Ashish Sharma
sharmaa@usc.edu
Collaboratory for Advanced
Computing and Simulations
Dept. of Computer Science

Aiichiro Nakano
anakano@usc.edu
Dept. of Computer Science

Rajiv K. Kalia
rkalia@usc.edu
Dept. of Physics & Astronomy

Priya Vashishta
priyav@usc.edu

Dept. of Materials Science &
Engineering

University of Southern California
Los Angeles, California 90089

Sanjay Kodiyalam
sanjay@rouge.phys.Isu.edu

Paul Miller
pmiller@bit.csc.lsu.edu

Wei Zhao
wzhao@ee.lsu.edu

Xinlian Liu

Concurrent Computing Laboratory
for Material Simulations

Biological Computing and
Visualization Center

Dept. of Computer Science

Dept. of Physics & Astronomy
Louisiana State University
Louisiana 70803, USA

Timothy]J. Campbell
tjcamp@navo.tipc.mil

Andy Haas

haas@navo.tipc.mil

Naval Oceanographic Office Major
Shared Resourse Center

Stennis Space Center

Mississippi 39529, USA

Presence, Vol. 12, No. I, February 2003, 85-95
© 2003 by the Massachusetts Institute of Technology

Immersive and Interactive
Exploration of Billion-Atom
Systems

Abstract

We have developed a visualization system, named Atomsviewer, to render a billion
atoms from the results of a molecular dynamics simulation. This system uses a hier-
archical view frustum culling algorithm based on the octree data structure to effi-
ciently remove atoms that are outside of the field of view. A novel occlusion culling
algorithm, using a probability function, then selects atoms with a high probability of
being visible. These selected atoms are further tested with a traditional occlusion
culling algorithm before being rendered as spheres at varying levels of detail. To
achieve scalability, Atomsviewer is distributed over a cluster of PCs that execute a
parallelized version of the hierarchical view frustum culling and the probabilistic oc-
clusion culling, and a graphics workstation that renders the atoms. We have used
Atomsviewer to render a billion-atom data set on a dual processor SGI Onyx2 with
an InfiniteReality2 graphics pipeline connected to a four-node PC cluster.

1 Introduction

A molecular dynamics (MD) simulation follows the trajectories of atoms
to study the behavior of materials. In the past, we have interactively explored
simulated materials in an immersive environment to better understand and
track atomic features responsible for macroscopic phenomena (Nakano et al.,
2001a). For example, Figure 1 shows a scientist walking through a simulated
fractured ceramic fiber composite material to investigate atomistic processes
that make the material tough. However, our recent MD simulation involving
one billion atoms (Nakano et al., 2001b), produced 100 GB of data per frame
to record atomic species, positions, velocities, and stresses (Omeltchenko et al.,
2000). Visualizing such a large data set interactively is a nontrivial task.

Considerable progress has been made in visualizing large data sets. One of
the earliest works by Clark (1976) introduced a hierarchical representation of
models, that provides a fast mechanism to minimize the polygons used in a
frame through the use of varying level of detail (LOD). Most of the previous
research on large data set visualization has focused either on volumetric data or
architectural data. The Center for Computational Visualization at UT Austin
led by Bajaj has visualized large volumetric data sets on stereoscopic display
systems using data compression and parallel processing (Bajaj & Cutchin,
1999; Bajaj, Ihm, & Park, 2000). Hamann and Ma (Ma & Camp, 2000; Pin-
sky et al., 2000) at UC-Davis have developed multiresolution algorithms as
well as parallel and distributed systems to accomplish large data set visualiza-

Sharma et al. 85

86 PRESENCE: VOLUME 12, NUMBER |

Figure |. A scientist investigating a fracture in a ceramic fiber

composite material rendered on an ImmersaDesk virtual environment.

tion. The Scientific Computing and Imaging Institute at
the University of Utah led by Johnson (Johnson,
Parker, Hansen, Kindlmann, & Livnat, 1999; Parker et
al., 1999) have developed tools to visualize large com-
putational fields with applications in areas such as bio-
medicine and oil exploration.

