
Computer Physics Communications 239 (2019) 265–271

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

PAR2: Parallel RandomWalk Particle Tracking Method for solute
transport in porous media✩

Calogero B. Rizzo a,∗, Aiichiro Nakano b, Felipe P.J. de Barros a

a Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, USA
b Department of Computer Science, University of Southern California, Los Angeles, USA

a r t i c l e i n f o

Article history:
Received 8 June 2018
Received in revised form 9 November 2018
Accepted 16 January 2019
Available online 29 January 2019

Keywords:
Groundwater
Flows through porous media
RandomWalk Particle Tracking
CUDA
Solute transport

a b s t r a c t

Computational modeling of solute migration in groundwater systems is a fundamental component in
water resources management and risk analysis. Therefore, it is imperative to have fast and reliable
computational tools to simulate solute transport in groundwater systems. In this work we present PAR2,
a GPU-accelerated solute transport simulator based on the RandomWalk Particle Tracking (RWPT) tech-
nique, a Lagrangian method particularly suited for parallelization. PAR2 is able to run on any computing
platform equipped with an NVIDIA GPU, such as common desktops and High-Performance Computing
(HPC) nodes. The program is developed in C++/CUDA. In our illustration, groundwater flow is simulated
on a structured grid using MODFLOW, which can be linked to PAR2 using the LMT package. Simulation
parameters can be defined through a convenient YAML configuration file. Additionally, we propose an
analytical treatment of the dispersion tensor that allows the RWPT to be effectively implemented using
GPU parallelization. The speedup gained with the parallelization drastically reduces the total simulation
time, allowing the application of computationally expensive algorithms (e.g., Monte-Carlo simulation) on
large-scale stochastic hydro-systems.
Program summary
Program Title: PAR2.
Program Files doi: http://dx.doi.org/10.17632/4pkhgx8wcb.1
Licensing provisions: GPLv3
Programming language: C++/CUDA
Nature of problem: GPU-accelerated simulation of solute transport in saturated porous media.
Solutionmethod: Implementation of the particle trackingmethod, a fully Lagrangian approach to solve the
advection–dispersion equations.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Groundwater flows are plagued by spatio-temporal fluctua-
tions at multiple scales. Subsurface properties such as the hy-
draulic conductivity field and the porosity vary many orders of
magnitude which leads to variability in the flow field [1]. These
velocity fluctuations have a strong impact on the overall dispersive
behavior of a solute plume. Together with local scale dispersive
mass transfermechanisms, the spreading dynamics induced by the
variability of the groundwater flow field steepens concentration
gradients which in turn augments solute mixing [2]. The interplay
between flow variability and mass transfer mechanisms is cru-
cial to understand contaminant exposure as well as bio-chemical

✩ This paper and its associated computer programare available via the Computer
Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).

∗ Corresponding author.
E-mail address: calogerr@usc.edu (C.B. Rizzo).

activities, both critical to risk analysis and aquifer remediation.
Furthermore, due to high costs of data acquisition, groundwater
models are subject to uncertainty. Estimating the uncertainty due
to data scarcity in solute transport predications can be achieved
by adopting probabilistic tools in combination with geostatisti-
cal techniques [3]. Within the stochastic framework, several flow
and transport simulations on equiprobable realizations, i.e. Monte
Carlo simulations, of the subsurface environment are carried out
(e.g., [4]). As an outcome of the above mentioned factors, cap-
turing the spatio-temporal dynamics of a solute plume and the
uncertainty associated with model predictions requires intensive
computational effort [5,6].

Many softwares and numerical methods have been developed
in order to simulate solute transport in groundwater systems.
Numerical methods are usually classified as Eulerian, Lagrangian,
or mixed Eulerian–Lagrangian, based on the type of discretiza-
tion employed [7]. Within the groundwater community, the most
comprehensive software for solute transport is MT3DMS [8,9].

https://doi.org/10.1016/j.cpc.2019.01.013
0010-4655/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cpc.2019.01.013
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2019.01.013&domain=pdf
http://dx.doi.org/10.17632/4pkhgx8wcb.1
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:calogerr@usc.edu
https://doi.org/10.1016/j.cpc.2019.01.013

