
4. GPU Implementation

Interactive Boussinesq-type Simulation and Visualization
of Water Wave Propagation on GPU
Sasan Tavakkol, Patrick Lynett, Aiichiro Nakano

A coastal wave simulation and visualization software is developed based on the Boussinesq equations. Both simulation and its concurrent
visualization are performed on the GPU using DirectX API. The software provides faster than real-time, interactive modeling for the first
time in coastal engineering. A model running faster than real-time can be handy in disaster forecasting, naval navigation, and any time-
sensitive project. Interactivity provides the option for scientists and engineers to test different scenarios and see the results on the go. To
improve the interactivity an augmented reality sandbox is used to visualize the results and interaction with the model.

1. Abstract

Current Boussinesq models have promising results in modeling
several coastal phenomena, however the heavy computational
effort needed for Boussinesq-type equations hinders real-time
simulations using them unless with parallel processing on dozens
to hundreds of CPU cores. Such supercomputing facilities are
neither easily accessible nor inexpensive. It should be also noted
that current simulation models do not provide concurrent
visualization of the results. Concurrent visualization becomes
more significant and effective if interactivity is also provided, so
the engineers and scientists can alter the water surface,
bathymetry, simulation parameters, etc. on the go.
We aim to develop a software, called Celeris, which can be used
for real-time wave simulation on an off the shelf laptop (Fig. 1).
Celeris runs ~50 times faster than real-time for the modest
coastal region with ~104 grid points.

2. Motivation

Figure 1- Snapshot of Celeris

The extended Boussinesq equations derived by Madsen and Sørensen
(1992) for a slowly varying bathymetry read as:

In the current work A hybrid finite volume – finite difference numerical
scheme is used. The advective part of the equations are solved using
finite-volume method, while dispersive and source terms are discretized
using the finite difference formulation. This hybrid discretization
enables the software to benefit from robustness of FVM, shock-
capturing features, and flux limiters, while retaining the higher accuracy
of the model. The model is also positivity preserving and therefore
there is no need to keep track of dry/wet cells. Time integration is done
with the third order Adams-Bashforth scheme as prediction step and
the fourth-order Adams-Moulton algorithm as an optional correction
step. It should be also noted that Boussinesq-type equations are
not easily implemented on parallel computers, due to implicit
methods necessary for their discretization.

3. Theory

5. GPU Implementation
can be solved trivially. In the backward substitution phase the other half of the
unknowns are determined step by step using the previously solved values. In the
present work CR is done by passing the texture of unknown variables to the
reduction shader, iteratively, until two unknowns (equations) are remained. The
remaining equations are solved and the results (known values) are passed to the
substitution shader, iteratively, to find all variables. This process is illustrated in Fig. 3.

Figure 3- Cyclic reduction algorithm and its implementation on GPU.

x

y

Unknown values
Known value

Each row (column) is a system of equations

We validated our scheme with the experi-
mental results of Synolakis (1987) for solitary
wave runup on slope (Fig.4). The aim of
current work is not to produce a tuned code
on GPU with maximum performance. we
compromise performance in favor of real-
time visualization and inter-activity. As a
preliminary experiment, we compared our
GPU implementation of scheme with its
single core CPU results on a machine with a
CPU of Intel Xeon CPU @2.13GHz and a GPU
of NVIDIA Quadro 600 (Fig. 5).

6. Results and Validation

The most challenging part of the work is parallelization of solving the
tridiagonal matrix systems within the numerical scheme. We
accomplished it using the cyclic reduction (CR). CR consists of two
phases, forward reduction and backward substitution. In the forward
reduction phase the system is successively reduced to a smaller system
with half the number of unknowns, until a system of 2 unknowns is
reached which

In order to solve a computational problem with DirectX, the
problem must be reformulated in terms of graphics primitives and
data must be stored within textures. We use the R, G, B, A value of
each texel to store flow parameters. Each step of numerical scheme
is performed by passing a texture to a shader. A sample shader to
apply boundary condition is shown in Fig. 2.

float4 WestBoundarySolid(VS_OUTPUT input) : SV_TARGET
{

const float3 in_state_real = txState.Load(int3(4 - input.tex_idx.x,input.tex_idx.y,0)).rgb;
return float4(in_state_real.r, -in_state_real.g, in_state_real.b, 0);

}

Figure 2- Sample shader code in HLSL

We are about to take the next big step in engineering modeling by embedding
an augmented reality sandbox (ARS) to the model. In ARS simulations results
are cast on sand surface using a projector, and the sand surface play the role of
the bathymetry (Fig.6). Our design is based on the ARS developed at UC Davis,
but it is scalable and runs on Boussinesq equations. Scalability is delivered via

7. Future work

threading and MPI system. Engineers can use as
many sandboxes as needed together to model a
larger region of a coast or a longer segment of a
river. Engineers can modify the sand surface in
order to see response in the water surface and its
motion on the go. This moves the interactivity of
the model to the next level. Currently we are trying
to power the augmented reality sandbox using
NVIDIA’s Jetson TK1.

Figure 4 – Solitary wave runup

Figure 5 – GPU vs. CPU performance

Figure 6 – Modeling a basin on sandbox

University of
Southern California

contact Name

Sasan Tavakkol: tavakkol@usc.edu
Poster

P6213

Category: Computational Fluid Dynamics - CFD04

