
Acceleration of Dynamic n-Tuple Computations in Many-Body

Molecular Dynamics

Patrick E. Small

Collaboratory for Advanced Computing and

Simulations, Dept. of Computer Science

University of Southern California

U.S.A

patrices@usc.edu

Kuang Liu

Collaboratory for Advanced Computing and

Simulations, Dept. of Computer Science

University of Southern California

U.S.A

liukuang@usc.edu

Subodh Tiwari

Collaboratory for Advanced Computing and

Simulations, Dept. of Materials Science

University of Southern California

U.S.A

sctiwari@usc.edu

Rajiv K. Kalia

Collaboratory for Advanced Computing and

Simulations, Dept. of Computer Science,

Dept. of Physics & Astronomy, Dept. of

Chemical Engineering & Materials Science,

University of Southern California

U.S.A

rkalia@usc.edu

Aiichiro Nakano

Collaboratory for Advanced Computing and

Simulations, Dept. of Computer Science,

Dept. of Physics & Astronomy, Dept. of

Chemical Engineering & Materials Science,

Dept. of Biological Sciences

University of Southern California

U.S.A

anakano@usc.edu

Ken-ichi Nomura

Collaboratory for Advanced Computing and

Simulations, Dept. of Materials Science

University of Southern California

U.S.A

knomura@usc.edu

Priya Vashishta

Collaboratory for Advanced Computing and

Simulations, Dept. of Computer Science,

Dept. of Physics & Astronomy, Dept. of

Chemical Engineering & Materials Science,

University of Southern California

U.S.A

priyav@usc.edu

ABSTRACT

Computation on dynamic n-tuples of particles is

ubiquitous in scientific computing, with an archetypal

application in many-body molecular dynamics (MD)

simulations. We propose a tuple-decomposition (TD)

approach that reorders computations according to

dynamically created lists of n-tuples. We analyze the

performance characteristics of the TD approach on general

purpose graphics processing units for MD simulations

involving pair (n = 2) and triplet (n = 3) interactions. The

results show superior performance of the TD approach over

the conventional particle-decomposition (PD) approach.

Detailed analyses reveal the register footprint as the key

factor that dictates the performance. Furthermore, the TD

approach is found to outperform PD for more intensive
computations of quadruplet (n = 4) interactions in first

principles-informed reactive MD simulations based on the

reactive force-field (ReaxFF) method. This work thus

demonstrates the viable performance portability of the TD

approach across a wide range of applications.

CCS CONCEPTS

• Theory of computation → Massively parallel

algorithms

• Applied computing → Physics

KEYWORDS

Applications/Computational materials science and

engineering, Performance Measurement/Analysis,

modeling or simulation methods.

1 INTRODUCTION

Computation on dynamic n-tuples of particles is

ubiquitous in scientific computing, with an archetypal

application in many-body molecular dynamics (MD)

simulations. MD is the most widely used simulation

method for studying structural and dynamic properties of

material [1]. MD simulations follow the trajectories of all

atoms, while computing the interatomic interaction as a

function of atomic positions. In his pioneering MD

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page.

Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions

from Permissions@acm.org.

HPC Asia 2018, January 28–31, 2018, Chiyoda, Tokyo, Japan
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5372-4/18/01…$15.00

https://doi.org/10.1145/3149457.3149463

mailto:Permissions@acm.org
https://doi.org/10.1145/3149457.3149463

HPCAsia2018, Jan 2018, Tokyo Japan Small et al.

2

simulation in 1964, Aneesur Rahman used a pair-wise

interatomic potential that only depended on relative

positions of atomic pairs [2]. More complex interatomic

potentials (or force fields) have been developed later to

study a wide variety of materials. In MD simulations of

biomolecules, for example, the connectivity of atoms is

fixed throughout the simulation, and the interatomic

potential is a function of the relative positions of fixed n-

tuples (n = 2, 3, 4) [3]. To describe wider materials

processes such as structural transformations [4, 5] and

chemical reactions [6, 7], however, the connectivity of

atoms needs be dynamically updated, hence resulting in

many-body MD simulations based on dynamic n-tuple

interactions. Such is the case for many-body MD

simulations of inorganic materials, which typically involve

pair (n = 2) and triplet (n = 3) interactions [8]. Higher-order

n-tuple computations are used in first principles-informed

reactive molecular dynamics (RMD) simulations based on

the reactive force-field (ReaxFF) method [6, 9, 10].

ReaxFF describes the formation and breakage of chemical

bonds based on a reactive bond-order concept, and its

interatomic forces involve computations on up to

quadruplets (n = 4) explicitly and sextuplets (n = 6)

implicitly through the chain rule of differentiation.

One of the simplest ways to map MD simulations onto

parallel computers is spatial decomposition [11]. Here, the

three-dimensional space is subdivided into spatially

localized domains, and the interatomic forces among n-

tuples involving the atoms in each domain are computed by

a dedicated processor in a parallel computer [12]. To

achieve higher parallelism than this spatial-decomposition

approach, interatomic forces are often decomposed in

various force-decomposition approaches [13-15].

On high-end parallel supercomputers, each of networked

computing nodes consists of many cores and often

augmented with accelerators such as general-purpose

graphics processing units (GPGPUs) [16]. On such

platforms with deep hierarchical memory architectures,

metascalable (or “design once, continue to scale on future

architectures”) parallel algorithms often employ globally

scalable and locally fast solvers [17-19]. An example of

such global-local separation is the computation of long-

range electrostatic potentials, where highly scalable real-

space multigrids for internode computations are combined

with fast spectral methods for intranode computations [17-

19]. For MD simulations, the global-local separation

insulates the optimization of intranode computations of

dynamic n-tuples from internode parallelization approaches

described above. In this paper, we thus focus on GPGPU

acceleration of local dynamic n-tuple computations.

Various schemes have been proposed for the optimization

of local MD computations for pair-wise [20] and more

general dynamic n-tuple interactions [21].

Extensive research and prior work exist, which explored

the problem of accelerating CPU-based MD simulation

codes with the GPGPU architecture [22-26]. However,

majority of these works focused on the mechanical aspects

of accelerating and tuning a set of existing codes on

GPGPU. These mechanical aspects include better memory

organization to promote coalescing of global memory-

access operations, tuning of register usage, exploiting the

GPU shared/cache memory hierarchy, and minimization of

communication between the host and device.

