
Order-Invariant Real Number Summation:
Circumventing Accuracy Loss for Multimillion
Summands on Multiple Parallel Architectures

Patrick E. Small, Rajiv K. Kalia, Aiichiro Nakano, and Priya Vashishta
Collaboratory for Advanced Computing and Simulations

Dept. of Computer Science, Dept. of Physics & Astronomy, Dept. of Chemical Engineering & Materials Science
University of Southern California

Los Angeles, CA 90089-0242, USA
{patrices, rkalia, anakano, priyav}@usc.edu

Abstract—Achieving reproducibility of scientific results in
parallel computing is both a challenge and a source of active
research. A significant contribution to non-reproducibility is
rounding error introduced into calculations by the non-
associativity of floating point addition. Scientific applications
that rely on accumulation of many small values, such as
climate and N-body simulations, are susceptible to this type of
error. This paper proposes a variant of an existing fixed-point
method for real number summation that yields sums with
perfect precision, and which are invariant to summation order
and system architecture. The new method improves upon the
existing technique by exhibiting improved performance for
large numbers of summands, introducing tunable fractional
precision to place precision where it is needed, and eliminating
the aliasing problem of the original method. The proposed
technique is described and its performance is demonstrated in
the OpenMP, MPI, CUDA, and Xeon Phi parallel
programming environments. In particular, the proposed
method outperforms the previous state-of-the-art for larger
problems involving over one million summands at high
precision. With the anticipated convergence of exascale high-
performance computing and big data analytics on hybrid
architectures, computational reproducibility will become an
even more difficult problem than it is today. Use of numerical
techniques such as the method proposed here can help to
mitigate the impact of error and variation within simulations
at these large scales.

Keywords-reproducibility; rounding error; high-precision
arithmetic; summation; fixed-point arithmetic

I. INTRODUCTION
A fundamental problem with performing real number

arithmetic on a computer is that floating-point addition is
non-associative. Precision limitations with the representation
of floating-point numbers force a small rounding error to be
introduced into the sum each time an addition is performed
[1]. Over many consecutive additions, this rounding error
accumulates and can become very large. In effect, the sum

becomes a random walk across the space of possible
rounding error.

The significance of this error is often overlooked, as
given a deterministic summation order for a set of
summands, a consistent total sum will always be returned by
the computer. However, even this sum contains rounding
error - it is simply hidden from view. With the adoption of
large-scale parallel computing, this inherent round-off error
is unmasked and manifests itself as small perturbations in
global sums that are performed in parallel. In scientific
codes, this can be a significant problem [12]. At a minimum,
the error makes exact reproduction of computation results
across simulations difficult to achieve. At worst, error is
compounded in each time step until the simulation results are
meaningless.

Proposed methods for minimizing rounding error involve
either application of general-purpose arbitrary precision
arithmetic, error compensation techniques, alternative real
number representations arising from computable analysis,
hardware solutions, high-precision intermediate sums, or
combinations of these approaches [5]. An example
implementation of general-purpose arbitrary precision
arithmetic is the GNU Multi-Precision Library [9]. Arbitrary
precision can perform nearly any type of arithmetic operation
at potentially infinite precision, yet it requires extensive
computational and memory resources which can be
prohibitive in a parallel computing environment.

Error compensation methods include utilizing error-free
transformations to track accumulated error during the
summation process [6-8, 13, 15, 16, 19, 21], or manipulating
the summation order to minimize error such as with pairwise
summation (see also [12]). The error-free transformations
can yield a significant reduction in rounding error with very
good performance, although they typically cannot
completely eliminate the problem. As the number of
operands may be very high and distributed across many
different processors, ordered summation approaches are
prohibitive at large scales. Although computable analysis
techniques can be computationally expensive, they can often

2016 IEEE International Parallel and Distributed Processing Symposium

1530-2075/16 $31.00 © 2016 IEEE

DOI 10.1109/IPDPS.2016.41

152

be extended to support mathematical operations beyond
addition [2-4, 17]. Proposed hardware solutions strive to
overcome the limitations of IEEE floating-point arithmetic
by redefining the real number representation in the hardware
layer. The universal number format (unum) is a recent
example of work in this area [10]. The challenge with this
approach is that significant resources are needed to design
and field the new hardware.