266 C.B. Rizzo, A. Nakano and F.P.J. de Barros / Computer Physics Communications 239 (2019) 265–271

MT3DMS provides several numerical methods to solve solute
transport (reactive and non-reactive). For example, it is possible
to use the standard finite-difference method, mixed Eulerian–
Lagrangian approach, and the total-variation-diminishing (TVD)
method. At the same time, a fully Lagrangian solver using the
Random Walk Particle Tracking (RWPT) method is provided by
the RW3D code developed by Fernàndez-Garcia et al. [10,11]
(for recent developments, see [12]) and RWHet developed by
LaBolle [13]. Comparison between Eulerian and Lagrangian ap-
proaches can be found in Salamon et al. [14] and Boso et al. [15]. Eu-
lerian methods can introduce a non-physical numerical diffusion
to the system as a result of the discretization scheme. Therefore,
the numerical grid must be refined where high concentration
gradients are expected. This process can be cumbersome in cases
where the dimension of the solute plume is small compared to
the cell size (e.g., instantaneous point or line injection), when the
transport is highly advective (i.e., high Péclet number) or when
the system is highly heterogeneous. On the contrary, Lagrangian
approaches do not suffer from numerical diffusion. For this reason
they are more convenient when advection is the key transport
mechanism or when the subsurface environment displays strong
heterogeneity in its hydraulic properties. For such reasons, the
RWPT method is widely used to model solute transport in hetero-
geneous groundwater systems [16].

One of the key drawbacks of particle tracking techniques is
that it may require a very high number of particles to accurately
represent the solute plume and avoid artificial concentration fluc-
tuations [12,14,15,17–19]. This may lead to a prohibitive com-
putational time. However, the high number of particles problem
can be remarkably attenuated by parallelizing the RWPT method
using modern parallel computing techniques. In fact, each particle
trajectory can be computed independently and, for such reasons,
the RWPT can be efficiently parallelized.

To verify the benefits due to the parallelization, we developed
PAR2, an open-source software implementing a parallelized ver-
sion of the RWPT method. Using the General-Purpose Computing
on Graphics Processing Units (GPGPU) methodology, we develop
an efficient GPU parallelized particle tracking code able to run on
NVIDIA GPUs. The code is written using C++/CUDA programming
language and it can be downloaded from the CPC library entry or
Git repository [20]. The results show the possibility to simulate so-
lute transport on a common desktop setup using a large number of
particles in a relatively short time. Moreover, given the increasing
number of High Performance Computing (HPC) clusters equipped
with NVIDIA GPUs, it is possible to include the software in a mas-
sively parallel Monte-Carlo framework, where each GPU simulates
one realization. In addition, we propose an analytical methodology
to compute the anisotropic displacement matrix needed for the
GPU parallelization.

The paper is structured as follows. The theoretical background
regarding thephysics of groundwater flows andRWPTmethods are
provided in Section 2. Section 3 describes the approach used for the
GPGPU parallelization along with the implementation details. An
illustrative example is shown in Section 4 as well as a comparison
with another existing software. Finally, concluding remarks are
provided in Section 5.

2. Background

2.1. Physics of flow and transport

In this work, we consider a steady-state flow through a satu-
rated 3D porous formation. The Cartesian coordinate system is de-
noted by x = (x, y, z). The hydraulic conductivity field is spatially

heterogeneous anddenotedbyK ≡ K(x). The flow field is governed
by the continuity equation:

∇ ·

[
K(x)
Θ(x)

∇φ(x)
]

= 0, (1)

where φ is the hydraulic head and Θ is the effective porosity.
With the solution for φ, the spatially variable velocity field u is

obtained through the use of Darcy’s law:

u(x) = −
K(x)
Θ(x)

∇φ(x), (2)

Given the elliptic nature of the flow equations, Eulerian numerical
methods, such as Finite Difference (FD) or Finite Volume (FV), can
be effectively used to compute the spatially heterogeneous velocity
field u. MODFLOW [21] provides several numerical methods for
the solution of the flow equations. An alternative solution is pro-
vided by PFLOTRAN [22], a parallel solver to simulate subsurface
flows.

Next, we consider transport of an inert solute to be governed by
advection and local-scale dispersion mechanisms. The concentra-
tion of the solute is represented by c and satisfies the Advection–
Dispersion equation [23]:

∂ (Θ(x)c(x, t))
∂t

+u(x) · ∇ (Θ(x)c(x, t)) =

∇ · [Θ(x)D(x)∇c(x, t)] , (3)

with given boundary and initial conditions. The local dispersion
tensor is denoted by D and models both the sub-Darcy scale het-
erogeneity and molecular diffusion. A possible choice for the dis-
persion tensor is (see Chapter 7 of Bear and Cheng [7]):

D(x) = (αT |u(x)| + Dm) I +
αL − αT

|u(x)|
u(x)u(x)T , (4)

where αL and αT are the longitudinal and transverse dispersivities,
Dm is the molecular diffusivity and I is the identity matrix. Other
possible choices of the dispersion tensor can be found in the liter-
ature [24,25]. Note that the implementation method we propose
can be adapted to different local-scale dispersion models.