While all of these aspects are crucial for achieving large

speedups of scientific codes on GPU, here, we instead

propose an alternative approach — named tuple

decomposition (TD) — to GPU acceleration that

restructures the enumeration of interatomic interactions and

the calculation of potential energies, so that they can be

performed more efficiently on GPGPU. Our approach

employs two techniques: (1) pipelining and (2) in situ

construction of two-body and three-body atomic interaction

lists on GPGPU. An existing MD codebase, which

calculates two-body and three-body interatomic potentials

based on the conventional particle decomposition (PD)

approach, serves as a platform to demonstrate our

approach.

Despite various GPGPU implementations of dynamic n-

tuple computations, less studies have focused on the critical

factors that dictate the performance of these approaches. In

this work, we analyze the performance characteristics of

the TD and PD approaches. Among more conventional

factors such as thread divergence, we have found that the

register footprint plays a critical role in controlling the

GPGPU performance. In addition to a many-body (n = 2

and 3) MD simulation, this finding is shown to hold for

higher-order n-tuple computations in ReaxFF-based RMD

simulations.

2 PHYSICAL MODEL

2.1 Interatomic Potential

The MD simulation software used as a basis for this

research is described in Ref. [7]. To make the discussion

specific, we first consider an interatomic potential proposed

in Ref. [8] to study structural and dynamic correlations in

silica (SiO2) material. This implementation includes an

interatomic potential combining pair and triplet interactions

and the linked-list cell method for reducing the

computational complexity of the force calculation to O(N)

(where N is the number of atoms), while the standard

velocity Verlet algorithm is used for time-stepping [7, 12,

21, 27].

The potential energy of the system is a sum of atomic

pair (or two-body) and triplet (or three-body) contributions

[8]:

Acceleration of Dynamic n-Tuple Computations in Many-Body Molecular Dynamics HPCAsia2018, Jan 2018, Tokyo Japan

 3

 







kji

ikijijk

ji

ijij uruV
,

)3()2(),()(rr , (1)

where rij = |rij|, rij = ri − rj, and ri is the three-

dimensional vector to represent the position of the i-th

atom. In Eq. (1), the pair potential is given by

uij
(2)(r) = A

s i +s j

r

æ

è
ç

ö

ø
÷

hij

+
ZiZ j

r
e-r/l

-
aiZ j

2 +a jZi
2

2r4
e-r/z

. (2)

Here, the three terms represent the steric repulsion, the

Coulombic interaction due to charge transfer, and an

induced dipole-charge interaction caused by electronic

polarizabilities of atoms, respectively. The pair potential is

truncated at a cutoff distance, rij = rc2. The triplet potential

in Eq. (1) is expressed as

)()(

cos1

cos

exp),(

3c3c

2

3c3c

)3(

2

ikij

jik

ikij

ikij

jik

jik

ikij

ikij

ikij

ijkikijijk

rrrr

rr
C

rr

rrrr
Bu


































































rr

rr

rr

, (3)

where (x) is the step function. In Eq. (3), the cutoff

radius, rc3, for triplet interactions is much less than that for

pair interactions, rc2. The parameters in Eqs. (2) and (3) are

found in Ref. [8]. These parameters are fitted to reproduce

the experimentally measured structural and mechanical

properties of the normal-density silica glass.

2.2 MD Simulation

The trajectories of atoms are discretized with a time

discretization unit of t. In the widely used velocity Verlet

algorithm, the positions ri(t) and velocities vi(t) of atoms (i

= 1,..., N) at time t are updated as

 ri(t +Dt) = ri(t)+vi(t)Dt +
1

2
ai(t)Dt

2 +O(Dt4), (4)

 vi(t + Dt) = vi(t)+
ai(t)+ai(t + Dt)

2
Dt +O(Dt3) , (5)

where

iii

i
i

V

mm r

F
a






1 (6)

is the acceleration of the i-th atom. In Eq. (6), Fi is the

force acting on the i-th atom and mi is its mass. The

velocity Verlet algorithm repeats the body of the main MD

simulation loop as shown in Algorithm 1. Note that the

acceleration at time t, ai(t), has already been computed in

the previous simulation step or before the main MD

simulation loop is entered for the first simulation step.

Algorithm 1: Body of the main MD simulation loop based on the

velocity-Verlet algorithm.

1. vi(t +
Dt

2
)¬ vi(t)+

Dt

2
ai (t) for all i

2. ri(t +Dt)¬ ri(t)+vi(t +
Dt

2
)Dt for all i

3. Compute ai(t+t) as a function of the set of atomic

positions {r𝑖(𝑡 + ∆𝑡)| 𝑖 = 1, … , 𝑁}, according to Eq. (6) for all i

4. vi(t + Dt)¬ vi(t +
Dt

2
)+

Dt

2
ai(t + Dt) for all i

On parallel computers, we employ a spatial

decomposition approach. The simulated system is

decomposed into spatially localized subsystems, and each

processor is assigned the computation of forces on the

atoms with one subsystem [7, 12, 21, 27]. Message passing

is used to exchange necessary data for the computations.

Specifically, before computing the forces on atoms in a

subsystem (step 3 in Algorithm 1), atomic positions within

the interaction cutoff radius rc2 within the boundaries of the

neighboring subsystems are cached from the corresponding

processors.

Figure 1: The workflow of the main MD simulation loop: (a)

main solver loop, (b) original pipelining of atomic force

computation on CPU, (c) restructured pipeline on GPU.

 Fig. 1 (a) shows the workflow of the main MD

simulation loop on a parallel computer, where “Atom

HPCAsia2018, Jan 2018, Tokyo Japan Small et al.

4

copy” denotes this interprocessor atom caching. After

updating the atomic positions according to the time

stepping procedure (step 2 in Algorithm 1), some atoms

may have moved out of its subsystem. These moved-out

atoms are migrated to the proper neighbor processors.

“Atom move” in Fig. 1 (a) represents this interprocessor

atom migration along with the atomic-position update.

2.3 Linked-List Cell Method

A naive method of computing the forces between atoms

in MD simulations is to first consider an atom i and then

loop over all other j atoms to calculate their separations.

This approach imposes an O(N2) computational complexity

for pair interactions, and an even worse O(N3) complexity

for triplet interactions. Thus, the naive method becomes

untenable when the atom count, N, becomes large.

The linked-cell list method [28] reduces this

computational complexity to O(N) for both cases by

dividing the simulation region into cells whose width is

slightly greater than the pair interaction cutoff distance rc2.