The remaining class of techniques involves performing
the addition with a very high precision intermediate sum and
subsequently rounding down to a lower precision final result
[11, 12]. Higher precision intermediate sums can exhibit zero
rounding error when given sufficient memory to represent
the sum. However, some properties of the operands must be
known a priori, an example being dynamic range when using
a fixed point high-precision accumulator. In addition to their
potential accuracy, these techniques benefit from being
conceptually simple and easy to implement across a wide
range of computer architectures.

The method proposed in this paper, called the High-
Precision (HP) method, is a high-precision intermediate sum
technique that is derived from Hallberg [11]. Whereas the
Hallberg method utilizes carry minimization in order to
increase performance, the HP method instead attempts to
maximize information content. The HP method yields
comparable performance at the same level of precision while
eliminating the storage overhead and aliasing of values in the
original approach. As is its predecessor, it is order invariant
and can be implemented efficiently in virtually any parallel
environment.

The remaining sections begin with a discussion of the
rounding problem in quantitative terms as well as the
original Hallberg method of summation. Then the proposed

HP method is described, and its performance is evaluated
against both the Hallberg method and double precision
addition in multiple parallel computing environments.

II. BACKGROUND

A. Rounding Error
To demonstrate the extent of the rounding problem, a test

was constructed to identify the accumulated rounding error
after summing sets of n small random floating point values
with random summation orders, for various values of n =
{64, 128, ..., 1024}. Each set of semi-random numbers was
generated in such a way that their sum must be zero on a
computer with infinite precision.

For each set of size n, n/2 random double precision
values in the range [0.0, 0.001] were generated. The
remaining n/2 values were selected to be negatives of the
first n/2 values, their purpose being to cancel the sum of the
first n/2 values. With each set of numbers generated in this
manner, 16384 trials were conducted for each set in which
all the numbers were arranged in a random order and
summed together using standard floating point arithmetic.
The residual sums for the trials were recorded, producing a
distribution of sums for each set. Despite the inclusion of
both a random number and its complement in a particular set,
the test is protected from catastrophic cancellation effects by
the random ordering of operands in each trial. It is unlikely
that total cancellation will occur until the last value is added,
at which point the operation is complete and the loss of
significance is irrelevant. Forcing the true sum to be zero
allows us to compute accurate statistics describing the
distribution of sums, as the statistics calculation itself is
subject to round-off error.

Figure 1: Observed standard deviation for the sum of sets of n
semi-random numbers. Each set was constructed to yield exactly
zero on a computer with infinite precision.

128 256 384 512 640 768 896 1024

0

2

4

6

8

10

12
x 10

−18

Number of Summands (n)

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 S

um
 (σ

)

Double precision
HP (N=3, k=2)

Figure 2: Distribution of 16384 floating-point sums consisting of
1024 semi-random numbers, with each trial adding the operands
in random order.

−6 −4 −2 0 2 4 6
x 10

−17

0

500

1000

1500

2000

2500

Floating Point Arithmetic Sum

C
ou

nt

1024 semi−random real numbers
in range [−10−3, 10−3]

153

Figure 1 illustrates the standard deviation of the residual
sums found after executing the test for n = {64, 128, …,
1024}. The observed error in the sum increases linearly with
the number of additions performed. If the n summands in
each set were uncorrelated with each other, we would expect
the error to increase relative to !n. Since one-half of the
elements are complements of the remainder, however, this
likely introduces a bias to the rounding direction which
pushes the accumulated error towards the worst case.

This set selection strategy was chosen to mimic the force
accumulation process that is typical of many N-body atomic
simulations. There is an accumulation of forces or
displacements at each time step within these applications,
each contribution consisting of a small positive or negative
floating point value. Thus, Figure 1 illustrates that scientific
applications which rely on reductions of a large number
floating point values, such as N-body simulations, are highly
susceptible to floating point rounding error.

Figure 2 illustrates the extent of the spread of the final
sums for the case n = 1024 by plotting the distribution of
values. We see that the histogram describes a normal
distribution whose mean is approximately zero
(corresponding to the true sum of zero) and whose standard
deviation matches that shown in Figure 1.

Note that Figure 1 also shows results produced using the
HP method with parameters N = 3 and k = 2 to perform the
summation (see section III below for the definition of the
parameters). The HP method achieved perfect precision on
these data sets and correctly computed the final sum as zero
for all test cases. This proposed technique is described in the
following section.

