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Abstract: Classical molecular dynamics simulations of biological macromolecules in explicitly modeled solvent
typically require the evaluation of interactions between all pairs of atoms separated by no more than some distance R,
with more distant interactions handled using some less expensive method. Performing such simulations for periods on
the order of a millisecond is likely to require the use of massive parallelism. The extent to which such simulations can
be efficiently parallelized, however, has historically been limited by the time required for interprocessor communication.
This article introduces a new method for the parallel evaluation of distance-limited pairwise particle interactions that
significantly reduces the amount of data transferred between processors by comparison with traditional methods.
Specifically, the amount of data transferred into and out of a given processor scales as O(R*?p~'/?), where p is the
number of processors, and with constant factors that should yield a substantial performance advantage in practice.
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Introduction

The ability to routinely perform classical molecular dynamics
(MD) simulations of biological macromolecules in explicitly mod-
eled solvent for periods on the order of a millisecond would be of
considerable value from both a scientific and a pharmaceutical
perspective. Single simulations of this duration (by contrast with
multiple simulations of the same molecular system whose aggre-
gate simulation time approaches the millisecond time scale') have,
however, been considered to fall well outside the reach of current
computational capabilities. Although efficient methods have been
devised to approximate the aggregate effects of distant electro-
static interactions,? ' such simulations typically also require the
evaluation of electrostatic and van der Waals interactions between
all pairs of atoms separated by no more than some distance R,
referred to in this article as the interaction radius. (In the case of
the fast multipole methods, each atom actually interacts with all
atoms contained within a fixed-size rectangular parallelepiped. For
simplicity, however, this article assumes a fixed interaction sphere,
as is typically used, for example, in the various Ewald-based
methods.) To execute millisecond-scale MD simulations using
currently envisioned technologies, the computational burden asso-
ciated with the calculation of such pairwise interactions during
each MD time step would almost certainly have to be shared
among a large number of processors."'

The principal challenge in applying massive parallelism to
accelerate such simulations is the time required for the interpro-
cessor communication, which is necessary: (1) to bring together
within each processor the updated positions of some subset of all
atom pairs at the beginning of each MD time step, allowing the
calculation of the interatomic force associated with each such pair
[although we will use the phrase “position data” in the interest of
brevity, in some simulations, certain other information (e.g., partial
charges that vary over time) will be imported along with the
atom’s current position]; and (2) to combine the resulting partial
force vectors with other such vectors at the end of each MD time
step to obtain the net force acting on each atom.

In this article, we will refer to the first form of communication
as importing and to the second as exporting, and will refer to the
amount of data transferred during these processes as the import
load and export load, respectively. The efficiency of a massively
parallel MD simulation depends in large part on the way in which
the import and export loads vary as a function of the number of
atoms, n, and the number of processors, p. An efficient algorithm
would take advantage of the fact that each atom need interact with
only those atoms falling within a surrounding sphere of radius R to
limit the import and export loads to a quantity dependent only on
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R, and not on n. In addition, for a molecular system of fixed size,
such an algorithm would ideally allow the import and export loads
to be made arbitrarily small with a sufficient increase in the
number of processors.

The methods traditionally used to parallelize MD simulations,
however, have lacked either one or both of these desirable prop-
erties. In this article, we introduce a new technique, called the NT
(for “neutral territory”) method, that significantly reduces the
amount of data transferred between processors by comparison with
traditional methods. The method offers O(R*Zp~'?) scaling,
satisfying both of the properties outlined above. Moreover, the
associated constant factors are such that the NT method should
provide substantial performance advantages in most cases of prac-
tical significance.

This article describes the NT method and compares it with
other techniques traditionally used for the parallel execution of
MD simulations. In the interest of concreteness, a particular ex-
ample of one of these standard techniques, which we will refer to
as the HS (for “Half-Shell”) method, is chosen for more detailed
comparison with the NT method. The asymptotic behavior of the
NT method is analyzed and compared with that of the HS method,
and the practical performance of the two methods on problems and
machines of realistic size are also compared. In a later section, we
compare the NT method with another new method developed
independently by Marc Snir'? that also achieves O(R?p~'/?)
scaling, although with a less favorable multiplicative constant. We
also describe a set of modifications to Snir’s method, based on
techniques analogous to those we employ in the NT method, that
allow his method to achieve performance approaching (although
not equaling) that of the NT method for problems and machines of
practical size.

Although the NT method should be applicable to other particle-
based simulation techniques as well, we will describe the method
in the context of MD simulation in the interest of concreteness.
Throughout the article, we will concern ourselves only with pair-
wise interactions between nonbonded atoms, and not with the
evaluation of either bonded or aggregated distant interactions.
With regard to the computational environment, we will assume a
communication model in which the same amount of time is re-
quired to communicate between any pair of processors. In addi-
tion, we will analyze only bandwidth requirements (determined by
the amount of data transferred into a given processor) and not
latency (a fixed time interval associated with the overhead entailed
in transferring a packet of data from one processor to another,
independent of the amount of data contained in that packet). In the
interest of simplicity, we will also restrict most of our analyses to
the import of atomic coordinates at the beginning of a given MD
time step, with only brief discussion of the “mirror image” prob-
lem of exporting force data at the end of that time step.

