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Abstract—Achieving reproducibility of scientific results in 
parallel computing is both a challenge and a source of active 
research. A significant contribution to non-reproducibility is 
rounding error introduced into calculations by the non-
associativity of floating point addition. Scientific applications 
that rely on accumulation of many small values, such as 
climate and N-body simulations, are susceptible to this type of 
error. This paper proposes a variant of an existing fixed-point 
method for real number summation that yields sums with 
perfect precision, and which are invariant to summation order 
and system architecture. The new method improves upon the 
existing technique by exhibiting improved performance for 
large numbers of summands, introducing tunable fractional 
precision to place precision where it is needed, and eliminating 
the aliasing problem of the original method. The proposed 
technique is described and its performance is demonstrated in 
the OpenMP, MPI, CUDA, and Xeon Phi parallel 
programming environments. In particular, the proposed 
method outperforms the previous state-of-the-art for larger 
problems involving over one million summands at high 
precision. With the anticipated convergence of exascale high-
performance computing and big data analytics on hybrid 
architectures, computational reproducibility will become an 
even more difficult problem than it is today. Use of numerical 
techniques such as the method proposed here can help to 
mitigate the impact of error and variation within simulations 
at these large scales. 

Keywords-reproducibility; rounding error; high-precision 
arithmetic; summation; fixed-point arithmetic 

I.  INTRODUCTION 
A fundamental problem with performing real number 

arithmetic on a computer is that floating-point addition is 
non-associative. Precision limitations with the representation 
of floating-point numbers force a small rounding error to be 
introduced into the sum each time an addition is performed 
[1]. Over many consecutive additions, this rounding error 
accumulates and can become very large. In effect, the sum 

becomes a random walk across the space of possible 
rounding error. 

The significance of this error is often overlooked, as 
given a deterministic summation order for a set of 
summands, a consistent total sum will always be returned by 
the computer. However, even this sum contains rounding 
error - it is simply hidden from view. With the adoption of 
large-scale parallel computing, this inherent round-off error 
is unmasked and manifests itself as small perturbations in 
global sums that are performed in parallel. In scientific 
codes, this can be a significant problem [12]. At a minimum, 
the error makes exact reproduction of computation results 
across simulations difficult to achieve. At worst, error is 
compounded in each time step until the simulation results are 
meaningless. 

Proposed methods for minimizing rounding error involve 
either application of general-purpose arbitrary precision 
arithmetic, error compensation techniques, alternative real 
number representations arising from computable analysis, 
hardware solutions, high-precision intermediate sums, or 
combinations of these approaches [5]. An example 
implementation of general-purpose arbitrary precision 
arithmetic is the GNU Multi-Precision Library [9]. Arbitrary 
precision can perform nearly any type of arithmetic operation 
at potentially infinite precision, yet it requires extensive 
computational and memory resources which can be 
prohibitive in a parallel computing environment. 

Error compensation methods include utilizing error-free 
transformations to track accumulated error during the 
summation process [6-8, 13, 15, 16, 19, 21], or manipulating 
the summation order to minimize error such as with pairwise 
summation (see also [12]). The error-free transformations 
can yield a significant reduction in rounding error with very 
good performance, although they typically cannot 
completely eliminate the problem. As the number of 
operands may be very high and distributed across many 
different processors, ordered summation approaches are 
prohibitive at large scales. Although computable analysis 
techniques can be computationally expensive, they can often 
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be extended to support mathematical operations beyond 
addition [2-4, 17]. Proposed hardware solutions strive to 
overcome the limitations of IEEE floating-point arithmetic 
by redefining the real number representation in the hardware 
layer. The universal number format (unum) is a recent 
example of work in this area [10]. The challenge with this 
approach is that significant resources are needed to design 
and field the new hardware. 

The remaining class of techniques involves performing 
the addition with a very high precision intermediate sum and 
subsequently rounding down to a lower precision final result 
[11, 12]. Higher precision intermediate sums can exhibit zero 
rounding error when given sufficient memory to represent 
the sum. However, some properties of the operands must be 
known a priori, an example being dynamic range when using 
a fixed point high-precision accumulator. In addition to their 
potential accuracy, these techniques benefit from being 
conceptually simple and easy to implement across a wide 
range of computer architectures. 