Another area that utilizes very large data sets in virtual
environments is architectural modeling. Several projects
(Airey, Rohlf, & Brooks, 1999; Funkhouser, Teller, Se-
quin, & Khorramabad, 1996; Teller & Sequin, 1992)
subdivide the architectural model into cells that cor-
rectly map onto the rooms and other physical domains.
For example, the UC-Berkley walkthrough of a build-
ing (SODA Hall) uses a hierarchical representation of
the model and incorporates both visibility culling and
LOD. More recent work at UNC—-Chapel Hill (Aliaga
et al., 1999) has used culling, data management, and
rendering enhancements to achieve an interactive walk-
through for data sets involving millions of triangles.
Funkhouser, Sequin, and Teller (1992) have proposed
numerous techniques for the management of large data
sets using adaptive display algorithms.

All these efforts have, however, focused on volume
rendering and 3D modeling, and the optimization tech-
niques developed for them do not easily apply to parti-

cle rendering. For example, in 3D modeling, the struc-
ture of the model can be used in culling and LOD
control. This is not possible in data sets from molecular
dynamics (MD) simulations, which are an irregular dis-
tribution of atomic position and attributes.

Previously, we developed a visualization system de-
signed specifically for atomistic data sets. The system
used octree-based visibility culling and multiresolution
rendering to render atoms at varying LOD and interac-
tively visualize a few million atoms, but not a billion
atoms (Sharma et al., 2001). The primary reason for this
shortcoming was a lack of computing power.

In this paper, we present our solution for visualizing a
billion-atom dataset by using a hierarchical view frustum
culling algorithm and a new occlusion culling algorithm
that uses a visibility probability function. These algo-
rithms are distributed over a PC cluster, and the result-
ing reduced data set is rendered on the graphics server.
An overview of the newly developed system— called
Atomsviewer—is given in section 2. Section 3, 4, and 5
provide detailed descriptions of its three major compo-
nents, and the parallel and distributed architecture is
discussed in section 6. Finally, numerical results and a

summary are presented in section 7 and 8, respectively.

2 System Overview

Atomsviewer has three key components that are
distributed over a networked environment. The three

components are as follows.

e Data extraction module: DEM implements an
octree-based hierarchical view frustum culling algo-
rithm to efficiently remove atoms outside the frus-
tum.

e Probabilistic occlusion module: POM implements a
new occlusion culling algorithm that uses a proba-
bility function to select atoms with a high probabil-
ity of being visible.

e Rendering and visualization module: RVM imple-

ments a traditional occlusion culling algorithm and

Sharma et al. 87

RENDERING PIPELINE |

RENDERING AND VISUALIZATION MODULE — RVM

User Position

DATA EXTRACTION
MODULE — DEM

Octree Node Based

Octree nodes in frustum

{ PER-ATOM OCCLUDER

Probabilistically reduced
subset of nodes

PROBABILISTIC OCCLUSION
MODULE — POM

Modified Occlusion Culling
Using Octree Nodes

I TCP/IP Socket

Figure 2. Flow diagram of Atomsviewer.

renders the visible atoms as spheres at varying
LOD.

Figure 2 shows a schematic of the system in which
the three components and their mutual interactions are
represented by dotted rectangles and arrows, respec-
tively. At runtime, the user’s position and orientation
are tracked and are sent to the DEM, which extracts a
data subset that conservatively approximates the view
frustum. This subset is forwarded to the POM to re-
move atoms that are likely to be occluded by other at-
oms. The result of the POM operation is forwarded to
the RVM for rendering. It should be noted that the
DEM and the POM use octree nodes as an abstraction
of the atomic data, and only the RVM deals with indi-
vidual atomic data. This allows all atomic data to reside
on the RVM, thereby reducing network traffic between
the three modules.