Standard Methods for Parallelizing MD
Simulations

Because the techniques used to parallelize a single MD simulation
have already been surveyed by several authors,'*'* we will pro-
vide here only a brief summary of some of the salient character-

istics of the three major categories of traditional approaches to this
problem: (a) atom decomposition methods, (b) force decomposi-
tion methods, and (c) spatial decomposition methods.

These methods may be usefully distinguished according to
which processor is responsible for (a) calculating the force be-
tween a given pair of atoms and (b) updating the position of a
given atom. In the atom decomposition methods'>~? (also referred
to as particle decomposition or replicated data methods), each
processor is responsible for updating the positions of a fixed subset
of atoms throughout the course of the simulation, and for calcu-
lating the forces attributable to the interaction of each of these
atoms with all other atoms. Because each processor must import
the updated positions of all atoms in the biomolecular system
being simulated during every time step, the import load does not
decrease with an increasing number of processors.

In the force decomposition methods,">*** each processor is
again responsible for updating the positions of a fixed subset of atoms
throughout the simulation, and we may thus speak of these atoms as
residing within that processor. In contrast with the atom decomposi-
tion methods, however, each processor is responsible for calculating
the forces attributable to a fixed set of atom pairs. In most cases,
neither of the atoms in a given atom pair will reside within the
processor that is responsible for their interaction, so both atoms will
have to be imported. Atom pairs, however, are allocated to processors
in a manner that allows each processor to import data from only 2p'/>
other processors during every time step. This allows the import load
to be made arbitrarily small by increasing the number of processors.
Although this property makes force decomposition methods attractive
in the context of an all-atom simulation, such methods are not able to
take advantage of a limited interaction radius to reduce the import
load in simulations that use fast methods to approximate the aggregate
effect of distant interactions.

In the spatial decomposition methods'>'*17-3=* (also referred to
as domain decomposition or geometric methods), each processor is
associated with a fixed block of space throughout the course of the
simulation. During a given MD time step, the processor is responsible
for calculating the forces experienced by all atoms currently residing
within its own block and updating their respective positions, but
atoms may move from one block (and thus one processor) to another
over the course of the simulation. At the beginning of each MD time
step, each processor imports data from a distance-limited region of
space surrounding its own block whose volume is proportional to R>.
Spatial decomposition methods thus take advantage of a limited
interaction radius to limit the import load to a quantity dependent only
on that interaction radius, and not on the number of atoms in the
system being simulated. Unlike the force decomposition methods,
however, spatial decomposition methods do not allow the import and
export loads to be made arbitrarily small by increasing the number of
processors. Instead, import time approaches a fixed, nonzero asymp-
totic limit as the number of processors approaches infinity.

Although the choice between a force or spatial decomposition
entails a significant tradeoff, the NT method offers the asymptotic
advantages of both methods, and overcomes their most important
limitations. Table 1 provides an informal comparison of the NT
method with each of the three standard categories of parallel MD
simulation methods with respect to the asymptotic characteristics
discussed above.
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Table 1. Comparison of Asymptotic Characteristics.

Exploitable range limitation

Scaling with number of processors

Atom decomposition methods None No scaling
Force decomposition methods None O(p~'"?) scaling
Spatial decomposition methods O(R?) neighbors No scaling

NT method

O(R*?) neighbors

O(p~'"?) scaling

Simplified Two-Dimensional Analog

The basis for NT’s advantage is most easily understood by first
considering a simplified, two-dimensional analog of the algorithm
that captures some (though not all) of its most salient characteris-
tics, and by comparing this simplified variant with a similar analog
of the HS method. In the context of the simplified model, atoms are
positioned at various points within a plane, and the plane is divided
into a grid of squares, each with side length b. Each square is
associated with one processor, and may be identified by the coor-
dinates of its low-coordinate corner (the base coordinates of that
square). The square in which a given atom lies is referred to as the
home square of that atom. The import region is defined as that
region of the plane from which a given processor must import
position data. Finally, the square associated with the processor in
which two atoms interact is referred to as the interaction square
for that interaction.

Within the context of this model, we may define a highly
simplified, two-dimensional analog of the HS method (the HS
analog) in which the processor associated with square S imports
position data for all particles that lie within a distance R of S. The
import region of this two-dimensional HS analog thus consists of
the blue portion of Figure 1a, which has an area of 4bR + mwR>.
After this import process has been completed, the processor asso-
ciated with § is able to interact each atom A in S with all atoms that
lie within a distance R of A. (The simplified technique we have just
described in fact allows two atoms to interact within both of their
home squares, and thus includes a larger import region than is
actually necessary; in the case of the two-dimensional analogs of
the HS and NT methods, however, we will ignore this issue in the
interest of simplicity.)