The method proposed in this paper, called the High-
Precision (HP) method, is a high-precision intermediate sum 
technique that is derived from Hallberg [11]. Whereas the 
Hallberg method utilizes carry minimization in order to 
increase performance, the HP method instead attempts to 
maximize information content. The HP method yields 
comparable performance at the same level of precision while 
eliminating the storage overhead and aliasing of values in the 
original approach. As is its predecessor, it is order invariant 
and can be implemented efficiently in virtually any parallel 
environment. 

The remaining sections begin with a discussion of the 
rounding problem in quantitative terms as well as the 
original Hallberg method of summation. Then the proposed 

HP method is described, and its performance is evaluated 
against both the Hallberg method and double precision 
addition in multiple parallel computing environments. 

II. BACKGROUND 

A. Rounding Error 
To demonstrate the extent of the rounding problem, a test 

was constructed to identify the accumulated rounding error 
after summing sets of n small random floating point values 
with random summation orders, for various values of n = 
{64, 128, ..., 1024}. Each set of semi-random numbers was 
generated in such a way that their sum must be zero on a 
computer with infinite precision. 

For each set of size n, n/2 random double precision 
values in the range [0.0, 0.001] were generated. The 
remaining n/2 values were selected to be negatives of the 
first n/2 values, their purpose being to cancel the sum of the 
first n/2 values. With each set of numbers generated in this 
manner, 16384 trials were conducted for each set in which 
all the numbers were arranged in a random order and 
summed together using standard floating point arithmetic. 
The residual sums for the trials were recorded, producing a 
distribution of sums for each set. Despite the inclusion of 
both a random number and its complement in a particular set, 
the test is protected from catastrophic cancellation effects by 
the random ordering of operands in each trial. It is unlikely 
that total cancellation will occur until the last value is added, 
at which point the operation is complete and the loss of 
significance is irrelevant. Forcing the true sum to be zero 
allows us to compute accurate statistics describing the 
distribution of sums, as the statistics calculation itself is 
subject to round-off error. 

Figure 1: Observed standard deviation for the sum of sets of n 
semi-random numbers. Each set was constructed to yield exactly 
zero on a computer with infinite precision. 
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Figure 1 illustrates the standard deviation of the residual 
sums found after executing the test for n = {64, 128, …, 
1024}. The observed error in the sum increases linearly with 
the number of additions performed. If the n summands in 
each set were uncorrelated with each other, we would expect 
the error to increase relative to !n. Since one-half of the 
elements are complements of the remainder, however, this 
likely introduces a bias to the rounding direction which 
pushes the accumulated error towards the worst case. 

This set selection strategy was chosen to mimic the force 
accumulation process that is typical of many N-body atomic 
simulations. There is an accumulation of forces or 
displacements at each time step within these applications, 
each contribution consisting of a small positive or negative 
floating point value. Thus, Figure 1 illustrates that scientific 
applications which rely on reductions of a large number 
floating point values, such as N-body simulations, are highly 
susceptible to floating point rounding error. 

Figure 2 illustrates the extent of the spread of the final 
sums for the case n = 1024 by plotting the distribution of 
values. We see that the histogram describes a normal 
distribution whose mean is approximately zero 
(corresponding to the true sum of zero) and whose standard 
deviation matches that shown in Figure 1. 

Note that Figure 1 also shows results produced using the 
HP method with parameters N = 3 and k = 2 to perform the 
summation (see section III below for the definition of the 
parameters). The HP method achieved perfect precision on 
these data sets and correctly computed the final sum as zero 
for all test cases. This proposed technique is described in the 
following section. 

B. Hallberg Order Invariant Sum 
As described in [11], a real number r can be represented 

with a set of N 64-bit signed integers, ai, as follows: 
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iar , (1) 
Where M is a positive integer that is less than 63. Two 

real numbers expressed in this form may be added together 
by summing their N corresponding integers independently. 