At each time step, each atom is classified by cell, and then

only interactions between atoms in the same or adjacent

cells are considered in the force calculation. For dynamic

pair and triplet computations, the conventional linked-list

cell method works as follows [12, 27]. On each processor,

the spatial subsystem containing both the resident and
cached atoms is divided into cells of equal volume whose

edge is slightly larger than rc2. Lists of atoms residing in

these cells is constructed by the linked-list method [28].

Pair forces on the resident atoms are computed by

traversing atomic pairs using the linked lists. An atom in a

cell interacts only with the atoms within the cell and its 26

neighbor cells. At the same time as the computation of pair

forces, a list of primary pair atoms, lspr, is constructed.

Here, lspr[i][k] stores the identifier of the k-th neighbor

atom, which is within the shorter cutoff distance, rc3, of the

i-th atom. Triplet forces are computed using the primary

pair list lspr, which has been constructed during pair-force

computations. In Eq. (1), only the resident atoms within the

processor are included in the summation over index i to

avoid over-counting. On the other hand, indices j and k are

summed over both the resident and copied atoms. Partial

derivatives of the potential energy with respect to the

positions of j and k atoms therefore produce forces on the

cached atoms as well as on the resident atoms. The reaction

terms on the cached atoms are sent back to the processors

in charge of the neighbor spatial subsystems and are added

to the forces there.

3 GPGPU IMPLEMENTATION

Our focus in accelerating these codes was finding an

efficient method of porting the main MD simulation loop to

a graphics processing unit (GPU). To guide that process,

we follow two fundamental principles: (1) minimization of

control divergence (conditional branching, non-uniform

iteration counts) within threads of a warp, and (2)

minimization of synchronization events between threads.

The first principle is important on a single instruction,

multiple threads (SIMT) architecture such as GPU, since

the kernel scheduler launches threads in groups of 32

(called a warp). Each thread within a warp executes the

instructions of a kernel in lockstep. Divergent execution

from conditional branches is allowed, but the threads in a

warp suffer large performance penalties when this occurs

since threads will pause and resynchronize at the end of the

conditional branch. A similar situation occurs when a load

imbalance is present. For example, if one or more threads

in a warp execute many more iterations of a loop, warp

resources will sit idle while the overloaded threads execute.

With these principles in mind, we now turn to the

computations performed within the solver loop as outlined

in Fig. 1 (a). The velocity half-step updates, atomic position

updates, and atom copies (for enforcement of the periodic

boundary conditions, etc.) are all directly translated to GPU

kernels. These operations are trivially parallelized by

unrolling their loops by atom. Thus, each thread of the

corresponding GPU kernels is responsible for updating the

state of a single atom.

However, the vast majority of work performed by the

solver occurs within the acceleration-computation step

(“Compute force” in Fig. 1 (a)). This is much more difficult

to parallelize, and here, we are forced to dramatically

restructure the algorithm for efficient execution on GPU.

This restructuring involves application of a pipelining

technique to decompose the computation into a longer

sequence of simple steps (implied, but not specifically

discussed in Ref. [24]). Fig. 1 (b) and (c) show the original

acceleration computation juxtaposed with the new

pipelined approach.

The original MD algorithm fuses the identification of

interactions between atoms i, j (pair or two-body) and i, j, k

(triplet or three-body) with the calculation of the potentials

from Eqs. (2) and (3), respectively. This organization is

appropriate for the CPU since having spent the time

searching for the neighbors of a particular atom i, no other

overheard is incurred to compute the potential other than

clock cycles in the arithmetic logic unit. On GPU, however,

this is suboptimal as a particular atom i will have a variable

number of neighbors in its vicinity. If each thread of a

kernel is assigned to find the neighboring interactions for a

specific atom, it is very likely that the threads in a warp

will be executing differing amounts of work, thus violating

one of the optimizations principles we committed to follow.

In addition, determining the validity of an interaction

between atoms involves numerous checks, such as a

comparison of atom types, resident atom within this spatial

subsystem versus cached atom, and the distance cutoff

Acceleration of Dynamic n-Tuple Computations in Many-Body Molecular Dynamics HPCAsia2018, Jan 2018, Tokyo Japan

 5

between the atoms. These checks are conditional branches,

which cause control divergence as well.

The GPU implementation alternatively factors out the

computation of two-body and three-body potentials from

the identification of the participating interactions (Fig. 1

(c)). The calculation of potentials is an embarrassingly

parallel operation, with little control divergence and no

synchronization required other than an atomicAdd() to sum

the potential contributions for an atom i across many

threads. Thus, calculating two-body potentials is now a

two-step process: construct a list (or array) of valid

interactions within the cutoff distance rc2 for all atom pairs

i, j, and then compute the potential contribution from each

interaction in parallel. The same process can be used for

three-body potentials. In other words, GPU parallelizes the

potential computation by interaction rather than atom.

With this factorization, we achieve a significant speedup

in performance over a baseline GPU implementation that

mirrored the CPU approach with parallelization by atom

(Fig. 1 (c)). Having separated the easily parallelizable

computation from the tricky interaction determination, we

can then focus on ways to efficiently accelerate the

construction of two-body and three-body interaction lists

on GPU. The approaches we employed to accomplish this

are explained in the following section

3.1 Two-Body Interaction List Generation

The two-body interaction list generator used in our

application draws inspiration from the Verlet neighbor-list

algorithm by Lipscomb et al. [24], but has significant

differences. The Lipscomb method is elegant and simple,

yet it does exhibit a drawback. The method relies on the

complete enumeration of all possible two-body atomic

interactions at the outset (the master list), before the sorted

member list can be generated. With the cell structure of

MD, the number of such interactions is bounded by O(N),

however, the hidden constant factor is very large. In

addition, Ref. [24] does not address how to generate the

master list; the implication is that it may have been

generated on CPU and transferred to GPU. We instead

would like the list generation to occur entirely on GPU.

To address this problem, we extend the interaction

metaphor to its logical conclusion — we not only consider

atomic interactions, but also cell interactions. At the outset,

during application initialization, once the problem space

has been decomposed into cells, the program catalogs all

combinations of pairs of cells u, v that are adjacent to one

another within the lattice (including interaction with self,

and interaction with the boundary cells). This cell

interaction list Iu,v is saved for future use, and is immutable

for the runtime of the application. Within the source code,

the cell interaction list is represented by two arrays, linterci

and lintercj.