B. Hallberg Order Invariant Sum
As described in [11], a real number r can be represented

with a set of N 64-bit signed integers, ai, as follows:

! −

=
−=

1

0
)2/(2

N

i
MNi

iar , (1)
Where M is a positive integer that is less than 63. Two

real numbers expressed in this form may be added together
by summing their N corresponding integers independently.

When the result of any individual integer addition exceeds
2M, there is a carry out, and one must be added to the next
integer in the set. This is analogous to the carry process in
base-10 arithmetic with pen-and-paper. By choosing M < 63,
however, one can delay or even avoid performing this carry.
Selecting M in this manner sets aside a number of bits within
each integer to hold the carry that may be generated during
addition. The number of carries that can be accommodated in
this buffer is 2(63-M) - 1. Thus, if it is known how many
numbers are to be summed, it is possible to select an M that
guarantees no carry will be performed during the summation.
This serves to reduce the number of integer additions
required to add two numbers to N.

However, there are negative consequences to utilizing
this representation. The first problem is the overhead - not all
bits in the integers serve to provide real-number precision.
Each signed integer has a sign bit, and 63 - M carry bits are
dedicated to book-keeping purposes. A second problem is
aliasing, where multiple integer representations could
represent the same real number. A normalization process is
required when the summation is complete and the sum is
converted back to a real number. Another undesirable quality
of this method is that the user must know a priori the
expected number of summands. Otherwise, a catastrophic
overflow may occur, or an expensive carryout detection and
normalization process needs to be conducted at runtime
which defeats the purpose of this format.

The next section discusses the alternative approach
(based on this method) which addresses all of these concerns,
while simultaneously exhibiting better performance at large
scales.

Figure 3: Example addition of two floating point numbers using
the HP method.

Listing 1: C style code for conversion of a real number r from
double precision to HP integers ai, with translation to two’s
complement notation.
dtmp = fabs(r) * 264*(N-k-1);
isneg = (r < 0.0);
for (i = 0; i < N-1; i++) {
 itmp = (uint64_t)dtmp;
 dtmp = (dtmp – (double)itmp) * 264;
 a[i] = (isneg) ? ~itmp + (dtmp <= 0.0) : itmp;
}
a[N-1] = (isneg) ? ~(uint64_t)dtmp + 1 : (uint64_t)dtmp;

Listing 2: C style code for addition of two HP numbers of the form
a = a + b.
a[N-1] = a[N-1] + b[N-1];
co = (a[N-1] < b[N-1]);
for (i = N-2; i >= 1; i--) {
 a[i] = a[i] + b[i] + co;
 co = (a[i] == b[i]) ? co : (a[i] < b[i]);
}
a[0] = a[0] + b[0] + co;

154

III. ALGORITHM

A. Concept
As mentioned previously, the HP method is a variation of

the technique described in the previous section. The new
method modifies equation (1) so that a real number r is
expressed in this alternative form:

! −

=
−−−=

1

0
)1(642

N

i
ikN

iar , (2)
The integers ai are unsigned 64-bit values, and all bits are

allocated to store the real number with the exception of bit
63 of integer 0. The parameter k is the number of 64-bit
unsigned integers to assign to the fractional portion of r
where 0 " k " N, thus N-k integers are allocated to represent
the whole number component. This tunable parameter allows
the user to distribute the total precision among the whole and
fractional components.

Negative real numbers are accommodated by first
determining the integer representation of its absolute value
according to equation (2), then converting that integer
representation into two's complement notation. The
conversion involves flipping all of the bits of the N unsigned
integers, adding one to integer N - 1, and propagating any
carries back through to integer 0. Thus, only one bit (in
integer 0) is used to track sign regardless of precision at the
cost of some additional processing during conversion.

If we restrict the real number under consideration to
double-precision, then both the conversion of that number
and translation to two’s complement notation can be
performed in a single pass through the array of integers as
shown in Listing 1. The for loop utilizes a look-ahead
strategy for determining if there will be a carry-in for the
current block based on the remainder of the real number at
each step. Any non-zero remainder will absorb the added one
and will not allow it to propagate to higher magnitude
blocks.

Adding two numbers in HP format is a simple process.
The corresponding integers of the two integer sets are
summed, starting at integer position N - 1 and proceeding to
position 0. Any carryout from integer pair i is added to the
sum of integer pair i - 1. Since the numbers are stored in
two's complement notation, addition of positive and negative
numbers is identical. Overflow detection of the sum is
accomplished by comparing the signs of the summands with
the sign of the sum. Negative summands with a positive sum,
or positive summands with a negative sum indicate overflow
has occurred. Listing 2 describes the addition process with
two sets of HP integers a and b in pseudo-code, and Figure 3
illustrates the entire process for two floating point numbers.