When the result of any individual integer addition exceeds 
2M, there is a carry out, and one must be added to the next 
integer in the set. This is analogous to the carry process in 
base-10 arithmetic with pen-and-paper. By choosing M < 63, 
however, one can delay or even avoid performing this carry. 
Selecting M in this manner sets aside a number of bits within 
each integer to hold the carry that may be generated during 
addition. The number of carries that can be accommodated in 
this buffer is 2(63-M) - 1. Thus, if it is known how many 
numbers are to be summed, it is possible to select an M that 
guarantees no carry will be performed during the summation. 
This serves to reduce the number of integer additions 
required to add two numbers to N. 

However, there are negative consequences to utilizing 
this representation. The first problem is the overhead - not all 
bits in the integers serve to provide real-number precision. 
Each signed integer has a sign bit, and 63 - M carry bits are 
dedicated to book-keeping purposes. A second problem is 
aliasing, where multiple integer representations could 
represent the same real number. A normalization process is 
required when the summation is complete and the sum is 
converted back to a real number. Another undesirable quality 
of this method is that the user must know a priori the 
expected number of summands. Otherwise, a catastrophic 
overflow may occur, or an expensive carryout detection and 
normalization process needs to be conducted at runtime 
which defeats the purpose of this format.  

The next section discusses the alternative approach 
(based on this method) which addresses all of these concerns, 
while simultaneously exhibiting better performance at large 
scales.  

Figure 3: Example addition of two floating point numbers using 
the HP method. 
 

Listing 1: C style code for conversion of a real number r from 
double precision to HP integers ai, with translation to two’s 
complement notation. 
dtmp = fabs(r) * 264*(N-k-1); 
isneg = (r < 0.0); 
for (i = 0; i < N-1; i++) { 
    itmp = (uint64_t)dtmp; 
    dtmp = (dtmp – (double)itmp) * 264; 
    a[i] = (isneg) ? ~itmp + (dtmp <= 0.0) : itmp; 
} 
a[N-1]  = (isneg) ? ~(uint64_t)dtmp + 1 : (uint64_t)dtmp; 

Listing 2: C style code for addition of two HP numbers of the form 
a = a + b. 
a[N-1] = a[N-1] + b[N-1]; 
co = (a[N-1] < b[N-1]); 
for (i = N-2; i >= 1; i--) { 
    a[i] = a[i] + b[i] + co; 
    co = (a[i] == b[i]) ? co : (a[i] < b[i]); 
} 
a[0] = a[0] + b[0] + co; 
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III. ALGORITHM 

A. Concept 
As mentioned previously, the HP method is a variation of 

the technique described in the previous section. The new 
method modifies equation (1) so that a real number r is 
expressed in this alternative form: 

! −

=
−−−=

1

0
)1(642

N

i
ikN

iar , (2) 
The integers ai are unsigned 64-bit values, and all bits are 

allocated to store the real number with the exception of bit 
63 of integer 0. The parameter k is the number of 64-bit 
unsigned integers to assign to the fractional portion of r 
where 0 " k " N, thus N-k integers are allocated to represent 
the whole number component. This tunable parameter allows 
the user to distribute the total precision among the whole and 
fractional components. 

Negative real numbers are accommodated by first 
determining the integer representation of its absolute value 
according to equation (2), then converting that integer 
representation into two's complement notation. The 
conversion involves flipping all of the bits of the N unsigned 
integers, adding one to integer N - 1, and propagating any 
carries back through to integer 0. Thus, only one bit (in 
integer 0) is used to track sign regardless of precision at the 
cost of some additional processing during conversion.  

If we restrict the real number under consideration to 
double-precision, then both the conversion of that number 
and translation to two’s complement notation can be 
performed in a single pass through the array of integers as 
shown in Listing 1. The for loop utilizes a look-ahead 
strategy for determining if there will be a carry-in for the 
current block based on the remainder of the real number at 
each step. Any non-zero remainder will absorb the added one 
and will not allow it to propagate to higher magnitude 
blocks. 