For purposes of comparison, we define a simplified, two-
dimensional analog of the NT method (the NT analog) in which
any pair of atoms A and B separated by no more than a distance R
interact within that square whose x base coordinate is equal to the
x base coordinate of A, and whose y base coordinate is equal to the
y base coordinate of B. The import region of the processor asso-
ciated with square S thus consists of that portion of the “row” and
“column” containing S that lies within a distance R of S, as
illustrated by the blue area in Figure 1b. Each interaction occurring
within S will thus involve (a) one atom from either S itself or the
horizontal bar extending a distance R from it in both directions,
and (b) one atom from either S itself or the corresponding vertical
bar.

It will be noted that the import region of the two-dimensional
(though not the three-dimensional) NT analog is a proper subset of
that of the corresponding HS analog, with an area of only 4bR.
Thus, the import requirements of the 2D NT analog are always

lower than those of the HS analog, resulting in a reduction in the
amount of time required to transfer data into and out of each
processor. Moreover, as the number of processors grows large, the
NT analog offers an asymptotic advantage over the HS analog: As
the molecular system is partitioned into an increasingly large
number of boxes with a progressively decreasing side length b, the
area of the HS analog’s import region approaches that of a circle
of radius R, while that of the NT analog approaches zero.

It is worth noting that, in contrast with the HS analog, the NT
analog interacts most pairs of atoms within a processor in which
neither atom resides, as is the case for the force decomposition
methods. Because it seems counterintuitive that such a method
would result in a lower import load than a method that never needs
to import more than one of the two atoms in any interacting pair,
an intuitive discussion of the underlying basis of this advantage
may be in order. We begin by noting that in both algorithms, we
may identify two sets of atoms such that each interaction involves
one atom from each set. In the case of the HS analog, the first set
consists of only those atoms residing within a single square, while
the second is the much larger set consisting of all atoms that lie
within its entire import region. In the case of the NT analog, on the
other hand, the two sets are much better balanced in size, each
consisting of all atoms lying within a bar of area (2R + 1).

The number of interactions to be calculated within the proces-
sor is roughly (and as p — o0, exactly) proportional to the product
of the number of atoms in each set, which should be approximately

(a) (b}

Figure 1. Import regions of the simplified two-dimensional HS and
NT analogs. The import region of a simplified two-dimensional analog
of the HS method is illustrated in (a), while that of a comparable 2D
NT analog is depicted in (b). The spatial relationship between the two
particles is the same in both subfigures, but interaction occurs within
a different square. In both subfigures, the interaction square appears in
green, while the import region appears in blue.
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the same for the two methods, assuming a uniform distribution of
atoms. The amount of data required to calculate these interactions,
on the other hand, is proportional to the sum of the number of
atoms in the two sets (excluding those already present in the
interaction square), which is smaller for the NT analog than for the
HS analog. For the same reason that the perimeter of a square
(which is proportional to the sum of the length and width) is
smaller than that of any other rectangle having the same area
(which is equal to the product of the length and width), the better
balance between the size of the two sets in the NT analog results
in a smaller import load. Moreover, the relative advantage of the
NT analog grows as the number of processors (and thus, the ratio
of R to the side length of a single square) increases.

Although the simplified, two-dimensional “toy problem” out-
lined above provides some insight into one important aspect of
NT’s performance advantage, the situation becomes more complex
in the case of a realistic three-dimensional MD simulation. First,
although the NT analog may be generalized fairly easily to any
even number of dimensions, doing so in the case of an odd number
of dimensions is less straightforward. Whereas the two-dimen-
sional NT analog interacts the atoms in two elongated bars, each
aligned with one of the two axes, it is not immediately obvious
how to partition three dimensions into two such sets in such a way
as to minimize import volume. In addition, the import region of the
actual NT algorithm will be “pruned” in such a way that each pair
of atoms is brought together within only one processor, eliminating
the duplication noted above. In contrast with the two-dimensional
analog, the import region of the actual, three-dimensional NT
method is not a strict subset of import region of the (3D) HS
method. Indeed, although the actual NT method should allow a
significant reduction in data transfer time in most cases of practical
interest, when the number of processors is very small relative to
the size of the molecular system being simulated, the NT method
may actually have a larger import load than the HS method.

The actual (three-dimensional) HS and NT algorithms are
specified, analyzed, and compared in the following three sections.

Locus of Interaction

Like the spatial decomposition methods, the NT method assigns
each processor to a particular region of space throughout the
course of the simulation. Atom pairs, however, are generally
interacted within a processor in which neither atom resides, as in
the case of the force decomposition methods. This section de-
scribes the specific rules used by the NT method to determine the
processor in which a given pair of atoms is interacted (the locus of
interaction for that atom pair), and compares these rules with those
employed by the HS method. We begin with a description of the
manner in which space is allocated among the processors in both
methods.

For purposes of this article, we will assume that the molecular
system being simulated resides within a box called the global cell,
which serves as the unit cell of an infinite, spatially periodic
system whose period in each dimension is equal to the side length
of the global cell in that dimension, such that space is “tiled” with
an infinite number of identical copies of the molecular system
being simulated. The periodic boundary conditions imposed by

such a tiling will simplify our analysis, and will thus be assumed
for purposes of this article, although the NT method should also be
applicable to simulations in which distant interactions are handled
using fast multipole techniques or other approaches involving the
evaluation of pairwise interactions within a locally circumscribed
region of space.