3 Data Extraction Module

The DEM is responsible for removing atoms that
lie outside the view frustum. However, it is computa-

tionally expensive to perform frustum tests on individual

atoms for a billion-atom data set. Instead, we create an
octree by recursive subdivision of the space occupied by
the atomic data set. Each terminal node of this octree
(region) abstracts those atoms that lie in the cor-
responding subspace. Therefore, the view frustum test-
ing of atoms is replaced by testing if a region is present
in the frustum.

The number of subdivisions is determined by mini-
mizing the overall computation time of the three mod-
ules. Whereas the computation involved in the DEM
and the POM is an increasing function of the number of
subdivisions, that of the RVM is a decreasing function.
This tradeoft results in an optimal number of approxi-
mately 500 atoms per region.

The octree-based abstraction provides scalability to
Atomsviewer, which may be understood as follows. The
total computation time is composed of the time taken
to cull data that is not in the frustum, the time to per-
form probabilistic occlusion culling, and the time to
render the remaining data. In most cases, the number of
visible atoms is largely independent of the viewpoint,
and consequently the rendering time is nearly constant.
However, without the octree abstraction, the culling

time scales linearly with the number of atoms. The oc-

88 PRESENCE: VOLUME 12, NUMBER |

Il

Figure 3. The parallel implementation of the octree-based view
frustum culling. The concentric shells, each of equal volume, is
distributed over a PC cluster to perform a coarse extraction of octree
regions.

tree abstraction allows a larger number of atoms to be
culled at once at higher octree levels through recursive
traversal of the tree structure.

The view frustum culling in the DEM uses a series of
bounding shapes. The first and foremost of these is a
sphere, §;, (Sharma, 2001) that fully encloses the frus-
tum. A coarse extraction is done by approximating all
octree nodes as spheres and selecting those spheres that
intersect with §;. This process is implemented through a
traversal of the octree wherein a node is tested only if
the sphere of the parent node intersects S;. The end
result of the process is a set of terminal nodes—
regions—all of which intersect Sy. These regions are
then pruned by testing them against a cylinder and sub-
sequently a cone, each of which improves the approxi-
mation of the frustum.

The coarse extraction process can be parallelized by
decomposing §; into a set of concentric shells and an
inner sphere, all of which have equal volume. (See figure
3.) The number of shells is one less than the number of
available processors.! The sequence of tests used to ex-
tract the regions is similar to those used in the serial

1. One processor is allocated to the innermost sphere, that is, the
core.

Figure 4. Atomsviewer without (top) and with (middle) the POM
enabled. The image on the bottom shows the difference between the
two images.

Sharma et al. 89

implementation with the modification that a node is
visited only if its parent lies in the bounding shell.
Because all the tests in the DEM are performed on a
per-region basis and because the parallelization uses spa-
tial decomposition into equal volumes, the computa-
tional load involved in the extraction of regions is nearly
balanced across all nodes. Each processor keeps a copy
of the complete octree to reduce communication over-
head. This also allows for fault tolerance because, in the
event of a disturbance such as the loss of a node, the
module will have to recalculate only the radii of its

bounding shells.

4 Probabilistic Occlusion Module

The regions output by the DEM still contain
many atoms that are not visible to the viewer due to
occlusion. A traditional occlusion culling algorithm
working on a per-atom level would be computationally
expensive. Therefore, we have developed an algorithm
that exploits the octree-based abstraction and employs a
probabilistic approach to perform occlusion culling
without per-atom testing.