Adding two numbers in HP format is a simple process. 
The corresponding integers of the two integer sets are 
summed, starting at integer position N - 1 and proceeding to 
position 0. Any carryout from integer pair i is added to the 
sum of integer pair i - 1. Since the numbers are stored in 
two's complement notation, addition of positive and negative 
numbers is identical. Overflow detection of the sum is 
accomplished by comparing the signs of the summands with 
the sign of the sum. Negative summands with a positive sum, 
or positive summands with a negative sum indicate overflow 
has occurred. Listing 2 describes the addition process with 
two sets of HP integers a and b in pseudo-code, and Figure 3 
illustrates the entire process for two floating point numbers. 

Converting a number from HP format to double precision 
is the inverse of the algorithm shown in Listing 1. 

B. Properties 
The HP method is a fixed-point representation for real 

numbers. Juxtaposed with floating-point, HP sacrifices total 
range for increased precision within the more limited range it 
supports. Furthermore, this precision is constant over the full 
range of representable numbers. Table 1 lists the maximum 
range and smallest representable number for several choices 
of N and k. The following subsections discuss additional 
properties of this format. 
 

1) Overflow and Underflow: Operations on real 
numbers in the HP format are subject to overflow and 
underflow just as in floating-point arithmetic. Overflow may 
occur at three points, depending on the relative precisions of 
the double precision and HP numbers. The first point where 
overflow is possible is during conversion from double 
precision to HP. If the magnitude of the double precision 
number falls outside the maximum range supported by the 
HP data type, then overflow will occur. The second point 
where overflow may occur is during the addition of two HP 
numbers (two very large positive numbers, for example). 
Lastly, if the HP maximum range exceeds that of double 
precision, overflow may occur when an HP number is 
translated back to double precision. All three of these 
situations can be easily detected at runtime. Underflow may 
occur during double-to-HP conversion and vice versa, for 
the same reasons as described above. 

 
2) Atomicity: A high-precision real number 

representation must be able to operate in a parallel 
environment for it to be successful. Ideally, it should 
support the ability to atomically add one number to another 
in a multi-threaded environment. The HP method can 
guarantee atomicity of addition using only the compare-and-
swap (CAS) synchronization primitive, which is supported 
in most major compilers as well as CUDA. An atomic adder 
can be constructed with carry out detection using only CAS. 
If we express HP addition as a = a + b with a assumed to be 
the global variable, only one atomic addition with this adder 
is required for each of the N pairs of integers to be summed. 
The remaining operations are thread local. Atomicity of 
addition using CAS is demonstrated with the CUDA 
performance test described later in this paper. 

 
3) Invariance of Sum: The greatest strength of the HP 

method is that given sufficient precision with appropriate 
selection of the N and k parameters, the sum of any quantity 

Table 1: Maximum range and smallest representable number for 
the HP method with varying N and k. 

N k Bits Max Range Smallest
2 1 128 ±9.223372 x 1018 5.421011 x 10-20

3 2 192 ±9.223372 x 1018 2.938736 x 10-39

6 3 256 ±3.138551 x 1057 1.593092 x 10-58

8 4 512 ±5.789604 x 1076 8.636169 x 10-78

Table 2: Parameters N and M used with the Hallberg method to 
achieve near equivalency with the 512-bit HP method. 

N M Precision 
Bits 

Maximum
Summands

10 52 520 " 2048
12 43 516 " 1 M
14 37 518 " 64 M

155



of operands is guaranteed to be invariant, both with respect 
to the order of the summation and to the architecture on 
which the addition is performed. Figure 1 illustrates the 
success of the HP method with N = 3 and k = 2 in 
computing the final sum of 1024 real numbers in the range 
[0.0, 0.001] with perfect accuracy. This is possible because 
both the HP and Hallberg methods reduce real number 
addition to integer addition, which is fully associative and 
implemented identically across all architectures. Thus, it is 
possible to add a sequence of real numbers separately on an 
Intel CPU and on an Nvidia GPU, for example, and derive 
the same result in both cases. 

