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As the scale of quantum molecular dynamics  
simulations has grown in time and system size, QMD 
codes must increase intranode and instruction- level 
parallelism to take advantage of emerging supercomputer 
architectures. The authors present one promising 
parallelization approach and illustrate its success 
on one of the world’s most powerful systems.

Quantum molecular dynamics (QMD) simula-
tions are a critical tool in various scientifi c 
domains including condensed- matter phys-
ics, materials science, chemistry, and biol-

ogy. As the scale of QMD simulations has grown beyond 
the canonical metrics of time and system size, there has 
been a paradigm shift to more “naturally” parallel meth-
ods such as divide- and- conquer, equilibrium and non-
equilibrium statistical sampling, and high- throughput 
screening. The scientifi c community has also needed to 

adapt to the short fi ve- year life cycle of new computer 
architectures. 

We explore how QMD simulations have evolved 
over the years and then focus on a novel approach 
that extends divide- and- conquer. We also present two 
examples of successes achieved with this method on 
Mira (www.alcf.anl.gov/mira), the 10- petaflops IBM 
Blue Gene/Q system at Argonne National Laboratory 
(ANL) currently ranked fifth on the TOP500 super-
computer list.
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CALCULATING  
ELECTRONIC STRUCTURE
Electronic structure theory is con-
cerned with approximately solving the 
Schrödinger equation (SE) for atoms, 
molecules, and condensed- phase 
materials. The SE is a nonrelativis-
tic  quantum-  mechanical equation of 
motion that governs the interaction of 
matter via electromagnetic forces, most 
notably the Coulombic interaction. The 
properties of everyday materials are 

given by solutions to the SE, Ψ, which 
are called wave functions. 

The time- dependent SE (TDSE) for 
a material’s electrons and nuclei is 
given by
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operators for the kinetic energy and 
potential, respectively, of all the elec-
trons and nuclei; r, R, Ne, and NI are the 
coordinates of the electrons, coordinates 
of the nuclei, total number of electrons, 
and total number of nuclei, respectively. 
The TDSE is a high- dimensional linear 
partial differential equation that relates 
the total energy of the wave function to 
its partial time derivative. 

If the potential operator is time 
independent, which is the case for 
many materials of interest, then the 
TDSE can be simplified to the time- 
independent SE (TISE):

+ Ψ= Ψ
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where E is the total energy of all the 
electrons and nuclei. 

Solving the SE is further com-
plicated by symmetry constraints 

imposed by quantum mechanics. The 
wave functions must be either sym-
metric or antisymmetric under an 
odd number of quantum particle per-
mutations. This combinatorial opera-
tion means that exact SE solutions are 
O(N!) in computational complexity. 
As a result, exact solutions are com-
putationally intractable for all but 
the simplest atoms even with mod-
ern massively parallel supercomput-
ers. However, methods with varying 
degrees of accuracy can be used to cal-
culate approximations.

Electronic structure can be calcu-
lated using a vast array of methods 
with esoteric acronyms such as QMC 
(quantum Monte Carlo), DFT (density 
functional theory), and CCSD(T) (cou-
pled cluster with single, double, and 
perturbative triplets), just to name a 
few. These methods can be broadly cat-
egorized into single- particle and many- 
body methods. The former deal with a 

set of N one- electron wave functions, 
Ψ = Ψ(ri; rj ≠ i, R), that are calculated 
self- consistently with a “mean field” 
produced by all the electrons. The lat-
ter methods use the many- electron 
wave function in Equation 2 to achieve 
greater accuracy but at higher compu-
tational cost.

High- performance computing  (HPC) 
has been critical in enabling electronic 
structure calculations due to their high 
order of computational complexity. For 
example, the computational complex-
ity of DFT is O(N3) and that of CCSD(T) 
is O(N7). 

DFT is one of the most widely used 
methods because of its accessibility to 
nonexperts, its computational tracta-
bility, and its qualitative and quantita-
tive predictive power. With DFT, all of 
a material’s electronic structural prop-
erties can be obtained from a universal 
energy functional of the ground-state 
density. This significantly reduces the 
calculation’s dimensionality from a 
3N- dimensional many- electron wave 
function to a 3D density function.1

There are many DFT implementa-
tions, based on equations developed in 
the mid- 1960s by Walter Kohn and Lu 
Jeu Sham (KS),2 that provide an ansatz 
for this energy functional. Using an 
approximation for the core electrons 
known as the pseudopotential, these 
algorithms iteratively solve the equa-
tions by calculating what are known 
as KS orbitals.