2.2. Random walk particle tracking (RWPT)

The RWPT method is a Lagrangian framework that aims to find
a solution of (3). The solute plume is represented by Np particles,
each one carrying a fraction of the solute mass Mp = M0/Np,
where M0 is the mass of solute injected. The particles are moved
by three physical mechanisms: advection, diffusion and local-scale
dispersion. Advection is simulated by moving particles according
to the velocity field obtained through the solution of Eqs. (1) and
(2). In order to simulate the diffusion and local-scale dispersion, a
random displacement is added to the particle. Molecular diffusion
does not depend on the current velocity direction, thus the dis-
placement is radially symmetric (i.e., isotropic). On the other hand,
local-scale dispersion is anisotropic and depends on the direction
of the particle velocity.

The trajectory of a particle i can be computed using the Itô–
Taylor integration scheme [26]:

Xi(t + ∆t) = Xi(t) + A(Xi(t))∆t + B(Xi(t)) · ξ(t)
√

∆t, (5)

where ξ is a normal-Gaussian white noise vector, ∆t is the time
step, and the drift vector A and displacement matrix B are defined
as follows:

A(x) = u(x) + ∇ · D(x) +
1

Θ(x)
D(x) · ∇Θ(x), (6)

2D(x) = B(x) · B(x)T . (7)

C.B. Rizzo, A. Nakano and F.P.J. de Barros / Computer Physics Communications 239 (2019) 265–271 267

Note that the trajectory of each particle is independent from the
others. Moreover, the new position of the particle can be found
only using the current position, therefore not requiring the knowl-
edge of the full particle history. Since the governing Eq. (3) can be
transformed into an equivalent of the Fokker–Planck equation [26],
it can be proved that the particles density converges to the solution
of (3) when increasing the number of particles and reducing the
time step, therefore:

c(x, t) =
1

Θ(x)
lim
δ→0

1⏐⏐Vx,δ
⏐⏐

Np∑
i=1

Mp1Vx,δ (Xi(t)) , (8)

where Vx,δ is a control volume centered in x with characteristic
dimension δ (e.g., a sphere with center x and radius δ),

⏐⏐Vx,δ
⏐⏐ is

the volume of Vx,δ , and 1Vx,δ (x) is the indicator function (i.e, 1 if
x ∈ Vx,δ , 0 otherwise). Eq. (8) can be used to effectively compute
an approximation of the concentration c(x, t) by fixing δ with an
appropriate small number. Moreover, the average concentration
over an arbitrary control volume can be computed in a similar
fashion. Note that the smaller is the control volume, the more
particles are needed for the convergence. Several studies focused
on improving concentration estimation in situations where the
number of particles is low. These techniques allow to effectively
reduce the number of particles needed for the convergence of the
concentration field. For example, Fernàndez-Garcia and Sanchez-
Vila [27] proposed a Kernel Density Estimator (KDE) method to
reconstruct the concentration (we refer to [28] for a practical
application of the KDE method).

A comprehensive review about the RWPTmethod can be found
in [29]. Comparison with other numerical methods, e.g., Eulerian,
mixed Eulerian–Lagrangian and TVD methods, indicates that Par-
ticle Tracking is particularly suited for advection-dominated prob-
lems. Since the particles position is not linked to the underlying
grid, it is possible to use a coarser grid for the resolution of the flow
field. Moreover, the choice of the numerical grid is not affected by
the initial contaminant distribution.

The main disadvantage of the Particle Tracking method is the
high number of particles required for the convergence. However,
since each particle trajectory derived in (5) is independent, this
technique can be efficiently parallelized.

3. GPU parallelization

With the particle tracking method, the solute is represented by
a set of particles each one carrying a small portion of the totalmass.
Each particle follows Eq. (5). Since the trajectory of each particle
is independent, the particle positions can be updated in parallel.
The randomwalk particle trackingmethod is particularly suited for
GPUparallelization. The hardware architecture of aGPU is different
from a CPU. A CPU is composed of few powerful cores, able to
run multiple processes independently. On the contrary, a GPU is
composed of thousands of small cores, therefore suited to take
a huge array of data (e.g., particle positions) and apply the same
simple transformation on each element in parallel (e.g., update
position following Eq. (5)).

The implementation of the particle tracking method follows
these steps. First, the velocity field is imported and copied to
the GPU and the particle positions are initialized on the GPU.
Then, for each particle the current velocity is evaluated using the
appropriate interpolation method. Since the entire velocity field
is inside the GPU, there is no transfer of data between the GPU
and the host. Once the velocity is computed, we can use Eq. (5)
to update the particle positions. Again, this step is executed in
parallel on the CUDA device. Finally, we can proceed to the next
step. Given the particle positions, it is possible to compute global

quantities of interest, e.g., the center of mass of the particles or
the number of particles inside a given control volume. These quan-
tities can be efficiently computed inside the GPU, avoiding again
the need to transfer all the particle positions between GPU and
host.