In this probabilistic approach, each region is assigned
a visibility value, which represents the fraction of visible
atoms in the region. To determine this value, we assume
that the region, Ry, closest to the viewer has 100% visi-
bility. Now a region, R, directly behind R has a pro-
portionately lower visibility due to the high probability
of atoms in R occluding those contained in R;. Like-
wise, as we analyze regions farther away from the viewer
(yet in the view frustum), we begin to see a progressive
decline in visibility. Therefore, it is natural to define a
visibility function for a region, R, as a recursive func-
tion that is dependent upon the visibility of the nearest
neighboring region that lies along the shortest path be-
tween R, and the viewer. Once the POM calculates the
visibility value for the octree regions, these values are
forwarded to the RVM, where a pseudo-random num-
ber generator is used to randomly decide which atoms

in a region will be drawn.

4.1 Probabilistic Visibility Function

The probabilistic visibility function, v(a)—the
fraction of atoms in that region which are probably seen
by the user—is given by v(a) = [1 — D(a') Jv(a’),
where o' is some region occluding o and D(«a") is the
density of the region o’. The density of region « is de-
fined as D(a) = 3.4 7ry/3V(a), where 7, is the radius
of the i atom and V() is the volume of region a. (By
choosing 7; to be less than half the interatomic distance,
D(a) can be normalized so that 0 = D(«) = 1.)

Given a region, a‘?, that the viewer currently occu-
pies, v(a) is computed by defining a recursive relation
on the viewing functions of the sequence of regions
a@, a® o@D o™ =). To determine this
sequence, we employ a line-drawing algorithm (Bresen-
ham, 1965; Heckbert, 1990), modified for three dimen-
sions (Pendleton, 1992). For a region o (1 =< i < n),
we determine the nearest neighbor, a®%), using the
equation, a® = V' = (a{P— Ax, a(yi>— Ay, a9— Az),
where

if 12 dxl = max (1dyl, 1dzl)
else

Ax = [Sgr(l)(X)

dx = oP— a'@and o, is an integer to specify the posi-
tion of region « along the x axis. Likewise, we can de-

rive equations for dy, dz and Ay, Az. The recursive rela-
tion to compute the visibility value, v;, for region a(” is

~ 1 i=0
ViTI[= D@)]y, else.

In figure 4, we compare scenes rendered with and
without the POM. In this example, the POM reduced
the number of atoms by 68% and thereby tripled the
framerate with only a small loss in visual detail. (A quan-
titative measure of this loss is given in table 3.)

5 Rendering and Visualization Module
The RVM performs all the rendering tasks and is

divided into two main units: per-atom occlusion culling,
and rendering the atomic representations at varying

90 PRESENCE: VOLUME 12, NUMBER |

LOD using the OpenGL graphics API (Woo, Neider,
Davis, & Shreiner, 1999).

5.1 Per-Atom Occlusion Culling

Per-atom occlusion culling is implemented by us-
ing a simulated depth buffer and a sequence of tests
against this buffer (Zhang, 1998). Initially for every ob-
ject rendered, a shape that approximates its screen space
is generated in the simulated depth bufter. For simplic-
ity, we use a circumscribed rectangle to represent an
atom in the depth buffer, and this shape also has a con-
stant depth value representative of the atom’s distance
from the viewer. Using the shape and its depth value,
we test the approximated shape against our depth buffer
across a number of test points to determine whether any
part of that area is visible to the viewer. If, for any of the
test points, the Z-value of our shape is found to be
lower than the value in the depth buffer at that point,
the atom is marked as visible at that point and is drawn.
Additionally, the depth bufter is updated for that shape.
It is important here to mention that, for the occlusion
culling mechanism to perform optimally, the objects
must be sorted in ascending order of distance from the
viewer. A latency hiding technique, explained in section
6, ensures that the sorting time is negligible.

Figure 5 shows a sequence of images, without and
with the per-atom occlusion. The per-atom occlusion
reduced the number of atoms processed from 90,000 to
4,500, thereby increasing the framerate from 0.94 fps
(frames per second) to 3.22 fps.