QUANTUM MOLECULAR 
DYNAMICS
The computational workhorse of mate-
rials science is molecular dynamics 
(MD), which simulates the dynamic 
properties of materials by comput-
ing the motion of all the atoms due to 
the interactions of the forces between 
them. Aneesur Rahman performed the 

DENSITY FUNCTIONAL THEORY 
SIGNIFICANTLY REDUCES THE 

DIMENSIONALITY OF ELECTRONIC 
STRUCTURE CALCULATIONS.
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first MD simulation at ANL in 1964,3 
the same year Kohn and Pierre Hohen-
berg introduced DFT. It was not until 
the 1990s, however, that computational 
power was sufficient to couple MD 
with DFT.4 These simulations treat the 
nuclei as particles propagated by clas-
sical equations of motion, such as New-
tonian mechanics, and the electrons 
quantum mechanically. However, other 
equations of motion can be used, most 
notably the Car−Parrinello method5 
that substitutes a fictitious mass for the 
electrons to avoid computing the DFT 
ground state at each time step. DFT- 
based MD methods go by many names 
including ab initio MD, first- principles 
MD, DFT- MD, or simply QMD.

The sidebar “Density Func-
tional Theory Calculations on High- 
Performance Computing Architec-
tures” describes the increasing scale of 
DFT calculations enabled by advances 
in supercomputing technology.

This article focuses on QMD tech-
niques based on pseudopotentials and 
the plane- wave method. In this formu-
lation, each KS orbital is enumerated 
by band index n, spin index σ, Brill-
ouin zone index k (the k- point), and 
plane- wave index G:

r Gk k
Gr

G
∑ψ ( ) ( )=

σ σ
−c en n

i . (4)

The total number of KS orbitals solved 
for are Nb × Nk × Nσ,  which is the prod-
uct of the total number of bands, total 
number of k- points, and total number 
of spins, respectively.

LINEAR-SCALING DFT
In ordinary conditions, a wave func-
tion’s high dimensionality only man-
ifests itself at short distances (across a 
few atoms). Researchers have proposed 
various O(N) DFT techniques to exploit 
this data- locality principle, known 

as quantum nearsightedness.6 Among 
these techniques is the divide- and- 
 conquer (DC) DFT algorithm pioneered 
by Weitao Yang.7 DC in general is highly 
scalable on massively parallel comput-
ers and has been applied successfully 
to broad computational problems rang-
ing from the formally O(N2) classical   
N- body problem to the O(N3) eigenvalue 
problem, to the exponentially complex 
quantum N- body problem. DC- DFT sub-
divides the physical system into spa-
tially localized domains embedded in 
a global electrostatic potential, which 
is computed in O(N) operations using a 
tree- based multi grid. Specifically, the 
algorithm numerically obtains local 
KS orbitals in the domains (calculated 
using the preconditioned conjugate 
gradient method) and the global elec-
trostatic potential using a global−local 
self- consistent- field iteration.

Our own lean DC- DFT (LDC- DFT) 
algorithm minimizes the O(N) prefac-
tor by optimizing DC computational 
parameters as well as density- adaptive 
boundary conditions at the domain 
peripheries.8,9 We have implemented 
LDC- DFT on parallel computers by 
employing multiple levels of parallel-
ism with hierarchical band−spatial 
decomposition. At the coarser level, 
we use task decomposition among 

domains; at the finer level, we paral-
lelize the plane- wave- based calcula-
tions within each domain by combin-
ing spatial and band decompositions.

Even with O(N) DFT techniques, 
predicting a material system’s long- 
time dynamics is computationally 
difficult, as the sequential bottleneck 
of time precludes straightforward 
parallelization. Here, another locality 
principle—temporal locality—comes 
to the rescue. Namely, the system 
retains local minimum- energy states 
most of the time, except during rare 
transitions between states. In such 
cases, transition state theory allows 
reformulation of the sequential long- 
time dynamics as a computationally 
more efficient parallel search for low 
 activation- barrier transition events.10

METASCALABLE DCR
While computationally efficient, the 
tree topology of DC computations can-
not capture rich physics, including 
high- order intermolecular correlations. 
We therefore propose an extension of DC 
called divide- conquer- recombine (DCR).8,9 