Converting a number from HP format to double precision
is the inverse of the algorithm shown in Listing 1.

B. Properties
The HP method is a fixed-point representation for real

numbers. Juxtaposed with floating-point, HP sacrifices total
range for increased precision within the more limited range it
supports. Furthermore, this precision is constant over the full
range of representable numbers. Table 1 lists the maximum
range and smallest representable number for several choices
of N and k. The following subsections discuss additional
properties of this format.

1) Overflow and Underflow: Operations on real
numbers in the HP format are subject to overflow and
underflow just as in floating-point arithmetic. Overflow may
occur at three points, depending on the relative precisions of
the double precision and HP numbers. The first point where
overflow is possible is during conversion from double
precision to HP. If the magnitude of the double precision
number falls outside the maximum range supported by the
HP data type, then overflow will occur. The second point
where overflow may occur is during the addition of two HP
numbers (two very large positive numbers, for example).
Lastly, if the HP maximum range exceeds that of double
precision, overflow may occur when an HP number is
translated back to double precision. All three of these
situations can be easily detected at runtime. Underflow may
occur during double-to-HP conversion and vice versa, for
the same reasons as described above.

2) Atomicity: A high-precision real number

representation must be able to operate in a parallel
environment for it to be successful. Ideally, it should
support the ability to atomically add one number to another
in a multi-threaded environment. The HP method can
guarantee atomicity of addition using only the compare-and-
swap (CAS) synchronization primitive, which is supported
in most major compilers as well as CUDA. An atomic adder
can be constructed with carry out detection using only CAS.
If we express HP addition as a = a + b with a assumed to be
the global variable, only one atomic addition with this adder
is required for each of the N pairs of integers to be summed.
The remaining operations are thread local. Atomicity of
addition using CAS is demonstrated with the CUDA
performance test described later in this paper.

3) Invariance of Sum: The greatest strength of the HP

method is that given sufficient precision with appropriate
selection of the N and k parameters, the sum of any quantity

Table 1: Maximum range and smallest representable number for
the HP method with varying N and k.

N k Bits Max Range Smallest
2 1 128 ±9.223372 x 1018 5.421011 x 10-20

3 2 192 ±9.223372 x 1018 2.938736 x 10-39

6 3 256 ±3.138551 x 1057 1.593092 x 10-58

8 4 512 ±5.789604 x 1076 8.636169 x 10-78

Table 2: Parameters N and M used with the Hallberg method to
achieve near equivalency with the 512-bit HP method.

N M Precision
Bits

Maximum
Summands

10 52 520 " 2048
12 43 516 " 1 M
14 37 518 " 64 M

155

of operands is guaranteed to be invariant, both with respect
to the order of the summation and to the architecture on
which the addition is performed. Figure 1 illustrates the
success of the HP method with N = 3 and k = 2 in
computing the final sum of 1024 real numbers in the range
[0.0, 0.001] with perfect accuracy. This is possible because
both the HP and Hallberg methods reduce real number
addition to integer addition, which is fully associative and
implemented identically across all architectures. Thus, it is
possible to add a sequence of real numbers separately on an
Intel CPU and on an Nvidia GPU, for example, and derive
the same result in both cases.

IV. PERFORMANCE

A. Comparison with Hallberg Summation
To compare the Hallberg and HP approaches, we may

first examine the number of operations required to add a
floating point number to a running sum. As stated in [11], the
Hallberg method requires 2N FP multiplications and N FP
additions to convert a real number to an integer
representation, and N integer additions to sum that value with
the intermediate sum. The HP method factors out one of the
multiplications from the conversion loop (Listing 1) to yield
only N FP multiplications along with N FP additions.
However, it also requires 3N integer arithmetic/logic (ALU)
operations in the worst case (when the number is negative).
Adding this converted number to an intermediate sum
(Listing 2) requires 4(N - 1) arithmetic/logic operations.