PAR2 is a C++/CUDA Random Walk Particle Tracking simula-
tor implementing the strategy discussed above. In order to take
advantage of Object Oriented programming features, we employ
the Thrust library [30]. The Thrust template library provides a STL
interface of the CUDA language with some common algorithm
already implemented and optimized. Within the next sections
we analyze the main features and the design principles used in
PAR2.

3.1. Data structures

Three arrays in the device global memory are used to store
the position of the particles at the current time step. Each array
is storing the coordinate of all the particles in a given direction
(i.e., x, y and z coordinates). The dimension of these arrays is equal
to the number of particles Np. To exploit the benefits of the Thrust
library, the algorithm is rewritten in terms of two basic operations:
transform and reduce. For example, the particles position arrays
are transformed following Eq. (5) and a single CUDAkernel is called
for each time step. This ensures a coalesced access to the coordinate
arrays improving the overall computational speed-up.

Next, the velocity field must be stored on the device. The ve-
locity field is obtained by numerically solving the flow Eq. (1) on
a Cartesian grid with dimension nx × ny × nz . The final discrete
velocity is defined by the normal velocity in each face of the grid.
Thus, three arrays in the device global memory are used to store
the x, y and z velocities at the interface with dimensions (nx +1)×
ny × nz , nx × (ny + 1)× nz , and nx × ny × (nz + 1) respectively. This
datawill be used for the linear interpolation of the velocity on each
particle position. At the same time, for the trilinear interpolation
of the velocity (and its derivative), the velocity is evaluated at the
corners of each cell. These velocities are precomputed and loaded
into the device global memory in three arrays of size (nx + 1) ×

(ny + 1) × (nz + 1).
Finally, we point out that the memory required for the simu-

lation scales linearly with the number of particles Np and linearly
with the number of cells nx × ny × nz .

3.2. Pseudo-random number generator

One of the most important component of the particle tracking
method is the random displacement. This allows to simulate diffu-
sion and dispersion. A reliable pseudo-random number generator
must be used in order to compute the vector ξ in (5). Massively
parallel generation of independent pseudo-random numbers can
be cumbersome and it has been subject of several studies (see [31]
for more information on the topic). An inappropriate choice of a
parallel pseudo-random number generator can lead to time and/or
space cross-correlations betweenparticles, compromising the final
results. For this task, the well-established CURAND library is used,
allowing the generation of the pseudo-random numbers on the
GPU device in parallel.

3.3. Computing the drift vector and the displacement matrix

The drift vector defined in (6) is composed of the advection
componentu, a correction termdue to spatially variable dispersion
∇ · D, and a correction term due to spatially variable porosity
1
Θ
D · ∇Θ . The correction term due to spatially variable porosity is

268 C.B. Rizzo, A. Nakano and F.P.J. de Barros / Computer Physics Communications 239 (2019) 265–271

not yet implemented and will be added to a future release of PAR2.
Following the approach described in Salamon et al. [14], we use a
hybrid interpolation scheme, using linear interpolation (i.e., using
velocities at the interfaces) to compute the advection component
and trilinear interpolation (i.e., using velocities at the corners) for
the correction term due to spatially variable dispersion.

Then, the displacement matrix defined in (7) is evaluated. In-
cluding a non-constant dispersion requires to compute the eigen-
values and eigenfunctions of D for each particle and for each time
step. Using classical iterative methods to compute eigenvalues of
many small matrices in CUDA threads would dramatically impact
the GPU efficiency. Thus, the eigenvalues and eigenvectors ofD are
computed analytically.

The velocity at the particle position is evaluated using a trilinear
interpolation scheme. Thus, given the Darcy-scale velocity u =

[u1, u2, u3]
T at the particle position, the displacement matrix B

is computed according to (7). First, we note that the dispersion
matrix (4) can be rewritten as:

D = aI + bW, (9)

where a = αT |u| + Dm, b = (αL − αT)/|u| and W = uuT . Let vi be
an eigenvector ofW and λi the corresponding eigenvalue, then:

Dvi = avi + bWvi = (a + bλi)vi = γivi. (10)

The result above implies that vi is also an eigenvector of D with
eigenvalue γi = a + bλi. Since 2D = B · BT (see Eq. (7)), given all
the eigenvalues and the corresponding orthogonal eigenvectors of
W, the matrix B can be computed as:

B =

3∑
i=1

√
2γi

vivTi
vTi vi

. (11)

More details about the derivation of Eq. (11) can be found in
Appendix. If u ̸= 0, one of the eigenvalues of W is the square of
the modulus of the velocity |u|

2 with corresponding eigenvector
u (i.e. Wu = (uuT)u = |u|

2u). Moreover, if u1 ̸= 0, we can
analytically compute the other two pairs such that:

λ1 = |u|
2 and v1 = u, (12)

λ2 = 0 and v2 = [−u2, u1, 0]T , (13)

λ3 = 0 and v3 = [−u3u1, −u3u2, u2
1 + u2

2]
T . (14)

Note that v1, v2, v3 form an orthogonal base. This decomposition is
valid if all the orthogonal eigenvectors in (12)–(14) are non-zero. A
sufficient condition for this to happen is u1 ̸= 0. In the case where
u1 = 0, a small number ε is added to u1 such that the numerical
error introduced is masked by the molecular diffusion (i.e., ε ≪

Dm/αL). The displacement matrix can be computed analytically for
each particle in parallel in the GPU using Eqs. (12)–(14) together
with (11).

3.4. Input/output

In order to use PAR2, a configuration file must be prepared for
each simulation. We use the YAML markup language for this file,
providing an easy and convenient interface to the code. Therefore,
knowledge of C++/CUDA programming language is not required
to use PAR2. Moreover, given the popularity of the YAML format,
most of the programming languages already have a library able to
read and write a YAML file, thus PAR2 can be easily collocated in
a broader simulation framework. An example of configuration file
is:

The parameters are divided into four blocks:

1. grid: dimensions and parameters of the simulation grid.
2. physics: physical parameters of the site.
3. simulation: parameters required by the particle tracking

method.
4. output: define quantities to output during the simulation.

Note that the particle starting position in the simulation block is
defined by two points p1 and p2. These two points define a volume
(i.e., all x such that p1,i < xi < p2,i for i = 1, 2, 3) in which the
particles are randomly and uniformly placed. Finally, the link to
MODFLOW is made using the LMT package. Adding this package to
the MODFLOW simulation will generate the Flow-Transport Link
(FTL) file containing the volumetric flow rates at cell interfaces. The
path to this file must be defined in the physics block of the YAML
parameter file.

4. Verification and speed-up analysis

In this sectionwe perform a simulation using data from a realis-
tic aquifer.We consider the fluvio-aolian deposits located in South-
east Brazil close to the town of Descalvado in the state of São Paulo.
Geological and laboratory analysis of the site have been provided
by Bayer et al. [32,33]. The geological formation is characterized

C.B. Rizzo, A. Nakano and F.P.J. de Barros / Computer Physics Communications 239 (2019) 265–271 269

Fig. 1. MPS simulation of the fluvio-aolian deposits located in Descalvado,
Brazil [32]. The size of the field is 42 m × 42 m × 5.8 m. Each color represents a
hydroface (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article).

Table 1
Lithofacies and hydrofacies distribution of the Descalvado site.
Lithofacies Description K [m/s] %

SGt Trough-cross-bedded sand 3.0 × 10−4 29.12
and gravel 9.4 × 10−5 1.72

Sp Planar-cross-bedded aeolian sand 1.6 × 10−4 34.97

Sh/Sp Horizontally laminated to planar 1.4 × 10−3 8.84
cross-stratified sand 7.8 × 10−5 1.33

St Trough-cross-bedded sand
6.0 × 10−5 5.31
2.5 × 10−5 9.52
6.2 × 10−6 9.16

Fm Massive clay intraclasts 7.8 × 10−8 0.03

by 5 lithofacies and 9 hydrofacies (see Table 1). Using multiple-
point statistics (MPS) simulations, Bayer et al. [32,33] randomly
generated different realizations of the hydraulic conductivity spa-
tial distribution. For this work, we use one of these realizations,
depicted in Fig. 1. The aquifer’s dimension is Lx×Ly×Lz , where Lx =

Ly = 42 m and Lz = 5.8 m. The grid resolution is 420 × 420 × 58
cells (i.e., the cell size is 0.1 m × 0.1 m × 0.1 m), with a total of
10, 231, 200 cells. For simplicity, the effective porosity is assumed
to be constant and equal to the average porosity of the entire field
(Θ = 0.285). The flow field is computed usingMODFLOW[21]. The
hydraulic head on the boundaries orthogonal to the x-axis is set
such that the difference ∆φ̂ satisfies ∆φ̂/Lx = 0.01 (i.e. Dirichlet
boundary conditions). A no-flow condition is used for the other
boundaries (i.e., Neumann type boundary conditions).

The flow field generated by MODFLOW is used for the simu-
lation of the solute transport. For the transport simulation we use
theGPU-accelerated PAR2. To verify the correctness and the perfor-
mance of the software,we compare the resultswith theRW3D [10–
12], a robust software implementing the RWPT method without
parallelization. For the purpose of illustration, the dispersivities are
assumed to be αL = 0.01m and αT = 0.001 m. The molecular
diffusion coefficient is Dm = 10−9m2/s. We consider a line source
located between the points s1 = (5, 10, 2.9) and s2 = (5, 32, 2.9).
The particles are uniformly distributed along the line source. The
total simulation time is 30 days with a time step ∆t = 1h = 3600
s for a total of 720 steps. Two snapshots of the particle positions
are displayed in Fig. 2.