More concretely, as the solver executes on GPU, the

kernel responsible for the array-cell list phase scans the

atoms in the lattice in parallel, classifies each by the cell

they are located within, and counts the number of atoms in

each cell. The identifier of each atom is stored in an array

Au, where u is the scalar-index of the cell that the atom is

located within. Thus, there is one such array for each scalar

cell in the problem domain. The atom counts per cell is

kept in Cu, again where u is the scalar cell index. Within

the source code, Au is implemented as the two-dimensional

array cellatomT, while the cell counts are represented in the

array cellcount.

Using the CUDA Thrust software development kit

(SDK) [29], the set of cell counts Cu is scanned to find the

maximum value m = maxu(Cu), representing the cell with

the most atoms. At this point, the application has sufficient

information to explore the entire space of possible

interactions in parallel. Any pair of interacting cells Iu,v

will have at most m2 combinations of two-body interactions

since the maximum number of atoms in any given cell is m.

And since there are ||Iu,v|| possible cell interactions, an

upper bound on the number of two-body atomic

interactions in the problem domain is

 t =m2 Iu,v . (7)

A kernel is then launched with t threads to execute the

“identify 2B interactions” phase in Fig. 1 (c). Inside the

kernel, each thread tid extracts the identifiers of one pair of

atoms i, j to test for two-body interaction via the following

multi-step process. First, the index of the cell interaction,

ic, and the atomic interaction combination within that cell,

ac, are computed from the thread identifier tid by

 ic = tid mod Iu,v , (8)

 ac = tid Iu,v . (9)

Then, the indices of the interacting cells, u and v, are

determined by looking up the ic entry in Iu,v:

 {u,v} = Iu,v(ic) . (10)

The index positions of the (possibly) interacting atoms

in Au and Av are computed by

 iidx = ac /Cv , (11)

 jidx = ac modCv . (12)

If iidx ≥ Cu, the atomic interaction combination ac is not

in the set of possible interactions for cells u and v, and that

thread terminates. Otherwise, the atom identifiers i and j

are finally retrieved from Au and Av:

i = Au iidx() , (13)

j = Av iidx() . (14)

HPCAsia2018, Jan 2018, Tokyo Japan Small et al.

6

At this point, a final check is performed to remove

duplicate i, j interactions when considering cell interactions

with u = v (again, by termination). The remaining running

threads then each submits its i, j pair of atoms to the same

cutoff threshold testing as the original MD code, and

appends i, j to the two-body interaction list if it passes the

threshold tests. In this manner, the entire set of possible

two-body atomic interactions are tested in parallel, and in

situ, on GPU. A single contiguous list of interactions is

produced, which can then be evaluated in parallel within

the “calculate 2B forces” phase in Fig. 1 (c). Within the

code, the list is represented by the arrays linteri and linterj.

Fig. 2 illustrates the procedure of two-body list

construction on GPU. Each thread examines an interaction

between atom i and j, and transfers the index pair to linteri

and linterj only if it passes the threshold test.

Figure 2: Concurrent construction of valid interactions.

At first glance, this method may seem wasteful of

processor resources. It is true that perhaps even one-half of

the threads will terminate without ever testing two atoms

for an interaction, due to imbalances in the distribution of

atoms among the cells. However, the terminating threads

are often grouped contiguously in large swathes within the

thread space, allowing the GPU warp scheduler to

immediately marshal those released resources for other

warps waiting in the run queue. Another disadvantage that

should be noted is this method’s reliance on a global

counter, incremented with atomicAdd() when new i, j

interactions are appended to the interaction list. Despite

testing various alternative solutions, which replace that

counter with other data structures, the current

implementation provides the best overall runtime

performance. We discuss a possible solution to this

problem in the concluding remarks.

3.2 Three-Body Interaction List Generation

The three-body interaction list generator utilizes a

different algorithm than its two-body counterpart. This

method examines the two-body interaction list produced in

the previous section, and searches for those interactions

that fall within the more restrictive three-body distance

threshold, rc3. Those interactions that fall within this cutoff

are saved in the lspr array in much the same way as is done

in the original MD code explained in Section 2.3. However,

in the GPU implementation, this array is populated by a

kernel that inspects each two-body interaction in parallel

(one thread per interaction). As shown in Algorithm 2,

kernel gen_lspr produces array lspr from the existing two-

body interaction lists linteri and linterj.

Algorithm 2: GPU implementation of the generation of three-

body lists.

CUDA kernel, gen_lspr

// tid is thread ID

// lnum3b[i] is the number of atoms within rc3 of atom i

// linteri and linterj are two-body interaction pairs

i ← linteri[tid]

j ← linterj[tid]

if rij < rc3

 lspr[i][lnum3b[i]] ← j

 lspr[j][lnum3b[j]] ← i

 lnum3b[i]++

 lnum3b[j]++

end if

CUDA kernel, gen_3body_list

// offset is the prefix-sum from Thrust operation

i ← tid

for j from 1 to lnum3b[i]

 for k form j + 1 to lnum3b[i]

 linter3i[offset] ← i

 linter3j[offset] ← lspr[i][j]

 linter3k[offset] ← lspr[i][k]

 update offset by computing prefix-sum of

combinations

 end for

end for

Once the lspr array is populated, Thrust is used to scan

the neighbor counts for each atom to generate an array of

prefix sums, with the sums produced after applying a

function to the neighbor counts. More specifically, the

number of three-body interactions, ni, associated with atom

i is computed with the formula,

 𝑛𝑖 =
𝑐𝑖(𝑐𝑖−1)

2
 (15)

where ci is the number of neighboring atoms for atom i in

lspr. Then the array of ni is used as input into the Thrust

prefix-sum operation to produce a new array of values pi.

Thrust is also employed to compute the total number of

Thread 0

Thread 3

Thread 2

Thread 1

.

.

.

atom[i] atom[j] (r < rc & i < j) ?

l i nt er i

l i nt er j

. . .

. . .

2

9

6

54

7

2

11

10

7

6

10

9

11

.

.

.

.

.

.

Acceleration of Dynamic n-Tuple Computations in Many-Body Molecular Dynamics HPCAsia2018, Jan 2018, Tokyo Japan

 7

three-body interactions by simply performing a reduction

on ni.

The prefix-sum array pi is then used as input by a

follow-on kernel that populates the actual three-body

interaction list. Each thread in the kernel is assigned to

process an atom i, and it iterates through the ni 3-tuple

combinations for that atom in lspr. The threads save the

resulting i, j, k interactions into the three-body interaction

list starting at offset pi. The result of this complicated

process is a fully populated i, j, k interaction list, entirely

produced on GPU, which can be used in the “calculate 3B

forces” phase in Fig. 1 (c). In the source code, this

interaction list is represented by the trio of arrays linter3i,

linter3j, and linter3k. In Algorithm 2, kernel

gen_3body_list is implemented to store the three-body

interactions into these arrays.