Both the HS and NT methods divide the global cell into a
regular three-dimensional rectangular grid of smaller boxes, each
having the dimensions b, X b, X b_. During a given MD time
step, each processor is responsible for updating the positions of all
atoms currently residing within one such box, which is referred to
as the home box of both that processor and those atoms. Over the
course of an MD simulation, however, a given atom may move
from one box to another, at which point a different processor will
assume responsibility for updating its position. Exploiting the
one-to-one relationship between processors and boxes to justify a
form of informal shorthand, we will sometimes apply terminology
to one that is technically applicable to the other—referring, for
example, to the interaction of a pair of atoms within a given box
rather than within its associated processor. The base coordinates of
a given box (or by extension, of the processor associated with that
box, or of any atom in that box) are defined as the coordinates of
the low-coordinate corner of that box.

In the HS method, a given pair of atoms is always interacted
within the home box of one of the two atoms. Specifically, the
locus of interaction for the HS method is defined by the following
interaction rules:

1. If the two atoms have different x base coordinates, the atoms
are interacted within the box with the smaller base coordinate.

2. If the two atoms have the same x base coordinate but different
y base coordinates, the atoms are interacted within the box with
the smaller y base coordinate.

3. If the two atoms have the same x and y base coordinates but
different z base coordinates, the atoms are interacted within the
box with the smaller z base coordinate.

4. If all three base coordinates of the two atoms are identical, the
two atoms share the same home box, and the atoms are inter-
acted within that box.

In the NT method, the locus of interaction for a given pair of
atoms need not be the home box of either of those atoms. Instead,
the atoms are interacted within a box (the interaction box) whose
base coordinates are a mixture of the base coordinates of the two
atoms. To specify the particular set of interaction rules employed
by the NT method, it is useful to distinguish one of the two atoms
as the tower atom, and the other as the plate atom, according to the
following criteria:

1. If the two atoms have different x base coordinates, the one with
the smaller x base coordinate is the tower atom.

2. If the two atoms have the same x base coordinate but different
y base coordinates, the one with the smaller y base coordinate
is the tower atom.

3. If the two atoms have the same x and y base coordinates but
different z base coordinates, the one with the smaller z base
coordinate is the plate atom.
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Figure 2. Locus of interaction, HS vs. NT. The green box within each
subfigure represents the box in which a given pair of atoms (black
dots) interacts, with the y axis omitted in the interest of visual clarity.
When the two atoms have different base coordinates in all three
dimensions, the HS method interacts the two atoms within the home
box of the atom having the smaller x base coordinate, while the NT
method interacts the two atoms within a box in which neither atom
resides—specifically, that box whose x and y base coordinates are
those of the atom with the smaller x base coordinate, and whose z base
coordinate is that of the atom with the larger x base coordinate. When
the two atoms share one or more base coordinates, the two methods
break the resulting “ties” in specific ways, as detailed in the interaction
rules that appear in the main text.

4. If all three base coordinates of the two atoms are identical, the
tower and plate atoms may be chosen arbitrarily.

With these definitions, the NT method will always interact the
tower and plate atoms within that processor whose x and y base
coordinates are those of the tower atom, and whose z base coor-
dinate is that of the plate atom.

Simplified versions of the interaction rules for the HS and NT
methods are illustrated in Figure 2 for the case in which the two
atoms have different base coordinates in all three dimensions (but
with the y dimension omitted in the interest of visual clarity).

Import Region

As in the case of their two-dimensional analogs, our description of
the HS and NT methods will make use of the term import region,
which is defined in the three-dimensional case as that region of
space from which a given interaction box must import data during
each MD time step. The import region for a given interaction box
I must encompass all atoms not already present within / that must
be interacted within / (as specified by the interaction rules pre-
sented in the previous section) during the current time step. The
import regions of both the HS and NT methods lie within a region
called the interaction neighborhood of I, which includes all points
outside of / that lie within a Euclidean distance R of some point in
1. Depending on the number of processors, the shape of the
interaction neighborhood may range from a box with slightly
rounded corners and edges (when the number of processors is
small) to a slightly extended and flattened sphere (when the num-
ber of processors is large).

The interaction neighborhood of / may be divided into the
following 26 interaction subregions, which serve as the building
blocks for the import regions of both the HS and NT methods:

1. Six face subregions, denoted y_ ., Y, ., Y_y» Y4, Y_.» and
Y... each associated with one of the six faces of I. Face
subregion y_ ., for example, is a by X b, X R box whose base
is the low-x-coordinate face of 7, and which extends outward
from / in the —x direction for a distance R.

2. Twelve edge subregions, denoted y_ ., Y_ iy Vix—ys
Yixt+yr Yex—z0 Yex+zo VYVix—2z VYix+z Y—y—2 Yoyt
Y+y—. and v, each associated with one of the 12 edges of
1. Edge subregion y_,_, for example, is an “outward-point-
ing” quarter-cylinder of radius R and length b_ whose axis
coincides with the low-x-, low-y-coordinate edge of /.