All the simulations are carried out using a desktop computer
equipped with a CPU Intel Core i7-6700 CPU @ 3.40 GHz x 8 (for
RW3D) and a GPU NVIDIA GeForce GTX 745/PCIe/SSE2 (for PAR2)
equipped with 384 CUDA Cores and 4GB of internal RAMmemory.
First, we set the number of particles Np = 20,000. Two snapshots

at time t = 7.5 days and t = 30 days of the particle positions are
shown in Fig. 2. The particles distribution is in agreement in both
methods. In Fig. 3 we compare the normalized cumulative Break-
Through Curve (BTC) at two control planes (CP) orthogonal to the
x-axis located at 5m (CP-1) and 25m (CP-2) from the injection line-
source. The results reported in Fig. 3 show an excellent agreement
between RW3D and PAR2.

Finally, we report the computational run time for the whole
simulation using different number of particles in both RW3D and
PAR2. As shown in Fig. 4, PAR2 is able to complete the entire
simulation within few seconds. When utilizing 100,000 particles,
the simulation carried outwith PAR2 is roughly 98 times faster than
the corresponding non-parallelized simulation. PAR2 can be com-
piled using single-precision or double-precision float numbers.
As shown in Fig. 4, using single-precision usually leads to faster
simulations and we have not seen any remarkable difference on
the results due to the float-precision choice. Note that the speed-
up difference due to the float precision depends on the GPU device
used. It is clear that the proposed GPU parallelization provides a
manner to mitigate the high number of particles constrain that
typically characterizes the particle trackingmethods. For example,
using 1 million particles for the same simulation would require a
total computation time of 43.8 seconds (using our desktop com-
puter and single-precision float numbers). Simulation time can be
further reduced by using GPU cards dedicated to scientific com-
puting, usually more powerful than desktop GPUs. To understand
the amount of memory used in the device, we run a simulation
with 200 million particles. In this case, the simulation was com-
pleted in less than 2 hours. It is interesting to note that PAR2 used
only 2.6GB of the GPU internal memory, showing the possibil-
ity to perform relatively large simulations despite GPU memory
limitations.

Being able to perform simulations with millions of particles
allows to compute the solute concentration over very small control
volume (e.g., an observationwell).Moreover, it is possible to obtain
a better convergence for the high-order spatial-moments of the
plume (e.g., skewness and kurtosis) or the time-derivative of the
spatial-moments (e.g., effective dispersion).

5. Summary and future work

We developed PAR2, an open source, simple-to-use, GPU-
accelerated Random Walk Particle Tracking C++/CUDA code to
simulate solute transport in groundwater flows. The RWPTmethod
is particularly suited for parallelization, since the trajectory of
each particle is independent from the others. All the simulation
is carried out inside the GPU device, avoiding massive transfer of
data between the host and the device. To achieve this goal, we
provide an alternative method to compute the displacement ma-
trix associatedwith the local-scale dispersion tensor. Furthermore,
simulation parameters are defined in a YAML configuration file,
where it is also included a convenient interface with MODFLOW,
a commonly used groundwater flow simulator. The usage of PAR2

does not require any particular knowledge about C++/CUDA pro-
gramming techniques.

We provide a benchmark simulation, where solute transport in
a realistic aquifer located in Brazil is simulated. In addition, we
provide a comparison between PAR2 and another available particle
tracking code in the literature. Our results indicate a significant
reduction of computational time, being able to complete the full
benchmark simulation in less than a minute. Due to its efficiency,
the software can be adopted within a Monte Carlo framework on
desktops equipped with NVIDIA GPU cards or GPU-accelerated
HPC clusters, by accelerating the transport simulation in each real-
ization. RWPT simulations using millions of particles are possible

270 C.B. Rizzo, A. Nakano and F.P.J. de Barros / Computer Physics Communications 239 (2019) 265–271

Fig. 2. Raw particles position using RW3D (red particles) and PAR2 (green particles) after 7.5 days (top) and 30 days (bottom). The number of particles is Np = 20,000 in
both cases. Blue lines indicate the initial position of the particles (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article).

Fig. 3. Normalized cumulative Break-Through Curve (BTC) computed at two con-
trol planes (CP) orthogonal to the x-axis located at 5 m (CP-1) and 25m (CP-2) from
the injection line-source using RW3D and PAR2 .

thanks to the GPU parallelization, providing a way to ameliorate
the computational cost of large numbers of particles that might
limit the range of applications. As shown in the benchmark test, we
were able to complete the simulation in a grid with 10million cells
using 200 million particles. These numbers can be easily increased
using modern and more capable GPUs.