IV. PERFORMANCE 

A. Comparison with Hallberg Summation 
To compare the Hallberg and HP approaches, we may 

first examine the number of operations required to add a 
floating point number to a running sum. As stated in [11], the 
Hallberg method requires 2N FP multiplications and N FP 
additions to convert a real number to an integer 
representation, and N integer additions to sum that value with 
the intermediate sum. The HP method factors out one of the 
multiplications from the conversion loop (Listing 1) to yield 
only N FP multiplications along with N FP additions. 
However, it also requires 3N integer arithmetic/logic (ALU) 
operations in the worst case (when the number is negative). 
Adding this converted number to an intermediate sum 
(Listing 2) requires 4(N  - 1) arithmetic/logic operations. 

Juxtaposing these raw operation counts alone indicates 
that the Hallberg should outperform the HP method, yet we 
find in practice this is not the case for three subtle reasons. 
First, the latency of floating point multiplication instructions 
is typically much greater than that of ALU instructions on 
modern processors [14]. The HP method performs half as 
many of these expensive operations, trading them for less 
expensive ALU operations. In addition, many modern 

processors have more than one ALU and thus the HP method 
can benefit from ALU instruction concurrency. Lastly, the 
HP method is a more compact representation since nearly all 
bits are dedicated to representing precision. The consequence 
of this compactness is that fewer integer blocks, N, are 
required to represent the desired precision and this 
representation occupies less memory. This compactness 
serves to reduce main memory access latency. 

With these differences in mind, it is possible to directly 
compare the relative performance by establishing a precision 
equivalency between them. Figure 4 shows the relative 
performance of the two methods in summing a set of n 
random real numbers in the range [-2191, 2191] with the 
smallest such number being ±2-223, for n = {128, …, 16M}. 
The HP representation was configured with parameters N = 8 
and k = 4 to provide 511 precision bits, while the Hallberg N 
and M parameters were selected to provide nearly equivalent 
precision for each n as shown in Table 2. For small numbers 
of summands, the Hallberg method slightly outperforms the 
HP method, which is expected as very few bits are reserved 
for carry storage at these scales and it avoids performing any 
carry operations as designed. However, the HP method 
gradually overtakes its counterpart for summand counts in 
excess of 1M. Thus, the information content maximization 
strategy of HP can be just as effective as carry minimization. 

Formalizing this analysis further, we can show that the 
relative performance is expected to continue to improve as 
more operands are included in the sum. Since both 
techniques operate on a sequence of N 64-bit integer blocks, 
let us consider their run times as a function of N. Let us also 
assume that we can bound the cost of converting and adding 
one integer block to an intermediate sum as taking constant 
time since both methods require a fixed number of arithmetic 
operations. The HP and Hallberg costs per integer block will 
be cp and cb, respectively. Then the execution times for the 
HP method, Tp, and the Hallberg method, Tb, can be 
expressed as: 

Figure 4: Left: Runtime comparison of HP and Hallberg techniques for up to 16M real numbers. Right: Relative speedup of the HP method 
versus the Hallberg method. 
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The parameters Np and Nb are the number of integer 
blocks required by each method to support a particular 
precision. In the case of the HP method, one bit must be 
added to the precision bit count b to account for the single 
sign bit, and the number of integer blocks is this value 
divided by 64. The number of blocks for the Hallberg 
method is determined by dividing the desired precision, b, by 
the precision bits per block parameter, M. Ceilings are 
necessary since there must be an integral number of blocks. 

Since the speedup factor of HP versus Hallberg, S, is S = 
Tb/Tp, we have: 
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Converting the ceilings to an inequality and simplifying 
this expression yields: 
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By limiting the precisions under consideration to b > 64, 
we can bound the term b/(b+65) # 1/2 which yields the 
following lower bound on the speedup as a function of M: 

Mc
c

S
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b 132
&
&
'

(
)
)
*

+
≥ , (6) 

Therefore, given a fixed precision b, we would expect the 
speedup factor S to increase as M is reduced to accommodate 
more summands. Also note from equation (5) that the 
speedup has a weak dependency on the number of precision 
bits b. The speedup is also expected to improve slightly with 
increased precision for a fixed M, which is confirmed in the 
following section where the relative runtime performance is 
examined using a lower precision. 