DCR in space
As Figure 1 shows, DCR operates in two 
phases. The algorithm first constructs 
globally informed local solutions in 

(a) (b)

FIGURE 1.  Divide- conquer- recombine (DCR) algorithm. (a) In the divide-and-conquer 
(DC) phase, the algorithm abstracts atoms (spheres in the bottom plane) within each DC 
domain (parallelograms in the bottom plane) through collective variables such as a finite- 
difference representation of the charge distribution. It combines the DC domains recur-
sively to form a tree data structure of progressively coarser cells and, upon reaching the 
entire simulation volume at the tree’s root, computes O(N) by traversing the tree upward 
and downward. (b) Blue and black lines show typical triplet and quadruplet computations, 
respectively, involving a DC domain in the recombine phase.
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the DC phase and then in the recombine 
phase synthesizes these into a global 
solution—for example, delocalized 
molecular orbital and charge- carrier 
dynamics8—encompassing large spa-
tiotemporal scales. The recombine 
phase typically involves range- limited 

n- tuple computations to account for 
higher interdomain correlations.

To implement DCR efficiently on 
massively parallel supercomputers, we 
combined a global real- space multigrid 
solver that computes interdomain elec-
trostatic potential with a fast Fourier 

transform (FFT)- based spectral method 
that obtains the intradomain plane- 
wave functions. Our parallel QMD code, 
implemented with hybrid message 
passing (MPI) and multithread pro-
gramming (OpenMP), achieved both 
global scalability and local efficiency: 

DENSITY FUNCTIONAL THEORY CALCULATIONS ON 
HIGH- PERFORMANCE COMPUTING ARCHITECTURES

Density functional theory (DFT) calculations 
were carried out in the 1970s1 on comput-

ers that used punch cards as inputs, just a few 
years after the pioneering work on DFT by Pierre 
Hohenberg, Walter Kohn, and Lu Jeu Sham. The 
supercomputers of the 1990s enabled more 
complex DFT formulations. Two early parallel 
DFT calculations were carried out by teams led 
by Ivan Štich2 and Karl Brommer3 on the silicon 
(111) surface. Stich’s group used the 64- node 
Meiko i860 Computing Surface at Edinburgh 
University and the Intel iPSC/960 hypercube at 
Daresbury Laboratory, while Brommer’s team 
used the Connection Machines at the Pittsburgh 
Supercomputer Center and at Los Alamos Na-
tional Laboratory as well as a Cray YMP at the San 
Diego Supercomputer Center. Both calculations 
appeared to be data and task parallel with respect 
to plane- wave coefficients.

In discussing their code’s parallelization, Štich 
and his colleagues4 noted three possible data de-
composition strategies: k- point, band index, and 
plane- wave coefficients and real space—the latter 
necessitated by use of the dual- space formalism.5 
After considering these strategies’ benefits and 
drawbacks both in isolation and in combination, 
they argued for data parallelism with respect to 
plane- wave coefficients and real space, hence-
forth referred to as spatial decomposition. This 
choice was motivated by their systems’ architec-
tures: the i860 and iPSC/960 were  message- 
passing machines with only 16 Mbytes of 
memory per node, which was insufficient to store 
the entire 3D mesh for a single electronic- wave 
function. The researchers chose a 1D decompo-
sition into 2D slabs to minimize communication 
during the 3D fast Fourier transform (FFT).

Parallel DFT codes became more common-
place after the electronic structure community 
adopted the MPI (message passing interface) 
standard, though some codes were instead based 
on SHMEM (symmetric hierarchical memory 
access). All codes were data and task parallel with 
respect to spatial decomposition, which was nec-
essary because of memory constraints on nodes. 
The availability of symmetric multiprocessing 
clusters encouraged developers to parallelize on 
the spin and k- point indices—it was likewise sim-
ple to express this parallelism with MPI collectives. 
The community was also fortunate that many DFT 
compute kernels could be formulated as FFTs and 
BLAS3 operations. This permitted a substantial 
degree of vectorization (instruction-  level parallel-
ism) because developers could simply write their 
DFT codes based on well- established APIs and 
link their executables against vendor- optimized  
libraries. Using these established APIs and librar-
ies is an application development best practice, 
but developers still must plan for compiler- based 
performance when writing code. Because com-
piler technology is not able to detect all vector-
ization opportunities, overrelying on compilers 
to identify all instruction- level parallelism can 
impede application performance.