PAR2 alleviates the computational costs associated with stoch-
astic simulations of hydrogeological systems. However, the par-
ticle tracking software can also be employed in other physical
systems that are governed by highly advective (or convective)
processes. As for possible future work, the software needs to be
expanded to account for more complex flow scenarios such as
partially saturated porous media flows, non-constant porosity,
transient conditions, unstructured grid (e.g., see [34]), and discrete
fracture networks (e.g., see [35]). Probably the most challenging
problem, from an implementation point of view, is the inclusion
of complex biogeochemical reactions (see [15]). Many efficient
approaches to include reactions in RWPT have been proposed
recently (e.g., see [12,36–38]). However, in this case a highly scal-
able approach may be more indicated than the most efficient
one.

Fig. 4. Computational time required to run the full benchmark simulation using
RW3D and PAR2 with different number of particles Np . Computational times for
PAR2 are reported using both single-precision and double-precision float numbers.

Acknowledgments

The authors acknowledgeDaniel Fernàndez-Garcia andChristo-
pher V. Henri for providing RW3D, the CPU Random Walk Particle
Tracking code, Peter Bayer, Alessandro Comunian, Dominik Höyng
and GregoireMariethoz for providing the open dataset used for the
benchmark, and Jeremy Bennett for the suggestion of such dataset.
This work was funded by the National Science Foundation under
Grant No. 1654009.

Appendix

In this section, we prove that choosing B as in Eq. (11) satisfies
the relation 2D = B · BT (Eq. (7)). If γi and vi are the eigenvalues
and orthogonal eigenvectors of D, then:

B · BT
=

(
3∑

i=1

√
2γi

vivTi
vTi vi

)
·

(
3∑

i=1

√
2γi

vivTi
vTi vi

)T

=

(
3∑

i=1

√
2γi

vivTi
vTi vi

)
·

(
3∑

i=1

√
2γi

(vivTi)
T

vTi vi

)
.

C.B. Rizzo, A. Nakano and F.P.J. de Barros / Computer Physics Communications 239 (2019) 265–271 271

Since vivTi is symmetric, then:

=

(
3∑

i=1

√
2γi

vivTi
vTi vi

)
·

(
3∑

i=1

√
2γi

vivTi
vTi vi

)

=

3∑
i=1

3∑
j=1

√
2γi
√
2γj

vivTi vjv
T
j

vTi viv
T
j vj

.

Since vi are orthogonal, vTi vj = δijvTi vi, therefore:

=

3∑
i=1

2γi
vivTi
vTi vi

.

This final form is equal to 2D, in fact for every eigenvector vj
(i.e., Dvj = γjvj):

B · BTvj =

3∑
i=1

2γi
vivTi
vTi vi

vj = 2γjvj = 2Dvj.

References

[1] Y. Rubin, Applied Stochastic Hydrogeology, Oxford University Press, 2003.
[2] M. Dentz, F.P.J. de Barros, J. Fluid Mech. 777 (2015) 178–195.
[3] D. Allard, J.-p. chilès, p. delfiner, Geostatistics: Modeling Spatial Uncertainty,

2013.
[4] F. Ballio, A. Guadagnini, Water Resour. Res. 40 (4).
[5] M. Moslehi, R. Rajagopal, F.P.J. de Barros, Adv. Water Resour. 83 (2015)

299–309.
[6] M. Moslehi, F.P.J. de Barros, F. Ebrahimi, M. Sahimi, Adv. Water Resour. 96

(2016) 180–189.
[7] J. Bear, A.H.-D. Cheng, Modeling Groundwater Flow and Contaminant Trans-

port, vol. 23, Springer Science & Business Media, 2010.
[8] C. Zheng, MT3D, a modular three-dimensional transport model.
[9] C. Zheng, P.P. Wang, Tech. rep., Alabama Univ University, 1999.

[10] D. Fernàndez-Garcia, T.H. Illangasekare, H. Rajaram,Water Resour. Res. 41 (3).
[11] D. Fernàndez-Garcia, T.H. Illangasekare, H. Rajaram, Adv.Water Resour. 28 (7)

(2005) 745–759.
[12] C.V. Henri, D. Fernàndez-Garcia, Water Resour. Res. 50 (9) (2014) 7206–7230.