5.2 Multiresolution Rendering

The use of multiple resolutions is the last optimi-
zation technique that we employ. Atoms that are closer
to the viewer are drawn at higher resolutions whereas
those that are farther away from a user use fewer poly-
gons or are represented as points. The resolution is cal-
culated from an exponential function of distance of the
atom from the viewer.

6 Parallel and Distributed Architecture

As mentioned earlier, the primary bottleneck in a
visualization application is the polygon rendering on the
graphics server. Although data reduction techniques
such as visibility culling and optimization techniques
such as multiresolution rendering reduce the workload
of the graphics server, dedicating the graphics server to
the rendering operation increases the framerate. We
thus divide our application into three independent mod-
ules and offload the nongraphic modules, DEM and
POM, to a PC cluster. The decision to offload the
DEM and the POM to a cluster is also influenced by the
fact that these modules use a data abstraction for their
operations and hence can be isolated from the actual
data during runtime. The data is kept on the graphics
server, which reduces the amount of network transfer.
Additionally, to account for network and computational
delay, we employ a latency hiding technique in the
RVM to create a larger window in which the DEM and
the POM can function and transmit their result to the
RVM.

6.1 Latency Hiding

Although the design of our system consists pri-
marily of three independent modules that collaborate to
deliver the graphics, there is a certain level of interde-
pendency among the modules. For instance, the DEM
needs to receive the viewer’s position from the RVM to
start its function. Subsequently, the POM needs to re-
ceive from the DEM a set of regions in the view frustum
before it performs the probabilistic occlusion culling.
Finally, the RVM needs to receive from the POM a set
of atom IDs for rendering. To ensure that module oper-
ations are not affected by network delays, we overlap
the intermodule communication with the module com-
putation (Barnard et al.; 1999) as shown in figure 6.
This overlap is done in the RVM because it triggers the
sequence of events driving the DEM and the POM.

In the traditional data flow scheme, the RVM at time
¢t renders the scene of time ¢ — I, obtains the viewer’s

new position at time %, waits for the other modules to

Sharma et al. 91

Figure 5. Rendering of a scene without (top) and with (bottom) occlusion using polygons (left) and wireframe (right) for rendering. The figures
on the top are rendered at 0.94 fps and include 90,000 atoms. The figures on the bottom are rendered at 3.22 fps and include only 4,500
atoms.

deliver the data to be rendered, and goes back to the
rendering step for time ¢ This approach involves a sig-
nificant wait between the time a request for data is sent
and the time the data is received. However, by intro-
ducing a lag of one time step, the RVM can render the
scene at time ¢ — I while waiting for the data for time ¢
generated by the computations in the DEM and the
POM. This communication/computation overlapping
scheme is implemented by employing multiple threads
in each of the modules. Each module creates three

threads, two of which are responsible for sending and
receiving data and a third that performs the actual com-
putation. Such a multithreaded design makes the com-
munication nonblocking because it allows incoming
data to be queued while current data is being processed.
This scheme will be greatly enhanced when it is com-
bined with a predictive pre-fetching technique. A prior-
ity queue can be easily added to ensure that actual
viewer position will have higher preference over a pre-
dicted viewer position.

92 PRESENCE: VOLUME 12, NUMBER |

/

\

Traditional Flow

P

Get Viewer Position
for step N

v

I Extract Data for step N |

v

[Receive Data for step N]

v

[Render Scene for step N]

N

VAN

3

\

Latency-tolerant Flow

-

Get Viewer Position for step N

v
Extract Data Render for
for step N step N-1

v

~

.

Receive Data
for step N

L

/

(a)

(b)

Figure 6. Dataflow overlapping communication and computation (right) is contrasted with traditional

dataflow (left).