After focusing primarily on MPI parallelization 
with respect to plane- wave coefficients, k- points, 
and spin indices for most of the 1990s, research-
ers doing DFT calculations encountered the first of 
what turned out to be several dense linear algebra 
bottlenecks in the late 1990s and early 2000s. 
As the number of atoms and electrons increased 
with more ambitious scientific investigations, 
dense linear algebra equations with computa-
tional complexity O(N3) became dominant in 
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a 50.3- million- atom QMD benchmark 
exhibited 98.4 percent of the perfect 
parallel speedup as well as 50.5 percent 
of the peak flops on all 786,432 cores 
of Mira.8,9 We expect that this global−
local separation within the DCR algo-
rithm is metascalable—that is, it will 

continue to scale on future parallel 
supercomputers.

DCR in time
One way to sample rare events is 
through parallel replica dynam-
ics  (PRD).10 PRD reduces sequential 

long- time dynamics, as shown in Fig-
ure 2a, to statistically independent 
parallel trajectory runs (or replicas), as 
shown in Figure 2b. To handle widely 
disparate activation barriers in com-
plex reaction pathways, an extension 
of PRD called super- state PRD (SPRD) 

iterative DFT solvers. While parallel dense linear 
algebra packages such as ScaLAPACK had existed 
since 1995, adoption was slow for both technical 
and nontechnical reasons.

Perhaps the most widely recognized DFT 
code to combine all three distinct levels of data 
parallelization is QBox. With this code, Francois 
Gygi and his colleagues6 performed a plane- wave 
DFT calculation on 1,000 molybdenum atoms 
(12,000 electrons with 8 k- points) using the 
entire Blue Gene/L system at Lawrence Livermore 
National Laboratory. Their application achieved 
367 teraflops on 65,526 compute nodes and 
earned them the 2006 ACM Gordon Bell Prize 
(GBP). Later DFT codes including NWChem (www 
.nwchem- sw.org), VASP (Vienna Ab initio Sim-
ulation Package; www.vasp.at), CPMD (www 
.cpmd.org), Quantum ESPRESSO (www.quantum 
- espresso.org), and GPAW (https://wiki.fysik.dtu 
.dk/gpaw) implement a similar parallelization 
strategy.

Linear- scaling DFT methods outperform 
traditional O(N3) approaches on large- scale 
material systems by using the nearsightedness of 
quantum mechanics to exploit locality. While the 
mathematical machinery underlying these meth-
ods varies, they all transform the DFT calculation 
of a large system to the sum of DFT calculations 
of the system’s smaller constituent parts. This 
can be accomplished by wave- function local-
ization, density matrix minimization, or explicit 
divide- and- conquer methods.7 The linear- scaling 
3D fragment (LS3DF) method developed by Lin- 
Wang Wang and his colleagues8 is an example of 
an explicit divide- and- conquer method. Wang’s 
team from Lawrence Berkeley National Labora-
tory was awarded the 2008 GBP for achieving 

107.5 teraflops on Argonne National Laborato-
ry’s Blue Gene/P system (163,840 cores). LS3DF 
was showcased on a 13,824- atom oxygen- 
doped zinc telluride alloy and ran more than 400 
times faster than a traditional DFT method.
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groups microscopic states into a super- 
state and handles only rare transi-
tions between those super- states (or 
super- events) with PRD. Super- states 
are usually predefined based on some 
a priori knowledge. In the case of com-
plex dynamics, for which such a priori 
definitions are unavailable, we instead 
employ machine- learning approaches 
to automatically detect super- events 
on the fly.11 Conventional SPRD simu-
lations run for a block of MD time steps 
(for example, 1,000), followed by a sep-
arate postprocessing phase that applies 
cross- time- series statistical analysis 
to stored simulation trajectory data to 
detect super- events, as Figure 2c shows. 
We are currently developing an in situ 
SPRD method that carries out correla-
tion analysis as data is produced to 
reduce the need to store data in files for 
postprocessing, as Figure 2d shows.