[13] E. LaBolle, User’s Manual and Program Documentation, Univ. of Calif. Davis.
[14] P. Salamon, D. Fernàndez-Garcia, J.J. Gómez-Hernández, J. Contam. Hydrol. 87

(3–4) (2006) 277–305.
[15] F. Boso, A. Bellin, M. Dumbser, Adv. Water Resour. 52 (2013) 178–189.
[16] C. Zheng, G.D. Bennett, Applied Contaminant Transport Modeling, vol. 2,

Wiley-Interscience New York, 2002.
[17] A.E. Hassan, M.M. Mohamed, J. Hydrol. 275 (3–4) (2003) 242–260.
[18] D. Fernàndez-Garcia, X. Sanchez-Vila, J. Contam. Hydrol. 120 (2011) 99–114.
[19] D. Ding, D.A. Benson, A. Paster, D. Bolster, Adv.Water Resour. 53 (2013) 56–65.
[20] C.B.R. Rizzo, Par2 , 2018, https://github.com/GerryR/par2.
[21] A.W.Harbaugh,MODFLOW-2005, TheUSGeological SurveyModular Ground-

Water Model: The Ground-Water Flow Process, US Department of the Inte-
rior, US Geological Survey Reston, 2005.

[22] G.E. Hammond, P.C. Lichtner, R. Mills, Water Resour. Res. 50 (1) (2014)
208–228.

[23] E.M. LaBolle, G.E. Fogg, A.F. Tompson, Water Resour. Res. 32 (3) (1996)
583–593.

[24] R. Burnett, E. Frind, Water Resour. Res. 23 (4) (1987) 683–694.
[25] P.C. Lichtner, S. Kelkar, B. Robinson, Water Resour. Res. 38 (8).
[26] H. Risken, Fokker–Planck Equation, Springer, 1996.
[27] D. Fernàndez-Garcia, X. Sanchez-Vila, J. Contaminant Hydrol. 120 (2011)

99–114.
[28] D. Pedretti, D. Fernàndez-Garcia, D. Bolster, X. Sanchez-Vila, Water Resour.

Res. 49 (7) (2013) 4157–4173.
[29] P. Salamon, D. Fernàndez-Garcia, J.J. Gómez-Hernández, J. Contaminant Hy-

drol. 87 (3–4) (2006) 277–305.
[30] N. Bell, J. Hoberock, GPU Computing Gems Jade Edition, Elsevier, 2011, pp.

359–371.
[31] C.L. Phillips, J.A. Anderson, S.C. Glotzer, J. Comput. Phys. 230 (19) (2011)

7191–7201.
[32] P. Bayer, A. Comunian, D. Höyng, G. Mariethoz, Sci. Data 2 (2015) 150033.
[33] P. Bayer, A. Comunian, D. Höyng, G. Mariethoz, Physicochemical properties

and 3d geostatistical simulations of the herten and the descalvado aquifer
analogs.

[34] S. Painter, C. Gable, S. Kelkar, Comput. Geosci. 16 (4) (2012) 1125–1134.
[35] N. Makedonska, S.L. Painter, Q.M. Bui, C.W. Gable, S. Karra, Comput. Geosci.

19 (5) (2015) 1123–1137.
[36] M. Rahbaralam, D. Fernàndez-Garcia, X. Sanchez-Vila, J. Comput. Phys. 303

(2015) 95–104.
[37] D.A. Benson, D. Bolster, Water Resour. Res. 52 (11) (2016) 9190–9200.
[38] G. Sole-Mari, D. Fernàndez-Garcia, P. Rodríguez-Escales, X. Sanchez-Vila, Wa-

ter Resour. Res. 53 (11) (2017) 9019–9039.

http://refhub.elsevier.com/S0010-4655(19)30019-0/sb1
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb2
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb3
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb3
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb3
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb5
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb5
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb5
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb6
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb6
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb6
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb7
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb7
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb7
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb9
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb11
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb11
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb11
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb12
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb14
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb14
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb14
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb15
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb16
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb16
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb16
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb17
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb18
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb19
https://github.com/GerryR/par2
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb21
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb21
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb21
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb21
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb21
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb22
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb22
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb22
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb23
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb23
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb23
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb24
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb26
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb27
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb27
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb27
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb28
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb28
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb28
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb29
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb29
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb29
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb30
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb30
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb30
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb31
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb31
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb31
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb32
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb34
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb35
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb35
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb35
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb36
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb36
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb36
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb37
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb38
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb38
http://refhub.elsevier.com/S0010-4655(19)30019-0/sb38

	PAR2: Parallel Random Walk Particle Tracking Method for solute transport in porous media
	Introduction
	Background
	Physics of Flow and Transport
	Random Walk Particle Tracking (RWPT)

	GPU Parallelization
	Data Structures
	Pseudo-Random Number Generator
	Computing the Drift Vector and the Displacement Matrix
	Input/Output

	Verification and Speed-up Analysis
	Summary and Future Work
	Acknowledgments
	Appendix
	References