This interaction list generator is remarkably different

from its counterpart. Its primary advantage is the

elimination of a global counter for insertion into the three-

body interaction list. The purpose of the prefix-sum array is

to assign a dedicated range of entries within the final

interaction list to each thread (atom) so that no explicit

coordination is required between threads.

This is a significant advantage, but it comes with a cost.

This method does not scale when there are large numbers

of three-body interactions per atom since the memory write

into the final interaction list is strided by the number of

combinations. Thus, as the interaction count per atom

increases, the stride correspondingly increases, and

memory coalescing worsens. We have found in practice

that the combination counts are typically very small, as

well as the total number of three-body interactions, so the

performance degradation from the poor coalescing strategy

is minimal. It should be noted here that rc3 << rc2, as stated

before. This comes from a physical principle that higher-

order n-tuple interactions (n  3) are short-ranged and only

a few neighbors per atom contribute to them, compared to

hundreds of neighbors for pair interactions.

4 BENCHMARKING AND VALIDATION

To evaluate the runtime performance of the GPU

implementations, we run a series of benchmarking tests at a

center for high performance computing that operates both a

large, heterogeneous CPU cluster and a GPU-accelerated

cluster. The GPU-accelerated cluster is comprised of 264

compute nodes, each with two Nvidia Kepler K20m GPU

accelerators. We demonstrate the performance

improvement of the new TD approach on MD simulations

by analyzing two comparisons: TD’s GPU implementation

versus (1) the original MD code and (2) a baseline GPU

implementation that directly mirrors the CPU

implementation.

4.1 GPU Implementation versus the Original

MD Code

For this timing experiment, we have selected three

reference CPU chipsets from the collection of available

compute nodes on the CPU cluster at HPC. We compare

the original MD runtime performance on those chipsets

versus the GPU implementation executing on the Kepler

K20m for a series of MD simulations. The lattice sizes in

the simulations varies from 444 to 161616 crystalline

unit cells (where each unit cell contains 24 atoms), and

each simulation runs for 1,000 time steps. The CPU

chipsets used in the comparison are AMD Opteron 2356

with a clock speed of 2.3 GHz and 2 MB cache, AMD

Opteron 2376 (2.3 GHz, 6 MB cache), and Intel Xeon E5-

2665 (2.4 GHz, 20 MB cache). The purpose behind the

multi-chipset comparison is to give a comprehensive view

of the GPU implementation’s performance characteristics

versus a range of common CPUs.

Fig. 3 plots the wall-clock time versus simulation size

(i.e., the number of atoms) for the three CPU chipsets and

the GPU. The corresponding speedups of the GPU

implementation over the three CPU implementations are

plotted as a function of the simulation size in Fig. 4. As can

be seen in the graph, the speedup varies greatly with the

power of the reference CPU, with the newer Intel Xeon

faring better than its counterparts. However, even against

the Xeon, the GPU implementation demonstrates a

significant speedup of up to 6-fold, which improves as the

lattice size is increased. This overall trend is expected as

the overhead costs of device initialization, PCI bus

communications, and kernel launches are amortized over a

larger set of atoms.

An interesting observation noticeable in those charts is

the large increase in speedup that the GPU application

experiences for the largest simulation versus the two AMD

Opteron CPUs. This is because the Opteron cache size (6

MB) is not large enough to accommodate the entire 98,304

atomic states along with other necessary data, and the

cache-miss rate increases dramatically at that point. If we

were to scale up the tests further, we would likely continue

to see their runtime performance drop in comparison to the

GPU.

To validate the simulation results generated by the GPU,

we have compared the final atomic positions and velocities

with those of reference datasets produced by the original

MD code. We have examined simulations with lattice sizes

444, 888, 101010, 121212, and 161616, all

executed over a span of 1,000 time steps. Across all

configurations, these output parameters agreed within a

tolerance of 10-9. However, we did discover a problem with

accumulating numerical error that caused the GPU results

to drift from that of the CPU while testing extended

HPCAsia2018, Jan 2018, Tokyo Japan Small et al.

8

simulations of more than 4,000 time steps. This problem is

analyzed further in the concluding remarks.

Figure 3: Concurrent construction of valid interactions.

Figure 4: Speedup of GPU MD over reference CPU MD for

varying numbers of atoms.

4.2 GPU Implementation versus the Baseline

The TD approach is doubtlessly designed to outperform

its sequential origin since parallelization is employed

aggressively. The advantage of the tuple-based

restructuring of computations, however, is still nontrivial

and must be investigated. To address this problem, we

introduced a straightforward GPU implementation of the

original MD code, which is based on particle

decomposition (PD), as a baseline for comparison. As

illustrated in Fig. 1, the TD approach separates the

computation and identification of 2-body and 3-body

interactions into different kernels. The baseline approach,

on the contrary, fuses the two kernels back into a single one

with each GPU thread scanning the interatomic potentials

followed by calculation of the potentials. Thus, this code is

simply a GPU-accelerated implementation of the original

MD code on CPU.

The results are collected on Tesla K20m with

simulations ran in the lattice sizes ranging from 444 to

323232, or equivalently the number of atoms from 1,536

to 786,430. As shown in Fig. 5, our TD approach achieves

an approximately 20% performance improvement over the

baseline (PD). We observe that the wall-clock time for TD

is higher than that of the baseline upon the first two lattice

sizes. The likely reason is that our TD implementation

launches two extra CUDA kernels than the baseline in each

time step, and the overhead of initializing these kernels is

relatively high on a small number of atoms, which needs to

be large enough to leverage the computational capability of

GPU.

Figure 5: Wall-clock time of the TD approach (orange circles)

and that of baseline (PD, black squares) as a function of the

number of atoms. The figure also shows the performance

improvement of the TD approach over the baseline as a

function of the number of atom.

To better understand the performance characteristics of

the TD and PD approaches, we next carry out performance

profiling on the most compute-intensive CUDA kernels

that account for approximately 90% of the total running

time for both implementations, i.e., 2body_inter in baseline,

and gen_lists_2body_inter and compute_accel_2body_inter

in TD. We use the NVIDIA profiling tool, nvprof, for the

measurements.