EXAMPLE QMD 
SIMULATIONS USING DCR 
Researchers use QMD to conduct time- 
resolved ab initio simulations of how 
nanometer- scale features such as defects 
and interfaces affect material dynamics 
and thus physical properties, providing 

atomistic insight into structure− 
property relationships that could lead 
to improved designs of advanced mate-
rials and devices. Here, we present two 
example QMD simulations using DCR: 
on- demand hydrogen production from 
water using metallic- alloy particles for 
renewable energy, and photoexcited 
charge- carrier dynamics in low- cost, 
high- efficiency solar cells.

Hydrogen on demand
In a two- step thermochemical cycle, an 
exothermic reaction between metal and 
water produces hydrogen gas, followed 
by solar energy−assisted reduction of 
the metal- oxide product to regener-
ate metal fuel. A potential application 
of this technology is on- board hydro-
gen production for hydrogen- powered 
vehicles, but conventional metal−water 
reaction kinetics is too slow to make 
such on- demand hydrogen production 
commercially viable.

A DCR- based QMD simulation 
involving 16,611 atoms on all 786,432 
cores of Mira revealed that alloying 
aluminum particles with lithium 
achieves orders- of- magnitude- faster 
reactions with higher yields.12 As 

Figure 3 shows, the simulations 
revealed a key nanostructural design 
expected to scale up to industrially 
relevant particle sizes.

Photoexcitation dynamics 
in solar cells
In solar cells, absorption of a photon 
creates a pair of a negatively charged 
electron and a positively charged 
hole. The photoexcited electron−hole 
pair, called an exciton, can only exist 
in a special spin configuration known 
as a singlet. Singlet fission (SF), the 
process whereby a spin- singlet ex ci-
ton splits into two spin- triplet ex ci-
tons, could double the photo- induced 
electric current to boost power con-
version efficiency. Unfortunately, SF 
has only been observed in high- qual-
ity crystals that are very expensive 
to grow. Realizing a high SF yield 
in mass-  produced disordered solids 
could revolutionize low- cost fabrica-
tion of efficient solar cells. 

Recently, researchers made an 
experimental breakthrough when 
they observed SF in amorphous diphe-
nyl tetracene (DPT). However, atomis-
tic mechanisms that enable efficient SF 
in amorphous molecular solids remain 
elusive, largely due to the required 
large quantum- mechanical calcu-
lations that capture nanostructural 
features.

As Figure 4 shows, our DCR- based 
approach involving 6,400- atom non-
adiabatic QMD (NAQMD) and kinetic 
Monte Carlo (KMC) simulations iden-
tified the key molecular geometry and 
exciton- flow network topology for SF 
“hot spots” in amorphous DPT, where 
fission occurs preferentially.13 We first 
performed the DC- NAQMD simula-
tions to calculate the hopping of pho-
toexcited excitons between neighbor-
ing spatial domains, then recombined 
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FIGURE 2.  DCR in time.  (a) Molecular dynamics (MD) simulations have sequential time 
dependence.  (b) Parallel replica dynamics (PRD) predicts long- time behavior through 
statistical analysis of multiple parallel MD trajectories. (c) Conventional file- based and   
(d) new in situ PRD simulations. ML represents machine- learning tasks.
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the first- principles hopping rates in 
the KMC simulations to predict global 
exciton dynamics. The simulations 
revealed the molecular origin of exper-
imentally observed two- time scales 
in exciton population dynamics, and 
could pave a way to nanostructural 
design of efficient solar cells from first 
principles.

QMD PROGRAMMING ISSUES
For the past decade, supercomputing 
hardware has been delivering more 
computational capability by grow-
ing node complexity; clock- cycle 
speeds have not increased. Massively 
threaded or hybrid nodes with accel-
erators are, and will continue to be, 
the norm on the largest systems. We 
can expect escalating node parallel-
ism by an order or magnitude or more 
for each five- year generation.  Per- 
node storage capacity might increase, 
but not through traditional DRAM—
more likely, it will occur through a 
storage hierarchy with each tier using 
different technology and providing 
different performance. To use these 
architectures, QMD applications 
must evolve.