Juxtaposing these raw operation counts alone indicates
that the Hallberg should outperform the HP method, yet we
find in practice this is not the case for three subtle reasons.
First, the latency of floating point multiplication instructions
is typically much greater than that of ALU instructions on
modern processors [14]. The HP method performs half as
many of these expensive operations, trading them for less
expensive ALU operations. In addition, many modern

processors have more than one ALU and thus the HP method
can benefit from ALU instruction concurrency. Lastly, the
HP method is a more compact representation since nearly all
bits are dedicated to representing precision. The consequence
of this compactness is that fewer integer blocks, N, are
required to represent the desired precision and this
representation occupies less memory. This compactness
serves to reduce main memory access latency.

With these differences in mind, it is possible to directly
compare the relative performance by establishing a precision
equivalency between them. Figure 4 shows the relative
performance of the two methods in summing a set of n
random real numbers in the range [-2191, 2191] with the
smallest such number being ±2-223, for n = {128, …, 16M}.
The HP representation was configured with parameters N = 8
and k = 4 to provide 511 precision bits, while the Hallberg N
and M parameters were selected to provide nearly equivalent
precision for each n as shown in Table 2. For small numbers
of summands, the Hallberg method slightly outperforms the
HP method, which is expected as very few bits are reserved
for carry storage at these scales and it avoids performing any
carry operations as designed. However, the HP method
gradually overtakes its counterpart for summand counts in
excess of 1M. Thus, the information content maximization
strategy of HP can be just as effective as carry minimization.

Formalizing this analysis further, we can show that the
relative performance is expected to continue to improve as
more operands are included in the sum. Since both
techniques operate on a sequence of N 64-bit integer blocks,
let us consider their run times as a function of N. Let us also
assume that we can bound the cost of converting and adding
one integer block to an intermediate sum as taking constant
time since both methods require a fixed number of arithmetic
operations. The HP and Hallberg costs per integer block will
be cp and cb, respectively. Then the execution times for the
HP method, Tp, and the Hallberg method, Tb, can be
expressed as:

Figure 4: Left: Runtime comparison of HP and Hallberg techniques for up to 16M real numbers. Right: Relative speedup of the HP method
versus the Hallberg method.

10
2

10
4

10
6

10
8

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Number of Summands

W
al

lc
lo

ck
 ti

m
e

(s
)

HP (N=8, k=4)
Hallberg (see Table 2)

10

2
10

4
10

6
10

8

0.7

0.8

0.9

1

1.1

1.2

1.3

Number of Summands

S
pe

ed
up

 (
H

al
lb

er
g/

H
P

)

156

""
#

$$
%==""

#
$$
% +==

M
bcNcTbcNcT bbbbpppp

64
1 , (3)

The parameters Np and Nb are the number of integer
blocks required by each method to support a particular
precision. In the case of the HP method, one bit must be
added to the precision bit count b to account for the single
sign bit, and the number of integer blocks is this value
divided by 64. The number of blocks for the Hallberg
method is determined by dividing the desired precision, b, by
the precision bits per block parameter, M. Ceilings are
necessary since there must be an integral number of blocks.

Since the speedup factor of HP versus Hallberg, S, is S =
Tb/Tp, we have:

""
#

$$
% +

""
#

$$
%

=

64
1bc

M
bc

S
p

b
, (4)

Converting the ceilings to an inequality and simplifying
this expression yields:

)65(
64

+&
&
'

(
)
)
*

+
≥

bM
b

c
cS

p

b , (5)

By limiting the precisions under consideration to b > 64,
we can bound the term b/(b+65) # 1/2 which yields the
following lower bound on the speedup as a function of M:

Mc
c

S
p

b 132
&
&
'

(
)
)
*

+
≥ , (6)

Therefore, given a fixed precision b, we would expect the
speedup factor S to increase as M is reduced to accommodate
more summands. Also note from equation (5) that the
speedup has a weak dependency on the number of precision
bits b. The speedup is also expected to improve slightly with
increased precision for a fixed M, which is confirmed in the
following section where the relative runtime performance is
examined using a lower precision.

Figure 5: Left: Runtime comparison of HP, Hallberg, and double precision global summation for 32M numbers in OpenMP. Right: Strong
scaling efficiency for the three methods.

1 2 4 8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Threads

W
al

lc
lo

ck
 ti

m
e

(s
)

Intel Xeon X5650 2.67 GHz

Double precision
HP (N=6, k=3)
Hallberg (N=10, M=38)

1 2 4 8

0

0.2

0.4

0.6

0.8

1

1.2

Number of Threads

E
ffi

ci
en

cy

Intel Xeon X5650 2.67 GHz

Double precision
HP (N=6, k=3)
Hallberg (N=10, M=38)
Perfect efficiency

Figure 6: Left: Runtime comparison of HP, Hallberg and double precision global summation for 32M numbers in MPI. Right: Strong scaling
efficiency for the three methods.

