ¢; to |1). The measurements thus show both qubits are 100% in |1), as
A]01) = |11) shown in Eq. (20).
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Fig. 8: (Left) Operation of the equivalent quantum circuit in Fig. 7 to qubits. (Right) Resulting probability distribution
produced by IBM Q Composer.

B = H A

Fig. 9: Symbols for Pauli X (NOT), Pauli Z, Hadamard (H), conditional not (CNOT) and measurement gates used in
IBM Q Composer.

OpenQASM and Qiskit programs (see the code panel in Composer)

OPENQASM 2.0; from qiskit import QuantumRegister,

include "gelibl.inc"; ClassicalRegister, QuantumCircuit
from numpy import pi

qreg q[2];

creg c[2]; greg_q = QuantumRegister(2, 'q')
creg_c = ClassicalRegister(2, 'c')

h q[0]; circuit = QuantumCircuit(qreg_q, creg_c)

x ql1];

h ql[l1]1; circuit.h(qreg_ql[0])

cx q[0],q[1]; circuit.x(qreg_ql[1])

h q[0]; circuit.h(qreg_ql1])

h ql[1]; circuit.cx(qreg_ql[0], qreg_qll])

measure q[0] -> c[0]; circuit.h(qreg_ql[0])

measure q[1] -> c[1]; circuit.h(qreg_ql1])

circuit.measure(qreg_ql[0], creg_c[0])
circuit.measure(qreg_ql[l], creg_c[1])

OpenQASM Qiskit

Table I: OpenQASM and Qiskit programs for the quantum circuit in Fig. 8.

In Qiskit programming language, h() and x() are the one-qubit Hadamard and Pauli X (NOT) operators acting on the
specified qubit, cx() is the two-qubit CNOT gate acting on the specified two qubits, and measure() measures the state
of the specified qubit (first argument) and stores the measured value (€ {0,1}) to the specified classical bit (second
argument). QuantumRegister|ClassicalRegister() creates a quantum|classical register with the specified number of bits
and optional label. QuantumCircuit() creates a quantum circuit consisting of those registers.



Appendix: Tensor Product of Quantum Gates

Let the states of two qubits be

_ [*17. _ N
[x) = [xz], ly) = yz] (A1)
and one-qubit gates acting on respective qubits be
_[®11 Q12], , _ by, b12]

A= [a21 azz] ! b= [b21 bzz ' (Az)
Tensor product of the input two-qubit state is

X1)1

_ | X1Y2| _ [*1Y
X2Y2

where boldface font was used to indicate a two-element column vector nested inside a vector.
Similarly, tensor product of the output two-qubit state, after operation of both one-qubit gates on
respective qubits, is

_ (AX)1BY] _ [(@a11%1 + alzxz)BY] _ [a11B a1zB] X1y
A|x>®B|y> - (AX)ZBy - a21B azzB [xzy ’

 l(az1x; + azx,)By
where we have used boldface font to indicate a 2X2 matrix nested inside a vector or matrix and
(Ax), denotes the first element of the Ax vector. Equation (A4) demonstrates the nested nature of
one-qubit gates operating separably on two qubits. Namely, operators on the first and second qubits
act on inter- and intra-2X2 blocks within 4X4 matrix.

(A4)