Fortran and C/C++ with MPI are 
expected to continue as the primary 
QMD programming models, with an 
additional abstraction (MPI+X) to aid 
with node- level parallelism. OpenMP 
and OpenACC are strong candidates 
for X on massively threaded nodes 
and might help on accelerators such 
as GPGPUs.  Codes written in CUDA 
and OpenCL are unlikely to port to 
massively threaded nodes and thus 
could be limited to hybrid- node sys-
tems.  MPI+MPI is another poten-
tial solution; new standards aim 
to address node- level parallelism 
through a shared- memory- like model. 
Currently, most community attention 

FIGURE 3.  DCR- based quantum molecular dynamics (QMD) simulation of hydrogen pro-
duction from water using an aluminum- lithium alloy particle. The valance electron density 
(silver isosurface) is centered around the aluminum atoms, whereas some of the lithium 
atoms (red spheres) are dissolved in water. Green ellipsoids represent produced hydrogen 
molecules. Water molecules are not shown for clarity. (Reprinted with permission from K. 
Shimamura et al., “Hydrogen- on- Demand Using Metallic Alloy Nanoparticles in Water,” Nano 
Letters, vol. 14, no. 7, 2014, pp. 4090−4096. Copyright 2015, ACS Publishing, LLC.)

FIGURE 4.  DCR- based nonadiabatic QMD simulation of photo- induced excitons in 
amorphous diphenyl tetracene (DPT).  Orange and green isosurfaces represent quasi- 
electron and quasi- hole wave functions, and gray rods represent DPT molecules. 
(Reprinted with permission from W. Mou et al., “Nanoscopic Mechanisms of Singlet Fission 
in Amorphous Molecular Solid,” Applied Physics Letters, vol. 102, no. 17, 2013; http://
dx.doi.org/10.1063/1.4795138. Copyright 2015, AIP Publishing, LLC.)
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is focused on ensuring capability and 
performance in OpenMP.

Regardless of the specific imple-
mentation for node- level parallelism, 
application codes will have to increase 

intra node and instruction- level par-
allelism. Vectorized cores are already 
common on supercomputers, but most 
application codes rely on compilers, 
which currently cannot detect many 

vector parallelization opportunities. At a 
minimum, application developers must 
provide directives for restructuring 
their implementations to reflect vector 
parallelism.  With hundred- way node- 
level parallelism here and thousand- 
way parallelism on the way, developers 
must identify all potential parallelism to 
make best use of these platforms.

Domain- specific languages (DSLs) 
might help expose such parallelism. 
Although DSLs are not widely used, 
that could change as developers gain 
more experience in their design and 
implementation. For example, the Ten-
sor Contraction Engine has been used 
to generate two million lines of code for 
NWChem.14 In addition, new scientific 
application frameworks could provide 
easier abstractions for levels of paral-
lelism. For example, MADNESS (Mul-
tiresolution Adaptive Numerical Eval-
uation for Scientific Simulation) aims 
to facilitate application development 
by providing a higher- level abstrac-
tion for node parallelism.15 To see wide 
adoption, these approaches must be 
scalable on systems of interest, have 
committed availability on supercom-
puters, and be well supported. 

D CR is a scalable approach for 
analyzing large material sys-
tems but is not without disad-

vantages. One obvious shortcoming, 
inherent to all known linear-scaling 
DFT methods, is the inability to treat 
both insulating and metallic systems 
within a single, unified reduced- 
 scaling (O(Nx), x < 3) approach. This 
is a nontrivial methodological prob-
lem that arises from the distinct decay 
properties of the density matrix for 
insulators versus metals.

More problematic are DFT’s inher-
ent deficiencies, which can only be 
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overcome by either improved function-
als or many- body methods such as QMC 
and CCSD(T). The systematic accuracy 
of many- body methods makes them 
particularly promising. With signifi-
cantly higher computational costs than 
DFT, these methods demand exascale 
computers. One can imagine, in the 
not- too- distant future, such systems 
performing QMD using QMC instead 
of DFT on 10,000- electron systems or 
high- throughput screening (>100,000) 
of candidate materials using CCSD(T).

Although DCR can simulate mate-
rial processes efficiently in a given 
structure, synthesizing a structure 
remains a challenge. Such “synthe-
sis by design” will require new com-
putational software to model various 
gas- phase and solution processes and 
discover how to control material pro-
cesses at the level of electrons, design 
atom- precise nanostructures with tai-
lored properties, and extract function−
property−structure relationships. This 
will require simulation methods that 
can describe the dynamics of electrons 
and atoms far from equilibrium. In 
addition, we might need to climb fur-
ther down the algorithmic- complexity 
ladder. Thanks to large systems’ self- 
averaging properties, stochastic DFT 
algorithms can achieve sublinear scal-
ing (O(Nε) (ε < 1)).16 
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