Fig. 6 compares the wall-clock time of the TD approach

with that of the baseline for these most compute-intensive

kernel executions. The total number of atoms is 786,432.

As their names suggest, the test case consists of computing

2-body interactions in a unit time step. Here, the running

time of each kernel is measured on average throughout the

1

10

10
2

10
3

10
4

10
3

10
4

10
5

AMD Opteron 2356 2.3GHz
AMD Opteron 2376 2.3GHz
Intel Xeon 2.4GHz
Nvidia Kapler K20m

T
im

e
 (

s
)

Number of atoms

0

5

10

15

20

25

10
3

10
4

10
5

Speedup vs AMD Opteron 2356 2.3GHz
Speedup vs AMD Opteron 2376 2.3GHz
Speedup vs Intel Xeon 2.4GHz

S
p

e
e
d

u
p

Number of atoms

1

10

10
2

10
3

0

20

40

60

80

100

10
3

10
4

10
5

10
6

Tuple-decomposition

Baseline

Performance improvement
T

im
e
 (

s
)

P
e

rfo
rm

a
n

c
e

 im
p
ro

v
e

m
e

n
t (%

)

Number of atoms

Acceleration of Dynamic n-Tuple Computations in Many-Body Molecular Dynamics HPCAsia2018, Jan 2018, Tokyo Japan

 9

entire CUDA threads, because a single thread may not

execute the kernel when the interaction it carries falls out of

cutoff radius. The TD approach (right column) is

approximately 23% faster than the baseline (left column),

which in turn echoes the global performance improvement

of the former over the latter in Fig. 5. Within the TD

approach, generation of the 2-body interaction list and

actual computation of 2-body interactions using the list

account for approximately identical computing times.

Figure 6: Wall-clock time on kernels for 2-body potential

computation per time step for the baseline (left) and TD

(right) approaches.

In addition, we investigate a major concern of our design

mentioned in Section 3, i.e., unbalanced workloads over

threads. We introduce “achieved occupancy” into our

analysis as a metric to quantify the workload balance on

GPU. More precisely, it is defined as the ratio of active

warps on a streaming multiprocessor (SM) to the maximum

number of active warps supported by the SM [30]. Table

1shows the achieved occupancy of kernels measured by

nvprof. The compound achieved occupancy of TD, though

with statistical variation, is apparently higher than the

baseline, indicating that the procedure of fetching the

interatomic pairs from the restructured tuple-list followed

by calculating the interactions produces more balanced

workload distributions over time compared with the

baseline approach.

Table 1: Achieved occupancy of kernel execution.

Baseline TD

2body_inter 0.386
gen_lists_2body_inter 0.916

compute_accel_2body_inter 0.461

We next perform a hardware-level analysis to unveil the

reason behind the achieved occupancy for the three kernels

in Table . Occupancy is limited by multiple factors such as

shared memory usage. In this application, register usage per

SM is found to be the determining factor. As Fig. 7 shows,

the kernel gen_list_2body_inter uses 32 registers per

thread, thereby maximizing the capacity of K20m to hold

64 warps active (2 blocks) per SM, while the other two

kernels take up 41 registers per thread (41,984 for 1 block).

The testing device, Tesla K20m, provides up to 65,536

registers for each block with up to 2 blocks supported on

each SM. However, these two kernels use 41,984 registers

for one block, thereby each SM can only have 1 block (32

warps as the red dot suggests) run in parallel. Thus, the

achieved occupancy is limited to the upper bound of 0.5,

which prevents it from fully utilizing the GPU. This

analysis thus demonstrates that the register footprint plays a

key role in dictating the GPU performance.

4.3 Dynamic Quadruplet Computation in

ReaxFF

To test the performance portability of the TD approach

to more general dynamic n-tuple computations, we consider

first principles-informed RMD simulations based on the

ReaxFF method [6, 9, 10]. The ReaxFF approach

significantly reduces the computational cost of simulating

chemical reactions, while reproducing the energy surfaces

and barriers as well as charge distributions of quantum-

mechanical calculations. RMD simulations describe

formation and breakage of chemical bonds using reactive

bond orders [6, 31, 32], while a charge-equilibration (QEq)

scheme [33-35] is used to describe charge transfer between

atoms. The ReaxFF interatomic forces involve up to

quadruplets (n = 4) explicitly and sextuplets (n = 6)

implicitly through the chain rule of differentiation. In this

work, we test the TD approach in the quadruplet-interaction

computations in a production RMD simulation program

named XRMD [10].

Figure 7: Relationship between the number of warps per SM

and the number of registers per thread for kernels.

The quadruplet-interaction is one of the most

computationally expensive functions in the ReaxFF

method. It requires traversing deeply nested neighbor-list

loops, within which the value of bond-order of a covalent

bond or the combination of those is checked to be greater

than predefined cutoff values, which can create significant

HPCAsia2018, Jan 2018, Tokyo Japan Small et al.

10

code branching. Our TD approach performs the neighbor-

list traversal and the branch-condition evaluation on the

CPU and the numerically intensive computations on the

GPU, enabling us to take advantage of both host and GPU

architectures. The GPU implementation of the TD approach

for the computation of quadruplet interactions is shown in

Algorithm 3.

Algorithm 3: GPU implementation of the generation of 4-body

lists and computation of quadruplet forces in XRMD.

CUDA kernel, gen_4body_list

// tid is thread ID

// i, j, k, l are atom IDs and BOij, BOik, BOlk are bond orders

 between pairs (i j), (i k) and (k l)

// ie4b is the list for four body and ne4b is interaction

 number for 4 body

 j ← tid

 k ← nbrlist[j,k1]

 if BOjk > BOcutoff

 i ← nbrlist[j,i1]

 if i  k

 if BOij > BOcutoff && BOij ×BOjk > BOcutoff

 l ← nbrlist[k, l1]

 if i  l && j  l

 if BOkl > BOcutoff && BOjk×BOkl > BOcutoff

 if BOij ×BOjk
2 ×BOkl > BOcutoff2

 ne4b++

 ie4b[1:4][ne4b]  (j, i1, k1, l1)

CUDA kernel, gen_4body_list compute_4body_force

 ne4b ← tid

 i ← ie4b[1][ne4b]

 j ← ie4b[2][ne4b]

 k ← ie4b[3][ne4b]

 l ← ie4b[4][ne4b]

 call E4b[i,j,k,l]

Fig. 8 compares the wall-clock time of the quadruplet

interaction calculation using the TD and baseline (PD)

approaches for three different problem sizes, i.e., the

number of atoms N = 1,344, 4,536 and 10,752. For this

kernel invocation, we employ one-dimensional thread

assignment with the number of threads per grid, Nthreads,

to be 32 and the number of grids to be the number of

atomic quadruplets divided by Nthreads + 1. The figure

shows that the TD approach consistently outperforms the

baseline, providing nearly 1.3 speedup for the three

system sizes.