Results

Atomsviewer has been implemented on an Im-
mersaDesk virtual environment (Fakespace Systems,
Inc.). The ImmersaDesk consists of a pivotal screen, an
Electrohome Marquee stereoscopic projector, a head-
tracking system, an eyewear kit, IR emitters, and a wand
with a tracking sensor and a tracking 1/0 subsystem. A
programmable wand with three buttons and a joystick
allows interactions between the viewer and the virtual
objects. The rendering system is an SGI Onyx2 with
two R12000 processors (300 MHz), 4 GB RAM, and
an InfinityReality2 graphics pipeline. The PC cluster
used for the computations of the DEM and the POM
comprises four PCs running Linux 7.2, each with an
800 MHz Pentium III processor and 512MB RAM.

We have performed a scalability test of Atomsviewer
involving up to a billion-atom data set. Figure 7 com-
pares the timing results of the serial Atomsviewer with
and without the octree-based view frustum culling with

that of the parallel and distributed Atomsviewer. We see

8 T IIIIHII T II|IIII| T IIIHU] T IlIIIIII T IIIIIIII T IIIIHII T TTTTIT
¢

@ :
O 6 |- : —
(&) .
2 :
2 | serialwithout i 1
S B trea i ! Serial with
© 4L : ! QOctree -
XZ3 P
py N
£ | Ny ' J
= S
o ©
2 e ' —
° ' Parallel & Distributed
S L)
i

0 ettt TR AR (]

0.001 0.01 0.1 1 10 100 1000

Number of Atoms (in million)

Figure 7. Rendering time per scene as a function of the number of
atoms for the parallel and distributed Atomsviewer is compared with
those for the serial Atomsviewer with and without the octree

enhancement.

Sharma et al. 93

Table I. Average Reduction in Time Taken Per Rendering
with the Individual Use of Each of the Three Modules.

Table 2. Average Reduction in Atoms Processed Per
Rendering with Each of the Three Modules.

Number of Particles DEM POM RVM Number of Particles DEM POM RVM

300,000 47.00% 58.73% 68.27% 300,000 20.00% 63.84% 88.33%
500,000 50.81% 59.21% 72.36% 500,000 72.80% 63.04% 95.44%
1,300,000 39.17% 80.42% 73.91% 1,300,000 68.75% 80.15% 83.82%

that the time to extract and render the atoms within the
field of view is nearly a constant function of the number
of atoms. The communication overhead is successfully
overcome by the communication /computation overlap-
ping technique.

To quantify the effect of the octree-based culling in
the DEM, the probabilistic occlusion in the POM, and
the per-atom occlusion and the multiresolution render-
ing in the RVM, we ran a series of tests on various
atomic simulations from our research group and collab-
orators. The systems that were tested had 0.3, 0.5 and
1.3 million atoms. To quantify the effectiveness of each
of the three modules, a set of three runs were made on
each data set. These tests were run with only one of the
three modules active, and the number of atoms pro-
cessed and the rendering time were recorded. Addition-
ally, images were taken at regular intervals. These im-
ages were then subtracted from those images taken with
none of the modules enabled revealing the pixel loss
incurred from each of the three modules.

Table 1 and 2 show the reduction in rendering time
and number of atoms processed by the graphics system
with the use of each of the three modules, respectively.
It is important to mention that in table 2 the reduction
in the number of processed atoms in the POM is rela-
tive to the number of atoms culled in the DEM and not
the absolute reduction. Table 3 shows the average pixel
loss that is encountered by the use of each of the three
modules. Thus, we can see that each of the modules
results in a very small loss of data but provides signifi-
cant data reduction and the subsequent increase in
speed.

Table 3. Average Pixel Loss Per Rendering with the Individual
Use of Each of the Three Modules.