1 2 4 8 16 32 64 128
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Processes

W
al

lc
lo

ck
 ti

m
e

(s
)

Intel Xeon X5650 2.67 GHz

Double precision
HP (N=6, k=3)
Hallberg (N=10, M=38)

1 2 4 8 16 32 64 128

0

0.2

0.4

0.6

0.8

1

1.2

Number of Processes

E
ffi

ci
en

cy

Intel Xeon X5650 2.67 GHz

Double precision
HP (N=6, k=3)
Hallberg (N=10, M=38)
Perfect efficiency

157

B. Comparison with Double Precision Summation
To evaluate the scaling behavior of the HP method versus

that of conventional double precision summation, a strong
scaling analysis was performed using a simple global
summation in the OpenMP, MPI, CUDA, and Xeon Phi
parallel programming environments for varying counts of
processing elements (PE). All four global summation
implementations create an array of n = 225 $ 32M random
double precision numbers in the range [-0.5, 0.5] and
distribute them across p PEs, with the smallest such number
being ±2-95. A reduction of the local array slice is performed
by each PE followed by a global reduction, using standard
floating point arithmetic, the HP method with parameters N
= 6 and k = 3, and the Hallberg method with parameters N =
10 and M = 38. These parameters were chosen to achieve
precision equivalency between the two techniques. The
OpenMP and MPI implementations were compiled with the
GNU C compiler while the Xeon Phi implementation was

compiled with the Intel C/C++ compiler. The CUDA
implementation was compiled using the Nvidia C/C++
compiler. The full optimization compiler flag (-O3) was set
for all builds.

The execution time of these reductions was recorded and
averaged over 10 trials. In the case of OpenMP, MPI, and the
Xeon Phi, each PE computes a local partial sum of n/p
values, and the master PE reduces the p partial sums into a
final result. In the case of MPI, this necessitated the creation
of a custom MPI data type and MPI_Op operation to
support reduction with MPI_Reduce(). The Xeon Phi
benchmark used the heterogeneous offload programming
model to distribute the summands to the PEs and compute
the partial sums. The CUDA implementation differs slightly
from the general approach used by the previous three
methods, instead having all p threads simultaneously
accumulate results into 256 partial sums using atomic
operations, where the partial result used by each thread t is
selected by (t modulus 256). The 256 partial sums are then

Figure 7: Left: Runtime comparison of HP, Hallberg, and double precision global summation for 32M numbers in CUDA. Right: Strong
scaling efficiency for the three methods.

256 512 1024 2048 4096 8192 16K 32K
0

0.5

1

1.5

Number of Threads

W
al

lc
lo

ck
 ti

m
e

(s
)

Nvidia Tesla K20m

Double precision
HP (N=6, k=3)
Hallberg (N=10, M=38)

256 512 1024 2048 4096 8192 16K 32K
0

0.2

0.4

0.6

0.8

1

1.2

Number of Threads

E
ffi

ci
en

cy

Nvidia Tesla K20m

Double precision
HP (N=6, k=3)
Hallberg (N=10, M=38)
Perfect efficiency

Figure 8: Left: Runtime comparison of HP, Hallberg, and double precision global summation for 32M numbers on the Xeon Phi. Right: Strong
scaling efficiency for the three methods.

1 2 4 8 16 32 64 128 240
0

5

10

15

20

25

Number of Threads

W
al

lc
lo

ck
 ti

m
e

(s
)

Xeon Phi B1PRQ−5110P/5120D

Double precision
HP (N=6, k=3)
Hallberg (N=10, M=38)

1 2 4 8 16 32 64 128 240

0

0.2

0.4

0.6

0.8

1

1.2

Number of Threads

E
ffi

ci
en

cy

Xeon Phi B1PRQ−5110P/5120D

Double precision
HP (N=6, k=3)
Hallberg (N=10, M=38)
Perfect efficiency

158

copied back to the host where the final sum is calculated.
This was done to showcase the method's support for atomic
operations.