3. Eight corner subregions, denoted y_. ., ., V_. .
Yoxty-z Yoxiytzs Vix—y-z Vix—yizs YVixiy—o and
Y+x+y+2 €ach associated with one of the eight corners of I.
Corner subregion y_ ., _, for example, is an “outward-point-
ing” octant of a sphere of radius R whose center coincides with
the low-x-, low-y-, low-z-coordinate corner of /.

Figure 3 shows an example of each type of subregion. It will be
noted that the dimensions of the face and edge subregions are
determined in part by the box dimensions. In the case of the HS
method, the box is cubical, with side length b, = b, = b_ = b.
In the NT method, the x and y dimensions of the box are equal,
with side length b, = b, = b,,, but its height, b_, will not in
general be equal to b,,. Instead, the aspect ratio b, /b_ will be
optimized to minimize the import load, in a manner discussed in
the following section. Indeed, if it were not possible to vary the
ratio of b,, to b_, the import load of the NT method would be
asymptotically proportional to R? rather than R*'?, as we shall see
shortly.

The import region of the HS method is defined as the union of
(a) the three face subregions v, ,, v.,, and v, ; (b) the six edge
subregions Y.y, Yixiy Yix—z Yixiz Yiy—z a0d Yy
and (c) the four corner subregions vy ., _ ., Y4tz Yoty
and Yxtytz

The import region of the HS method is depicted in Figure 4a.
The fact that this region is (for the parameters assumed in creating
the figure) roughly hemispherical rather than roughly spherical is
attributable to the fact that a given pair of atoms need not interact
within the home boxes of both atoms. Instead, a force vector
representing, for example, the force exerted on atom p by atom ¢
may be calculated within the home box of p and added into a
vector sum representing all force components acting on p. A
negated version of the same force vector, representing (by New-

—z

Figure 3. Interaction subregions. Sample interaction subregions are
shown in blue, while the interaction box appears in green. One of the
six face subregions is shown in (a), one of the 12 edge subregions in
(b), and one of the eight corner subregions in (c).
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Figure 4. Import regions of the HS and NT methods. The import
region of the HS and NT methods are illustrated in (a) and (b),
respectively. In both cases, the interaction box appears in green, while
the import region appears in blue. The tower and plate of the NT
method are illustrated separately in (c) and (d), respectively, with the
outer tower and outer plate appearing in blue.

ton’s third law) the force exerted on g by p, may then be exported
to the home box of ¢ and combined with all other forces acting on
q. It is easily verified that for each atom pair { p, ¢} separated by
no more than R, either:

1. p and g share the same home box,
2. g resides within the import region of the home box of p, or
3. p resides within the import region of the home box of ¢.

Thus, the import region of the HS method is sufficient to allow
each atom pair to be interacted within some processor.

The import region of the NT method, on the other hand,
consists of the union of (a) the four face subregions vy, ,, v,
Y., and 7y, _, and (b) the two edge subregions y, ., and v, .,
but includes no corner subregion—a feature that is responsible in
part for its asymptotic advantage over the HS method. For conve-
nience, certain portions of the NT method’s import region are
given special names. In particular, the union of y,_and y__is
referred to as the outer tower, while the union of the outer tower
and the interaction box is referred to simply as the tower. The
union of subregions v, ,, Y iy Y4 and y, ., is referred to
as the outer plate, while the union of the outer plate and the
interaction box is referred to simply as the plate. It should be noted
that the interaction box belongs to both the tower and the plate.
Intuitively, the tower is the box that would be obtained by stretch-

ing the interaction box by a distance R in both the positive z and
negative z directions. The plate includes the interaction box and an
adjacent “terrace” of thickness b_ extending (roughly speaking) a
distance R away from the tower, but continuing only about half-
way around it. The tower and plate are depicted in Figures 4c and
d, respectively, while the full import region of the NT method is
illustrated in Figure 4b.

Referring to the interaction rules presented in the previous
section, it is easily verified that for each pair of atoms, there exists
some box / such that one of the atoms lies within the tower of /
while the other lies within its plate. (One or both of these atoms,
however, may lie within the interaction box / itself, and may thus
not need to be imported.) Thus, the import region of the NT
method is sufficient to allow each pair of atoms separated by no
more than a distance R to be interacted within some processor.
After a given pair of atoms has been interacted within /, oppositely
oriented copies of the resulting force vector may be exported to the
home boxes of the two atoms.

Import Volume

Assuming uniform density (measured in atoms per cubic Ang-
strom), the import load (the amount of atomic coordinate data that
must be transferred into each processor during each MD time step)
is proportional to the volume of the import region. In this section,
we thus examine the volume of the import region for the HS and
NT methods.