Number of Particles DEM POM RVM
300,000 0.0% 3.50% 0.22%
500,000 0.0% 4.50% 0.59%
1,300,000 0.0% 4.80% 0.95%

8 Summary

We have demonstrated a walkthrough of a billion
atoms in a virtual environment using parallel and dis-
tributed computing employing an octree-based view
frustum culling, probabilistic occlusion culling, and
multiresolution rendering. Our implementation is scal-
able and has been ported to a range of platforms includ-
ing Windows and Mac OS X. We are also developing a
GUI with greater functionality and a Perl-based data
analysis toolkit, allowing a user to specify certain rules
and visualizing data that conforms to those rules. Addi-
tionally, we are also developing a neural network-based
pre-fetching scheme that predicts the user’s next move-
ment and caches the data from the cluster. These would
significantly reduce the effect of module latency. Atoms-
viewer has also been used by Drs. Burgoynne and Buer-
man at the LSU Eye Center in their research of glau-
coma, in which it was used to visualize the path taken
by axon bundles in the optic nerve head in a bovine eye.

94 PRESENCE: VOLUME 12, NUMBER |

Acknowledgments

This work was supported by ARL, AFOSR, NASA, NSF,
DOE, USC-Berkeley-Princeton DURINT and the Health
Excellence Fund from the Louisiana Board of Regents. The
visualization was performed at the Concurrent Computing
Laboratory for Materials Simulations (CCLMS) at Louisiana
State University. Simulation data were generated using parallel
computers at the Major Shared Resource Centers at the De-
partment of Defense under CHSSI and Challenge projects.
Finally, we would like to thank Dr. Brent Neal and Dr.
Hideaki Kikuchi for the various discussions that were of im-

mense help.

Reference

Airey, J. M., Rohlf, J. H., & Brooks, F. P. (1999). Towards
image realism with interactive update rates in complex vir-
tual building environments. Proc. of ACM Symposium on
Interactive 3D Graphics, 24(2), 41-50.

Aliaga, D., Cohen, J., Wilson, A., Zhang, H., Erikson, C.,
Hoft, K., Hudson, T., Stuerzlinger, W., Baker, E., Bastos,
R., Whitton, M., Brooks, F. P., & Manocha, D. (1999).
MMR: An integrated massive model rendering system using
geometric and image-based acceleration. Proc of Symposium
on Interactive 3D Graphics (I3D), 199 -206.

Bajaj, C., & Cutchin, S. (1999). Web based collaborative visu-
alization of distributed and parallel simulation. Proc. of
1EEE Parallel Visualization and Graphics Symposinm, 47—
54.

Bajaj, C., Ihm, I., & Park, S. (2000). Visualization-specific
compression of large volume data. TICAM Tech. Rep.
00-17, University of Texas at Austin.

Barnard, S., Biswas, R., Saini, S., Van der Wijngaart, R. F.,
Yarrow, M., Zechter, L., Foster, I., & Larsson, O. (1999).
Large scale distributed computational fluid dynamics on the
information power grid using globus. Proc. of the Seventh
Symposium on the Frontiers of Massively Parallel Computa-
tion, 60—-67.

Bresenham, J. E. (1965). An algorithm for computer control
of a digital plotter. IBM Systems Journal, 41), 25-30.

Clark, J. H. (1976). Hierarchical geometric models for visible
surface algorithms. Comm. of the ACM, 19(10), 547-554.

Funkhouser, T. A., Sequin, C. H., & Teller, S. J. (1992).

Management of large amounts of data in interactive build-
ing walkthroughs. Proc. of SIGGRAPH Symposium on Inter-
active 3D Graphics, 11-20.

Funkhouser, T. A., Teller, S. J., Sequin, C. H., & Khorram-
abadi, D. (1996). The UC Berkeley system for interactive
visualization of large architectural models. Presence: Teleop-

erator and Virtual Environments, 45—60.

Heckbert, S. P. (1990). Digital line drawing. in A. Glassner
(Ed.), Graphics gems (pp. 99-100), Boston: Academic

Press.

Johnson, C., Parker, S., Hansen, C., Kindlmann, G., &
Livnat, Y. (1999). Interactive simulation and visualization.
IEEE Computer, 32(12), 59—-65.