Figure 8: Timing comparison of the TD approach and

baseline (PD) for the computation of quadruplet interactions

in ReaxFF. The histogram shows wall-clock times per MD

step in milliseconds averaged over 100 time steps. We use

RDX material for this benchmark.

As stated in the introduction, our global-local separation

scheme completely insulates the optimization of intranode

computations of dynamic n-tuples from internode

parallelization. In order to test the internode scalability of

our parallel ReaxFF MD code, Fig. 9 shows the computing

time per MD step as a function of the number of IBM Blue

Gene/Q cores in both weak- and strong-scaling settings.

The weak-scaling test simulates 86,016P-atom C3H6N6O6

molecular-crystal system on P cores, while the strong-

scaling test simulates N = 4,227,858,432 atoms

independent of P. The weak-scaling parallel efficiency is

0.977 for P = 786,432 for N = 67,645,734,912. The strong-

scaling parallel efficiency is 0.886 for P = 786,432 for a

much smaller system of N = 4,227,858,432.

Figure 9: Strong and weak scaling of the parallel ReaxFF MD

code on Blue Gene/Q.

5 CONCLUSIONS

0

20

40

60

80

100

120

140

Weak scaling
Strong scaling

10
5

10
6

W
a

ll-
c
lo

c
k
 t
im

e
 (

s
)

Number of cores

Acceleration of Dynamic n-Tuple Computations in Many-Body Molecular Dynamics HPCAsia2018, Jan 2018, Tokyo Japan

 11

In this paper, we have presented a new computational

approach for performing many-body MD simulations on

GPGPU. Our tuple-decomposition approach utilizes

pipelining and efficient in situ generation of pair and triplet

interaction lists to accelerate the application. Through a

wide-ranging set of benchmarking tests, we have

demonstrated that these relatively simple algorithmic

changes provide significant performance speedups for

varying simulation sizes and applications.

The algorithms we described for producing lists of pair

and triplet interactions can be improved with further

research. One possibility is combining our candidate two-

body

interaction generator with the Lipscomb algorithm [24]

for Verlet neighbor-list generation. Our approach addresses

the major weakness in their algorithm — the generation of

the master list — while their approach eliminates a need for

synchronization through a global counter. We will

synthesize these two methods to yield an exceptional

hybrid approach.

We have also examined various techniques for fusing

the pair and triplet interaction list generation into the same

overall algorithm, but this proved to be too difficult as their

requirements are slightly different. Further research could

yield a way to integrate them in an elegant manner. This

would simplify our computation model immensely.

Although the focus of this work is primarily on MD

algorithm development on GPU, there are various

optimizations that could be made to boost the performance

even further. Memory coalescing could be improved in

many places by restructuring the atomic state information

stored in device global memory, and utilizing shared

memory to coordinate reads among threads. With the

former technique, the goal is to have adjacent threads in a

thread block read data from adjacent addresses in global

memory. The latter technique allows the efficient loading

of strided array structures into local memory where the

access times are much lower.

An intriguing idea that we plan to explore is imposing a

sort order on the atoms, so that adjacent threads in the

kernel tend to access adjacent atoms in the atom list.

Theoretically, this could improve` memory coalescing.

Determining a proper sort order is difficult, however, and

enforcing it is expensive because it implies that a parallel

sort be performed each time step since the atoms move

throughout the simulation. A compromise may be to

periodically sort the atoms and hope that that the benefits of

temporarily improved coalescing outweigh the sorting cost.

ACKNOWLEDGMENTS

This research was supported as part of the

Computational Materials Sciences Program funded by the

U.S. Department of Energy (DOE), Office of Science,

Basic Energy Sciences, under Award Number DE-

SC00014607. Computation was performed at the Center for

High Performance Computing of the University of

Southern California.

REFERENCES
[1] D. Frenkel and B. Smit. 2001. Understanding Molecular Simulation.

Academic Press, San Diego, CA.

[2] A. Rahman. 1964. Correlations in the motion of atoms in liquid

argon. Physical Review, 136 (2A). A405-A411.

https://doi.org/10.1103/PhysRev.136.A405
[3] M. Levitt. 2014. Birth and future of multiscale modeling for

macromolecular systems (Nobel lecture). Angewandte Chemie

International Edition, 53 (38). 10006-10018.

10.1002/anie.201403691

[4] S. Tsuneyuki, Y. Matsui, H. Aoki and M. Tsukada. 1989. New
pressure-induced structural transformations in silica obtained by

computer-simulation. Nature, 339 (6221). 209-211.

10.1038/339209a0

[5] F. Shimojo, I. Ebbsjo, R. K. Kalia, A. Nakano, J. P. Rino and P.

Vashishta. 2000. Molecular dynamics simulation of structural
transformation in silicon carbide under pressure. Physical Review

Letters, 84 (15). 3338-3341.

[6] A. C. T. van Duin, S. Dasgupta, F. Lorant and W. A. Goddard.

2001. ReaxFF: a reactive force field for hydrocarbons. Journal of

Physical Chemistry A, 105 (41). 9396-9409. 10.1021/jp004368u
[7] A. Nakano, R. K. Kalia, P. Vashishta, T. J. Campbell, S. Ogata, F.

Shimojo and S. Saini. ACM/IEEE, 2001. Scalable atomistic

simulation algorithms for materials research. Proceedings of

Supercomputing, SC01. 10.1145/582034.582035

[8] P. Vashishta, R. K. Kalia, J. P. Rino and I. Ebbsjo. 1990. Interaction
potential for SiO2 - a molecular-dynamics study of structural

correlations. Physical Review B, 41 (17). 12197-12209.

10.1103/PhysRevB.41.12197

[9] A. Nakano, R. K. Kalia, K. Nomura, A. Sharma, P. Vashishta, F.
Shimojo, A. C. T. van Duin, W. A. Goddard, R. Biswas, D.

Srivastava and L. H. Yang. 2008. De novo ultrascale atomistic

simulations on high-end parallel supercomputers. International

Journal of High Performance Computing Applications, 22 (1). 113-

128. 10.1177/1094342007085015
[10] K. Nomura, P. E. Small, R. K. Kalia, A. Nakano and P. Vashishta.