Before proceeding to a quantitative analysis, it may be useful to
review the first two rows of Figure 5, which illustrate the manner
in which the interaction box and import region of the HS method
and the NT method, respectively, scale with an increasing number
p of processors. The volume of each box is inversely proportional
to p for both the HS and NT methods, and for a given value of p,
is the same for both methods. With the HS method, the box
remains cubical as p increases. In the NT method, however, the
box becomes shorter and fatter with increasing p. As is apparent in
the figure, the relative advantage of the NT method over the HS
method grows as the number of processors increases. In the limit
as p — o0, the import region of the HS method closely approxi-
mates a hemisphere with radius R, while that of the NT method
becomes a collection of regions having a much smaller aggregate
volume.

We now provide a quantitative analysis of the import volumes
of the two methods, in both absolute and asymptotic terms. The
import region of the HS method includes: (a) three face subre-
gions, each of volume Rb?, (b) six edge subregions, each of
volume wR?b/4, and (c) four corner subregions, each of volume
TR3/6.

Thus, the total import volume of the HS method is

3 2
V,=3Rb>+ 3 7R + 3 7R’

and the limit as p — % is



1324 Shaw « Vol. 26, No. 13 « Journal of Computational Chemistry

Number of Processors

=
=]
T
e
]
=

512

Figure 5. Scaling of import regions. The interaction box and import region of the HS, NT, SH, and SNT
methods are shown for a machine containing 65, 512, 4K, and 32K processors, assuming a molecular
system with 50,000 atoms, an interaction radius of 12 A, and a density of 0.1 atom/A>,

_2 R3
V,-x—gﬂ .

The dimensions (and thus the volume) of the NT method’s
import region are determined in part by the box dimensions.
Although the volume of the box is fully determined by the size of
the molecular system and the number of processors, the aspect
ratio b,,/b_ is a free parameter that can be chosen in such a way
as to minimize interprocessor communication. To do so, we ex-
press the import volume V, in terms of b,,, b_, and R, then solve
for the aspect ratio that minimizes this quaﬁtity. The import region
of the NT method consists of:

1. The outer tower, which in turn consists of:

a. Two face subregions, each with volume Rbiy, and
2. The outer plate, which in turn consists of:

a. Two face subregions, each with volume wahz, and

b. Two edge subregions, each with volume 7R>b_/4.

Thus, the volume of the import region of the NT method is

7RD, .
- M

V,=2Rb, + 2Rb,, b, +

Note that b, and b, are subject to the constraint V,, = b2 b_,
where V,, = VIp is the box volume and V is the volume of the
global cell (that is, of the molecular system being simulated). We
can thus express b_ in terms of b,, and V,, yielding
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2RV, . 7R*V,
b, 202,

Vi= 2Rb§y + 2)

Although it might appear from this equation that V; is propor-
tional to R? for large p, the import-minimizing value of b_, is itself
a function of R, and turns out to be proportional to R'/* when pis
large, resulting in an import volume that scales as R*'2. In partic-
ular, by differentiating eq. (2) with respect to b, setting the result
equal to zero, and solving the resulting quartic equation for b, we
find that the import load of the NT method is minimized when

B \/E-G- \/Vbc*”2 —c
- 2

xy

where

and

d={27V; = 3\3Vi[(47R)’ + 27V,]}"".

Substituting this optimal value of b, into the equation b, =
Vb/biy yields the corresponding (optirhal) value of b_, while
substitution into eq. (1) yields the (optimized) import volume of
the NT method. Although the functional forms of the optimal
values of bxy, b., and V; are relatively cumbersome for finite p, a
Taylor-series expansion around the point V, = 0 reveals that as
the number of processors grows large, these quantities approach

the much simpler asymptotic values

_ (wRV,)"

by N

hama |
= 7R
Vi = 27'2RY2V)? 3)
and because V,, = V/p,
V= O(RYp™"),

consistent with the asymptotic results summarized in Table 1. The
p'/? factor in this asymptotic expression implies that the amount of
data transferred into and out of a given processor approaches zero
as the number of processors becomes very large, in contrast with
the HS method, for which the import volume asymptotically ap-
proaches the volume of a hemisphere of radius R. Also of interest
is the fact that as p grows large, the amount of transferred data
becomes proportional not to the volume of the interaction neigh-
borhood, but to the square root of this volume.

From a practical perspective, however, it is important to com-
pare not only the asymptotic behavior of the HS and NT methods,
but also their absolute performance for problems and machines of

Table 2. Time Required to Import Atomic Coordinate Data.

Number of Processors

Method 64 512 4K 32K
HS 3126 1389 787 552
NT 2339 686 211 68
SH 5469 1758 317 81
SNT 2722 771 226 71

Limit of measurement is the amount of time required to import one atom.
Assumptions: 50,000 atoms, interaction radius = 12 A, density = 0.1
atom/A>.

practically relevant sizes. The first two rows of Table 2 provide a
comparison of the two methods for the case of a molecular system
with 50,000 atoms, an interaction radius of 12 A, and a density of
0.1 atom/A2, for a wide range of machine sizes. It will be noted
that, under the assumptions of our analysis, NT should offer a
nontrivial improvement over HS when running on a contemporary
cluster of moderate size, and a rather dramatic improvement on a
massively parallel supercomputer like IBM’s BlueGene/L.>
(BlueGene/L is designed to embody as many as 65,536 nodes,
each containing two processors, and is expected to be applied to,
among other things, the exploration of protein folding trajectories
using MD simulation.) Figure 7 compares the two methods (along
with two others that will be discussed in the following section) in
a format that highlights their asymptotic behavior.