Ma, K. L., & Camp, D. (2000). High performance visualiza-
tion of time-varying volume data over a wide-area network.
Proc. of Supercomputing 2000. Available online: http://
www.sc2000.org/proceedings /techpaper/papers/
pap254.pdf. Retrieved Nov. 17, 2002.

Nakano, A., Bachlechner, M. E.; Kalia, R. K., Lidorikis, E.,
Vashishta, P., Voyiadjis, G. Z., Campbell, T. J., Ogata, S.,
& Shimojo, F. (2001a). Multiscale simulation of nanosys-
tems. IEEE/AIP Computing in Science and Engineering,
3(4), 56—-66.

Nakano, A., Kalia, R. K., Vashishta, P., Campbell, T. J.,
Ogata, S., Shimojo, S., & Saini, S. (2001b). Scalable atom-
istic simulation algorithms for materials research. Proc. of
Supercomputing 2001. Available online: http://
www.sc2001.org/papers /pap.pap263.pdf. Retrieved Nov.
17,2002.

Omeltchenko, A., Campbell, T. J., Kalia, R. K., Liu, X., Na-
kano A., & Vashishta, P. (2000). Scalable I/0 of large-scale

molecular dynamics simulations: A data-compression algo-
rithm. Comp. Phys. Comm., 131, 78—85.

Parker, S., Shirley, P., Livnat, Y., Hansen, C., Sloan, P., &
Parker, M. (1999). Interacting with gigabyte volume data-
sets on the Origin 2000. The 41st Annual Cray User’s
Group Conference. Available online: http://www.sci.utah.
edu/publications/cug99 /cug99.pdf. Retrieved Nov. 17,
2002.

Pendleton, R. (1992). line3d (version 1) [code]. Retrieved
from http://sources.isc.org /dirlist.perl?dir=devel /func/
graphics/&tarball=line3d /line3d/dl.c

Pinsky, D. V., Meyer, J., Hamann, B., Joy, K. I., Brugger,

http://www.sc2000.org/proceedings/techpaper/papers/pap254.pdf
http://www.sc2000.org/proceedings/techpaper/papers/pap254.pdf
http://www.sc2000.org/proceedings/techpaper/papers/pap254.pdf
http://www.sc2001.org/papers/pap.pap263.pdf
http://www.sc2001.org/papers/pap.pap263.pdf
http://www.sci.utah.edu/publications/cug99/cug99.pdf
http://www.sci.utah.edu/publications/cug99/cug99.pdf
http://sources.isc.org/dirlist.perl?dir=devel/func/graphics/%26tarball=line3d/line3d/dl.c
http://sources.isc.org/dirlist.perl?dir=devel/func/graphics/%26tarball=line3d/line3d/dl.c
http://fidelio.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0018-9162^28^2932:12L.59[aid=4759098]
http://fidelio.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0010-4655^28^29131L.78[aid=4759099]

Sharma et al. 95

E. S., & Duchaineau, M. A. (2000). An error-controlled
octree data structure for large-scale visualization. Cross-
roads—The ACM Student Magazine (spring 2000), 26-31.
Sharma, A., Miller, P., Liu, X., Nakano, A., Kalia, R. K., Vash-
ishta, P., Campbell, T. J., & Haas, A. (2001). Million atom
walkthrough: Octree-based fast visibility culling and mul-
tiresolution rendering for scalable atomistic visualization.
Dept. of Computer Science Tech. Rep., Louisiana State

University.

Teller, S., & Sequin, C. H. (1992). Visibility preprocessing for
interactive walkthroughs. Proc. of ACM SIGGRAPH 1992,
55-64.

Woo, M., Neider, J., Davis, T., & Shreiner, D. (1999). The
OpenGL programming guide, 3rd ed, Reading, MA:
Addison-Wesley.

Zhang, H. (1998). Effective occlusion culling for the interactive
display of arbitrary models. Unpublished doctoral disserta-
tion, University of North Carolina at Chapel Hill.