2015. An extended-Lagrangian scheme for charge equilibration in

reactive molecular dynamics simulations. Computer Physics

Communications, 192. 91-96. 10.1016/j.cpc.2015.02.023

[11] D. C. Rapaport. 1988. Large-scale molecular-dynamics simulation
using vector and parallel computers. Computer Physics Reports, 9

(1). 1-53. 10.1016/0167-7977(88)90014-7

[12] A. Nakano, P. Vashishta and R. K. Kalia. 1993. Parallel multiple-

time-step molecular-dynamics with 3-body interaction. Computer

Physics Communications, 77 (3). 303-312. 10.1016/0010-
4655(93)90178-F

[13] S. Plimpton. 1995. Fast parallel algorithms for short-range

molecular dynamics. Journal of Computational Physics, 117 (1). 1-

19. 10.1006/jcph.1995.1039

[14] L. Kale, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N.
Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan and K. Schulten.

1999. NAMD2: greater scalability for parallel molecular dynamics.

Journal of Computational Physics, 151 (1). 283-312.

10.1006/jcph.1999.6201

[15] D. E. Shaw. 2005. A fast, scalable method for the parallel evaluation
of distance-limited pairwise particle interactions. Journal of

Computational Chemistry, 26 (13). 1318-1328. 10.1002/jcc.20267

[16] D. A. Reed and J. Dongarra. 2015. Exascale computing and big

data. Communications of the ACM, 58 (7). 56-68. 10.1145/2699414

[17] K. Nomura, R. K. Kalia, A. Nakano, P. Vashishta, K. Shimamura, F.
Shimojo, M. Kunaseth, P. C. Messina and N. A. Romero.

IEEE/ACM, 2014. Metascalable quantum molecular dynamics

https://doi.org/10.1103/PhysRev.136.A405

HPCAsia2018, Jan 2018, Tokyo Japan Small et al.

12

simulations of hydrogen-on-demand. Proceedings of

Supercomputing, SC14. 661-673. 10.1109/SC.2014.59
[18] F. Shimojo, R. K. Kalia, M. Kunaseth, A. Nakano, K. Nomura, S.

Ohmura, K. Shimamura and P. Vashishta. 2014. A divide-conquer-

recombine algorithmic paradigm for multiscale materials modeling.

Journal of Chemical Physics, 140 (18). 18A529. 10.1063/1.4869342

[19] N. A. Romero, A. Nakano, K. Riley, F. Shimojo, R. K. Kalia, P.
Vashishta and P. C. Messina. 2015. Quantum molecular dynamics

in the post-petaflops era. IEEE Computer, 48 (11). 33-41.

[20] J. Mellor-Crummey, D. Whalley and K. Kennedy. 2001. Improving

memory hierarchy performance for irregular applications using data

and computation reorderings. International Journal of Parallel
Programming, 29 (3). 217-247. 10.1023/A:1011119519789

[21] M. Kunaseth, R. K. Kalia, A. Nakano, K. Nomura and P. Vashishta.

ACM/IEEE, 2013. A scalable parallel algorithm for dynamic range-

limited n-tuple computation in many-body molecular dynamics

simulation. Proceedings of Supercomputing, SC13.
[22] J. P. Walters, V. Balu, V. Chaudhary, D. Kofke and A. Schultz.

ISCA, 2008. Accelerating molecular dynamics simulations with

GPUs. Proceedings of International Conference on Parallel and

Distributed Computing and Communication Systems (PDCCS

2008). 44-49.
[23] W. M. Brown, P. Wang, S. J. Plimpton and A. N. Tharrington.

2011. Implementing molecular dynamics on hybrid high

performance computers - short range forces. Computer Physics

Communications, 182 (4). 898-911. 10.1016/j.cpc.2010.12.021

[24] T. J. Lipscomb, A. Zou and S. S. Cho. ACM, 2012. Parallel Verlet
neighbor list algorithm for GPU-optimized MD simulations.

Proceedings of the ACM Conference on Bioinformatics,

Computational Biology and Biomedicine, (BCB '12). 321-328.

10.1145/2382936.2382977

[25] W. M. Brown and M. Yamada. 2013. Implementing molecular
dynamics on hybrid high performance computers-three-body

potentials. Computer Physics Communications, 184 (12). 2785-

2793. 10.1016/j.cpc.2013.08.002

[26] S. B. Kylasa, H. M. Aktulga and A. Y. Grama. 2014. PuReMD-
GPU: a reactive molecular dynamics simulation package for GPUs.

Journal of Computational Physics, 272. 343-359.

10.1016/j.jcp.2014.04.035

[27] A. Nakano, R. K. Kalia and P. Vashishta. 1994. Multiresolution

molecular-dynamics algorithm for realistic materials modeling on
parallel computers. Computer Physics Communications, 83 (2-3).

197-214.

[28] M. P. Allen and D. J. Tildesley. 1987. Computer Simulation of

Liquids. Oxford University Press, Oxford, UK.

[29] W.-m. W. Hwu. 2011. GPU Computing Gems Jade Edition.
Morgan Kaufmann, Waltham, MA.

[30] http://docs.nvidia.com/gameworks/content/developertools/desktop/

analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm

[31] J. Tersoff. 1989. Modeling solid-state chemistry: interatomic

potentials for multicomponent systems. Physical Review B, 39 (8).
5566-5568. 10.1103/PhysRevB.41.3248.2

[32] D. W. Brenner. 1990. Empirical potential for hydrocarbons for use

in simulating the chemical vapor-deposition of diamond films.

Physical Review B, 42 (15). 9458-9471.

[33] A. K. Rappe and W. A. Goddard. 1991. Charge equilibration for
molecular-dynamics simulations. Journal of Physical Chemistry, 95

(8). 3358-3363. 10.1021/j100161a070

[34] F. H. Streitz and J. W. Mintmire. 1994. Electrostatic potentials for

metal-oxide surfaces and interfaces. Physical Review B, 50 (16).

11996-12003. 10.1103/PhysRevB.50.11996
[35] S. W. Rick, S. J. Stuart and B. J. Berne. 1994. Dynamical

fluctuating charge force-fields - application to liquid water. Journal

of Chemical Physics, 101 (7). 6141-6156. 10.1063/1.468398

http://docs.nvidia.com/

	2.3  Linked-List Cell Method
	5 CONCLUSIONS