Comparison with and Enhancements of Snir’s
Method

In recently published article,'"> Marc Snir described another
method, that, like the NT method, achieves O(R>’ Zp_ 172y scaling,
though with a somewhat less favorable multiplicative constant.
Because his method, like NT, captures the principal advantages of
both force-based and spatial decomposition methods, he referred to
his technique as a “hybrid” method, and we shall thus refer to it
here as the SH (for “Snir’s Hybrid”) method. Although the two
methods were developed independently and are quite different in
their general approaches and the nature of their import regions,
they also share certain characteristics that account for their asymp-
totic advantages by comparison with traditional methods. In this
section, we describe the essential elements of the SH method,
compare its performance to that of the NT method, and describe
the manner in which the performance of the SH method can be
enhanced using techniques analogous to those we have employed
in the NT method.

Employing the terminology used in this article, the SH method
associates each processor with a cubical box of side length b.
Defining r = [ R/b |and 7 = [ V/r + 1 |, the import region of
the processor whose base coordinates are (i, j, k) consists of two
subsets of its interaction neighborhood:

1. A contiguous region, which we will refer to as the base,
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Figure 6. Import regions of the SH and SNT methods. The import
region of the SH and SNT methods are illustrated in (a) and (b),
respectively. In both cases, the interaction box appears in green, while
the import region appears in blue.

consisting of the set of boxes with base coordinates (i + u, j,
k — w,) where u € [—r, r] and w, € [0, 7 — 1].

2. A set of noncontiguous regions, which we will refer to indi-
vidually as bars and collectively as the comb, consisting of the
set of boxes with base coordinates (i, j + v, k + w,7), where
v € [—r, r]and w, € LO, rl7 _|].

The import region of the SH method is illustrated in Figure 6a,
while the third row of Figure 5 illustrates the manner in which it
scales with an increasing number of processors.

As in the case of the NT method, the SH method guarantees
that for each pair of atoms separated by no more than a distance R,
there exists some interaction box / such that one of the atoms lies
within the base of / while the other lies within its comb. (Because
the interaction box is included within both the base and the comb,
however, one or both of these atoms may lie within / itself, and
may thus not need to be imported.) Thus, the import region of the
SH method is sufficient to allow each pair of atoms separated by
no more than a distance R to be interacted within some processor.

To quantify the import load under the SH method, we note that
the volume of the base is V,(2r + 1)7, while each of the (L rl7 _|
+ 1) bars in the comb has a volume V,(2r + 1). Because both the
base and the comb include the interaction box, which is not part of
the import region, we must subtract 2V, from the sum of base and
comb volumes, yielding the import volume

Vi = Vil@r + )G+ | w7 |+ 1) - 2],

where V,, = b = V/p is the box volume, and V is the volume of
the system being simulated. Eliminating all “floors” and “ceilings”
(the effect of which becomes negligible as V, approaches zero)
and performing a series expansion around V,, = 0, we find that as
the number of processors approaches infinity, the import volume of
the SH method approaches

Vige = 4RY2V)2

which is larger than the asymptotic import volume of the NT
method by a factor of 2/\/7r ~ 1.13.

Although the advantage of the NT method over the SH method
is thus relatively modest in the limiting case of an infinite number
of processors, the advantage for problems and machines of prac-
tical size is larger. The time required to import atomic coordinate
data using the SH method (as described in Snir’s article) appears
in the third row of Table 2 for our example molecular system and
for machines containing various numbers of processors. In review-
ing Table 2 and its graphical counterpart, Figure 7, it will be noted
that the SH method requires significantly more time for data
import than the NT method for all of the sampled values of p.
Indeed, for the cases of 64 and 512 processors, even the HS
method appears to perform better than the SH method.

The advantage of the HS method over the SH method for
systems of this size, however, does not reflect an intrinsic limita-
tion of Snir’s general approach. Snir’s article, which was published
in a theoretical computer science journal, focused largely (and, for
that audience, quite appropriately) on the asymptotic behavior of
his method as the number of processors approached infinity, and
not on the optimization of his approach for machines of practical
size. As we shall see, with certain modifications, Snir’s method
can, in fact, achieve performance approaching (although not equal-
ing, for finite p) that of the NT method for problems and machines
of reasonable size.