Figure 5: Left: Runtime comparison of HP, Hallberg, and double precision global summation for 32M numbers in OpenMP. Right: Strong 
scaling efficiency for the three methods. 
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Figure 6: Left: Runtime comparison of HP, Hallberg and double precision global summation for 32M numbers in MPI. Right: Strong scaling 
efficiency for the three methods. 
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B. Comparison with Double Precision Summation 
To evaluate the scaling behavior of the HP method versus 

that of conventional double precision summation, a strong 
scaling analysis was performed using a simple global 
summation in the OpenMP, MPI, CUDA, and Xeon Phi 
parallel programming environments for varying counts of 
processing elements (PE). All four global summation 
implementations create an array of n = 225 $ 32M random 
double precision numbers in the range [-0.5, 0.5] and 
distribute them across p PEs, with the smallest such number 
being ±2-95. A reduction of the local array slice is performed 
by each PE followed by a global reduction, using standard 
floating point arithmetic, the HP method with parameters N 
= 6 and k = 3, and the Hallberg method with parameters N = 
10 and M = 38. These parameters were chosen to achieve 
precision equivalency between the two techniques. The 
OpenMP and MPI implementations were compiled with the 
GNU C compiler while the Xeon Phi implementation was 

compiled with the Intel C/C++ compiler. The CUDA 
implementation was compiled using the Nvidia C/C++ 
compiler. The full optimization compiler flag (-O3) was set 
for all builds. 

The execution time of these reductions was recorded and 
averaged over 10 trials. In the case of OpenMP, MPI, and the 
Xeon Phi, each PE computes a local partial sum of n/p 
values, and the master PE reduces the p partial sums into a 
final result. In the case of MPI, this necessitated the creation 
of a custom MPI data type and MPI_Op operation to 
support reduction with MPI_Reduce(). The Xeon Phi 
benchmark used the heterogeneous offload programming 
model to distribute the summands to the PEs and compute 
the partial sums. The CUDA implementation differs slightly 
from the general approach used by the previous three 
methods, instead having all p threads simultaneously 
accumulate results into 256 partial sums using atomic 
operations, where the partial result used by each thread t is 
selected by (t modulus 256). The 256 partial sums are then 

Figure 7: Left: Runtime comparison of HP, Hallberg, and double precision global summation for 32M numbers in CUDA. Right: Strong 
scaling efficiency for the three methods. 
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Figure 8: Left: Runtime comparison of HP, Hallberg, and double precision global summation for 32M numbers on the Xeon Phi. Right: Strong 
scaling efficiency for the three methods. 
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copied back to the host where the final sum is calculated. 
This was done to showcase the method's support for atomic 
operations. 

Figures 5, 6, 7, and 8 illustrate the runtime and efficiency 
results for the OpenMP, MPI, CUDA, and Xeon Phi tests, 
respectively. First focusing on the OpenMP and MPI results 
(Figures 5 and 6), we observe that HP requires 
approximately 37-38x more time in the single PE case as 
double precision summation on Dual Hex-core Intel Xeon 
X5650 2.67 GHz CPUs. However, we see that this increased 
cost is amortized effectively as the number of PEs increases 
and becomes negligible in the limit. As real scientific 
applications are much more complex than a simple 
summation process, we expect HP arithmetic to add a small 
overhead to the existing calculation. 

The CUDA results shown in Figure 7 are more 
interesting. The slowdown introduced by HP summation is 
observed to be at most 5.6x for the Nvidia Tesla K20m GPU, 
while the Hallberg method suffers a much greater slowdown, 
and performance for all methods plateaus beyond 2048 
threads. The plateau is caused by thread saturation as the 
Tesla K20m supports a maximum of 2496 concurrent 
threads. 