Figures 5, 6, 7, and 8 illustrate the runtime and efficiency
results for the OpenMP, MPI, CUDA, and Xeon Phi tests,
respectively. First focusing on the OpenMP and MPI results
(Figures 5 and 6), we observe that HP requires
approximately 37-38x more time in the single PE case as
double precision summation on Dual Hex-core Intel Xeon
X5650 2.67 GHz CPUs. However, we see that this increased
cost is amortized effectively as the number of PEs increases
and becomes negligible in the limit. As real scientific
applications are much more complex than a simple
summation process, we expect HP arithmetic to add a small
overhead to the existing calculation.

The CUDA results shown in Figure 7 are more
interesting. The slowdown introduced by HP summation is
observed to be at most 5.6x for the Nvidia Tesla K20m GPU,
while the Hallberg method suffers a much greater slowdown,
and performance for all methods plateaus beyond 2048
threads. The plateau is caused by thread saturation as the
Tesla K20m supports a maximum of 2496 concurrent
threads.

The relative GPU performance, which is better than the
OpenMP and MPI cases, can be explained by noting that our
global sum application is dominated by global memory
accesses and the presence of atomic operations. With the HP
method, the addition of a summand to a partial sum requires,
at a minimum, reads of seven 64-bit words from global
memory (one for the double precision summand, six for the
HP partial sum) and writes of six words. The Hallberg
method requires eleven reads and ten writes. Meanwhile,
double precision requires a read of two words (summand and
partial sum) and one write. These are minimums since
compare-and-swap may necessitate many more reads to
complete the addition.

Thus, if we assume that performance is determined
purely by memory operations alone, we would expect the HP
method to require at least 4.3x more time than double
precision. This is consistent with the observed results,
although the effect of the atomic updates cannot be ignored.
Recall there are only 256 partial sums that are shared among
all threads using atomic operations. This is a point of
contention that serves to limit throughput. The HP method
suffers slightly less in this regard since three threads may
lock an HP partial sum simultaneously (one for each integer
in the data type) versus only one thread for a double
precision float. The result of this increased concurrency is
that the HP method performs slightly better than the
predicted 4.3x factor as the thread count is increased to a
large multiple of 256.

The Xeon Phi benchmarking results in Figure 8 show that
both high-precision methods incur a very high cost versus
double-precision arithmetic for the single thread case, likely
due to effective use of SIMD and vectorization by the Intel
compiler for native double precision, but this cost is
amortized as threads are added. The runtimes for all three
summation methods are dominated by the data transfer times
between the host CPU and device for high thread counts.

Two other observations can be made when examining
these performance results in aggregate. The first observation
is that the break-even point for the HP method performance
relative to the Hallberg method is not constant for all levels
of precision. The HP and Hallberg parameters used in these
tests were specifically chosen not only to provide an
additional data point to the analysis of the previous section,
but to illustrate the claim that the number of summands
needed to achieve performance parity drops as precision is
increased. This particular choice of method parameters for
384 bits of precision and 32M summands yielded relative
performance bounded within a small constant factor across
all four architectures. More operands, and thus a lower
Hallberg M value selection, would be needed for the HP
method to consistently outperform the Hallberg method at
this precision.

The second observation is that the actual performance of
the two techniques are dependent not only on the choice of
method parameters, but also on the compilers used to build
the code and architectures upon which they run. Identical
implementations of the HP and Hallberg methods were used
in the OpenMP and Xeon Phi, for example. Yet, simply
employing different compilers (GNU versus Intel) and
parallel architectures yielded significantly different
performance characteristics. This illustrates the difficulties in
designing algorithms which yield high performance on any
architecture, as well as the weakness of bounding algorithm
complexity by arithmetic operations counts alone, which is
the traditional technique used to compare the various high-
precision floating point methods. As the CUDA GPU results
show, memory latencies and memory access patterns are
relevant, and accurately accounting for these resource
utilizations can greatly complicate the asymptotic analysis.

V. FINAL REMARKS
This research presented a new computational method for

adding large numbers of floating point values to produce an
invariant sum. The sum is invariant both to the order of
summation and underlying architecture, due to the method's
reliance on integer arithmetic. The method is simple enough
to allow atomic updates of values, and it was successfully
demonstrated in several parallel environments in common
use today.

With the anticipated convergence of exaflops high-
performance computing and exabyte big data analytics on
hybrid architectures [18, 20], global reduction of a very large
set of floating point data is expected to become a norm. In
this setting, computational reproducibility will become an
increasingly more important and difficult problem that it is
today. Use of numerical techniques such as the method
proposed here can help mitigate the impact of error and
variation within simulations and data analytics at these
extreme scales.