The first of these modifications is a relatively obvious one
(which was presumably not incorporated in Snir’s specification
and analysis of the SH method only because of the asymptotic and
theoretical focus of his article): eliminating from the import region
all points lying more than a distance R from any point in the
interaction box, as is the case for both the HS and NT methods.
Our other modifications involve the optimization of certain param-
eters in a manner analogous to the import-minimizing optimization

6,000
'Q‘_
5,000 \\
& 4,000 : +5
= o HS
t
a: H -u- SNT
1.000
0
G4 512 4K 2K
Processors

Figure 7. Time required to import atomic coordinate data. The four
methods discussed in this article are compared with respect to the time
required for data import, assuming a system with 50,000 atoms, an
interaction radius R = 12 A, and a density of 0.1 atom/A>. The unit
of measurement is the amount of time required to import one atom.
Although the import time of the NT, SH, and SNT methods may be
made arbitrarily small by adding processors to the system, that of the
HS method approaches a fixed, nonzero asymptote as its import region
evolves toward a sphere of radius R. Although NT offers the best
performance throughout the range of machine sizes shown in this
figure, HS would outperform NT if the number of processors were
very small (=4, under the assumptions of this figure).
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performed in the NT method. In particular, we begin by removing
the restriction of a cubical box, introducing the variable parameters
b, and b, (which, together with V,,, determine the remaining box
dimension b_). In addition, we replace 7, which in the SH method
is always defined as [ Vr + 1 |, with a third adjustable param-
eter, s. (Like 7, however, the parameter s will assume only integer
values.) We then perform a global optimization over the parame-
ters b,, b,, and s to find that combination of parameters that
minimizes import volume.

The resulting variant of the SH method, which will be referred
to in this article as SNT (for “Snir with NT-like modifications”), is
illustrated in Figure 6b, while the last row of Figure 5 illustrates
the manner in which its import region scales with an increasing
number of processors. Expressed in terms of the (as yet unspeci-
fied) box dimensions, and defining S = b_s, the volume of the
import region for the SNT method is

min(S—b-,R)
Visnr = by| 2b.R + b,min(S — b., R) + 2 j N——

0

L) ]

+b|26R+

bymin(b,, R — w,S + b,)

min(w2S,R)
+2 JR* = 2 dz
waS—b;

The last row of Table 2 shows the data import time for the SNT
method under the assumptions of our example molecular system,
as calculated by global sampling over a wide range of b, and b,
values and all meaningful values of s, followed by local minimi-
zation. It will be noted that, although NT outperforms SNT for
each of the four example machine configurations, the degree of this
outperformance grows smaller as the number of processors in-
creases. In the limit as p — o, the base becomes a2R X § X b,
rectangular parallelepiped, the comb becomes a finely diced half-
disk with radius R and thickness b_ whose “effective density”
approaches 1/s, and the import volume of the SNT method ap-
proaches

— »_1/2p3/2y/1/2
Visnte = 2 "R7V,,

which is identical to that of the NT method.

Conclusions

We have introduced a new technique, called the NT method, for
the parallel evaluation of distance-limited pairwise particle inter-
actions. Although the technique should be applicable to other types
of simulations as well, it was designed with the goal of accelerat-
ing the execution of lengthy biomolecular simulations using clas-
sical molecular dynamics techniques on parallel computer systems
ranging from conventional clusters to massively parallel super-

computers. Because the time required for interprocessor commu-
nication has historically been the principal obstacle to the efficient
utilization of a large number of processors for this purpose, the
results presented here may help to extend the period of time over
which it is feasible to simulate the atomic-level dynamics of
explicitly solvated biological macromolecules using MD tech-
niques.

We have shown that the amount of data transferred into and out
of a given processor during execution of the NT method scales as
O(R*?p~"2), where R is the interaction radius and p is the
number of processors. The method takes advantage of the fact that
each atom need interact with only those atoms falling within a
surrounding sphere of radius R to limit the import and export loads
to a quantity dependent only on R, and not on the number of atoms
in the system. Indeed, as p grows large, the amount of transferred
data becomes proportional not to the volume of a roughly spherical
interaction neighborhood of radius R, but to the square root of this
volume. Additionally, the amount of data transferred into and out
of a given processor may be made arbitrarily small with a suffi-
cient increase in the number of processors, allowing a large num-
ber of processors to be productively employed on a single MD
simulation, and avoiding the rapidly diminishing returns associated
with traditional spatial decomposition methods. Most importantly,
the constant factors associated with these performance figures are
such that the NT method should provide substantial performance
advantages by comparison with traditional methods in most cases
of practical significance.

We have also compared the NT method with another new
technique developed independently by Marc Snir that also
achieves O(R*?p~'"?) scaling, although with a less favorable
multiplicative constant, and have described a set of modifications
to his method, based on techniques analogous to those we employ
in the NT method, that allow it to achieve performance approach-
ing (although not equaling) that of the NT method for problems
and machines of practical size. Although our results indicate that
the NT method performs better than either the original or modified
version of Snir’s method for machine sizes ranging from 64 to 32K
processors, its relative advantage declines as the number of pro-
cessors becomes large. Indeed, we have shown that in the limit as
p — %, our modified version of Snir’s method has exactly the
same performance as the NT method.

It should be emphasized that the analyses presented in this
article have considered only the amount of data transferred into a
given processor, and not the fixed latency associated with the
transfer of a minimal packet of data. The burden imposed by
communication latency may, in fact, be quite significant in prac-
tice—particularly in the case of machines with a large number of
processors—and a detailed latency analysis for parallel machines
with various communication networks would thus provide a useful
complement to the results presented here.
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