The relative GPU performance, which is better than the 
OpenMP and MPI cases, can be explained by noting that our 
global sum application is dominated by global memory 
accesses and the presence of atomic operations. With the HP 
method, the addition of a summand to a partial sum requires, 
at a minimum, reads of seven 64-bit words from global 
memory (one for the double precision summand, six for the 
HP partial sum) and writes of six words. The Hallberg 
method requires eleven reads and ten writes. Meanwhile, 
double precision requires a read of two words (summand and 
partial sum) and one write. These are minimums since 
compare-and-swap may necessitate many more reads to 
complete the addition.  

Thus, if we assume that performance is determined 
purely by memory operations alone, we would expect the HP 
method to require at least 4.3x more time than double 
precision. This is consistent with the observed results, 
although the effect of the atomic updates cannot be ignored. 
Recall there are only 256 partial sums that are shared among 
all threads using atomic operations. This is a point of 
contention that serves to limit throughput. The HP method 
suffers slightly less in this regard since three threads may 
lock an HP partial sum simultaneously (one for each integer 
in the data type) versus only one thread for a double 
precision float. The result of this increased concurrency is 
that the HP method performs slightly better than the 
predicted 4.3x factor as the thread count is increased to a 
large multiple of 256. 

The Xeon Phi benchmarking results in Figure 8 show that 
both high-precision methods incur a very high cost versus 
double-precision arithmetic for the single thread case, likely 
due to effective use of SIMD and vectorization by the Intel 
compiler for native double precision, but this cost is 
amortized as threads are added. The runtimes for all three 
summation methods are dominated by the data transfer times 
between the host CPU and device for high thread counts. 

Two other observations can be made when examining 
these performance results in aggregate. The first observation 
is that the break-even point for the HP method performance 
relative to the Hallberg method is not constant for all levels 
of precision. The HP and Hallberg parameters used in these 
tests were specifically chosen not only to provide an 
additional data point to the analysis of the previous section, 
but to illustrate the claim that the number of summands 
needed to achieve performance parity drops as precision is 
increased. This particular choice of method parameters for 
384 bits of precision and 32M summands yielded relative 
performance bounded within a small constant factor across 
all four architectures. More operands, and thus a lower 
Hallberg M value selection, would be needed for the HP 
method to consistently outperform the Hallberg method at 
this precision. 

The second observation is that the actual performance of 
the two techniques are dependent not only on the choice of 
method parameters, but also on the compilers used to build 
the code and architectures upon which they run. Identical 
implementations of the HP and Hallberg methods were used 
in the OpenMP and Xeon Phi, for example. Yet, simply 
employing different compilers (GNU versus Intel) and 
parallel architectures yielded significantly different 
performance characteristics. This illustrates the difficulties in 
designing algorithms which yield high performance on any 
architecture, as well as the weakness of bounding algorithm 
complexity by arithmetic operations counts alone, which is 
the traditional technique used to compare the various high-
precision floating point methods. As the CUDA GPU results 
show, memory latencies and memory access patterns are 
relevant, and accurately accounting for these resource 
utilizations can greatly complicate the asymptotic analysis. 

V. FINAL REMARKS 
This research presented a new computational method for 

adding large numbers of floating point values to produce an 
invariant sum. The sum is invariant both to the order of 
summation and underlying architecture, due to the method's 
reliance on integer arithmetic. The method is simple enough 
to allow atomic updates of values, and it was successfully 
demonstrated in several parallel environments in common 
use today. 

With the anticipated convergence of exaflops high-
performance computing and exabyte big data analytics on 
hybrid architectures [18, 20], global reduction of a very large 
set of floating point data is expected to become a norm. In 
this setting, computational reproducibility will become an 
increasingly more important and difficult problem that it is 
today. Use of numerical techniques such as the method 
proposed here can help mitigate the impact of error and 
variation within simulations and data analytics at these 
extreme scales. 

One flaw with this technique is the reliance on the user 
knowing the range of real numbers to be summed, and 
tailoring the HP parameters N and k appropriately to ensure 
enough precision exists. An opportunity for future research is 
to extend the HP method to adaptively adjust precision at 
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runtime to accommodate any range of real numbers that may 
be encountered. 
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