One flaw with this technique is the reliance on the user
knowing the range of real numbers to be summed, and
tailoring the HP parameters N and k appropriately to ensure
enough precision exists. An opportunity for future research is
to extend the HP method to adaptively adjust precision at

159

runtime to accommodate any range of real numbers that may
be encountered.

ACKNOWLEDGMENT
This research was partially supported by the U.S.

Department of Energy grant DE-SC0014607 and the USC
Annenberg Graduate Fellowship Program. Computation for
the work described in this paper was supported by the
University of Southern California’s Center for High-
Performance Computing (hpc.usc.edu).

REFERENCES
[1] IEEE, IEEE Standard for Floating-Point Arithmetic,

Technical report, Microprocessor Standards Committee of the
IEEE Computer Society, 3 Park Avenue, New York, NY
10016-5997, USA, August 2008.

[2] J. Blanck, Exact real arithmetic using centred intervals and
bounded error terms, The Journal of Logic and Algebraic
Programming, 66(1):50-67, January 2006.

[3] H.-J. Boehm, R. Cartwright, M. Riggle, and M. O’Donnell,
Exact real arithmetic: a case study in higher order
programming, ACM Symposium on Lisp and Functional
Programming, pp. 162–173, 1986.

[4] K. Briggs, Implementing exact real arithmetic in python, C++
and C, Theoretical Computer Science, 351(1):74-81, 2006.

[5] S. Collange, D. Defour, S. Graillat, R. Iakymchuk, Numerical
reproducibility for the parallel reduction on multi- and many-
core architectures. 2015, <hal-00949355v3>.

[6] J. Demmel and H.D. Nguyen, Fast reproducible floating-
point summation, 21st IEEE Symposium on Computer
Arithmetic, Austin, Texas, USA, April 2013.

[7] J. Demmel and H.D. Nguyen, Numerical accuracy and
reproducibility at exascale, 21st IEEE Symposium on
Computer Arithmetic, Austin, Texas, USA, April 2013.

[8] J. Demmel and H.D. Nguyen, Parallel reproducible
summation, IEEE Transactions on Computers, 64(7):2060-
2070, 2015.

[9] T. Granlund and the GMP development team, GNU MP: The
GNU Multiple Precision Arithmetic Library, 5.0.5 edition,
2012. http://gmplib.org/.

[10] J. Gustafson, The End of Error: Unum Computing, Chapman
and Hall/CRC, 2015.

[11] R. Hallberg and A. Adcroft, An order-invariant real-to-integer
conversion sum, Parallel Computing, 40(5-6):140-143, 2014.

[12] Y. He and C. H.Q. Ding, Using accurate arithmetics to
improve numerical reproducibility and stability in parallel
applications, Journal of Supercomputing, 18:259-277, March
2001.

[13] N.J. Higham, The accuracy of floating point summation,
SIAM Journal on Scientific Computing, 14:783-799, 1993.

[14] Intel, Intel 64 and IA-32 Architectures Optimization
Reference Manual, September 2014. http://www.intel.com/
content/dam/www/public/us/en/documents/manuals/64-ia-32-
architecturesoptimization-manual.pdf.

[15] W. Kahan, Pracniques: Further remarks on reducing
truncation errors. Communications of the ACM, 8(1):40,
January 1965.

[16] D.E. Knuth, The Art of Computer Programming, Volume 2:
Seminumerical Algorithms, 3rd ed., Addison-Wesley, 1997.

[17] V. Ménissier-Morain, Arbitrary precision real arithmetic:
design and algorithms, The Journal of Logic and Algebraic
Programming, 64(1):13-39, July 2005.

[18] B.H. Obama, U.S. Presidential Executive Order — Creating a
National Strategic Computing Initiative, July 29, 2015.

[19] D.M. Priest, Algorithms for arbitrary precision floating point
arithmetic. In Proceedings of the 10th Symposium on
Computer Arithmetic, pp. 132-145, IEEE Computer Society
Press, 1991.

[20] D.A. Reed and J. Dongarra, Exascale Computing and Big
Data: The Next Frontier, Communications of the ACM,
58(7):56-68, 2015.

[21] S.M. Rump, Ultimately fast accurate summation, SIAM
Journal on Scientific Computing, 31(5):3466-3502, 2009.

160

