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ABSTRACT 

Computation on dynamic n-tuples of particles is 

ubiquitous in scientific computing, with an archetypal 

application in many-body molecular dynamics (MD) 

simulations. We propose a tuple-decomposition (TD) 

approach that reorders computations according to 

dynamically created lists of n-tuples. We analyze the 

performance characteristics of the TD approach on general 

purpose graphics processing units for MD simulations 

involving pair (n = 2) and triplet (n = 3) interactions. The 

results show superior performance of the TD approach over 

the conventional particle-decomposition (PD) approach. 

Detailed analyses reveal the register footprint as the key 

factor that dictates the performance. Furthermore, the TD 

approach is found to outperform PD for more intensive 
computations of quadruplet (n = 4) interactions in first 

principles-informed reactive MD simulations based on the 

reactive force-field (ReaxFF) method. This work thus 

demonstrates the viable performance portability of the TD 

approach across a wide range of applications. 

CCS CONCEPTS 

• Theory of computation → Massively parallel 

algorithms  

• Applied computing → Physics 

KEYWORDS 

Applications/Computational materials science and 

engineering, Performance Measurement/Analysis, 

modeling or simulation methods. 

1 INTRODUCTION 

Computation on dynamic n-tuples of particles is 

ubiquitous in scientific computing, with an archetypal 

application in many-body molecular dynamics (MD) 

simulations. MD is the most widely used simulation 

method for studying structural and dynamic properties of 

material [1]. MD simulations follow the trajectories of all 

atoms, while computing the interatomic interaction as a 

function of atomic positions. In his pioneering MD 
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simulation in 1964, Aneesur Rahman used a pair-wise 

interatomic potential that only depended on relative 

positions of atomic pairs [2]. More complex interatomic 

potentials (or force fields) have been developed later to 

study a wide variety of materials. In MD simulations of 

biomolecules, for example, the connectivity of atoms is 

fixed throughout the simulation, and the interatomic 

potential is a function of the relative positions of fixed n-

tuples (n = 2, 3, 4) [3]. To describe wider materials 

processes such as structural transformations [4, 5] and 

chemical reactions [6, 7], however, the connectivity of 

atoms needs be dynamically updated, hence resulting in 

many-body MD simulations based on dynamic n-tuple 

interactions. Such is the case for many-body MD 

simulations of inorganic materials, which typically involve 

pair (n = 2) and triplet (n = 3) interactions [8]. Higher-order 

n-tuple computations are used in first principles-informed 

reactive molecular dynamics (RMD) simulations based on 

the reactive force-field (ReaxFF) method [6, 9, 10]. 

ReaxFF describes the formation and breakage of chemical 

bonds based on a reactive bond-order concept, and its 

interatomic forces involve computations on up to 

quadruplets (n = 4) explicitly and sextuplets (n = 6) 

implicitly through the chain rule of differentiation. 

One of the simplest ways to map MD simulations onto 

parallel computers is spatial decomposition [11]. Here, the 

three-dimensional space is subdivided into spatially 

localized domains, and the interatomic forces among n-

tuples involving the atoms in each domain are computed by 

a dedicated processor in a parallel computer [12]. To 

achieve higher parallelism than this spatial-decomposition 

approach, interatomic forces are often decomposed in 

various force-decomposition approaches [13-15]. 

On high-end parallel supercomputers, each of networked 

computing nodes consists of many cores and often 

augmented with accelerators such as general-purpose 

graphics processing units (GPGPUs) [16]. On such 

platforms with deep hierarchical memory architectures, 

metascalable (or “design once, continue to scale on future 

architectures”) parallel algorithms often employ globally 

scalable and locally fast solvers [17-19]. An example of 

such global-local separation is the computation of long-

range electrostatic potentials, where highly scalable real-

space multigrids for internode computations are combined 

with fast spectral methods for intranode computations [17-

19]. For MD simulations, the global-local separation 

insulates the optimization of intranode computations of 

dynamic n-tuples from internode parallelization approaches 

described above. In this paper, we thus focus on GPGPU 

acceleration of local dynamic n-tuple computations. 

Various schemes have been proposed for the optimization 

of local MD computations for pair-wise [20] and more 

general dynamic n-tuple interactions [21]. 

Extensive research and prior work exist, which explored 

the problem of accelerating CPU-based MD simulation 

codes with the GPGPU architecture [22-26]. However, 

majority of these works focused on the mechanical aspects 

of accelerating and tuning a set of existing codes on 

GPGPU. These mechanical aspects include better memory 

organization to promote coalescing of global memory-

access operations, tuning of register usage, exploiting the 

GPU shared/cache memory hierarchy, and minimization of 

communication between the host and device. 

While all of these aspects are crucial for achieving large 

speedups of scientific codes on GPU, here, we instead 

propose an alternative approach — named tuple 

decomposition (TD) — to GPU acceleration that 

restructures the enumeration of interatomic interactions and 

the calculation of potential energies, so that they can be 

performed more efficiently on GPGPU. Our approach 

employs two techniques: (1) pipelining and (2) in situ 

construction of two-body and three-body atomic interaction 

lists on GPGPU. An existing MD codebase, which 

calculates two-body and three-body interatomic potentials 

based on the conventional particle decomposition (PD) 

approach, serves as a platform to demonstrate our 

approach. 

Despite various GPGPU implementations of dynamic n-

tuple computations, less studies have focused on the critical 

factors that dictate the performance of these approaches. In 

this work, we analyze the performance characteristics of 

the TD and PD approaches. Among more conventional 

factors such as thread divergence, we have found that the 

register footprint plays a critical role in controlling the 

GPGPU performance. In addition to a many-body (n = 2 

and 3) MD simulation, this finding is shown to hold for 

higher-order n-tuple computations in ReaxFF-based RMD 

simulations. 

2 PHYSICAL MODEL 

2.1  Interatomic Potential 

The MD simulation software used as a basis for this 

research is described in Ref. [7]. To make the discussion 

specific, we first consider an interatomic potential proposed 

in Ref. [8] to study structural and dynamic correlations in 

silica (SiO2) material. This implementation includes an 

interatomic potential combining pair and triplet interactions 

and the linked-list cell method for reducing the 

computational complexity of the force calculation to O(N) 

(where N is the number of atoms), while the standard 

velocity Verlet algorithm is used for time-stepping [7, 12, 

21, 27]. 

The potential energy of the system is a sum of atomic 

pair (or two-body) and triplet (or three-body) contributions 

[8]: 
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where rij = |rij|, rij = ri − rj, and ri is the three-

dimensional vector to represent the position of the i-th 

atom. In Eq. (1), the pair potential is given by 
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Here, the three terms represent the steric repulsion, the 

Coulombic interaction due to charge transfer, and an 

induced dipole-charge interaction caused by electronic 

polarizabilities of atoms, respectively. The pair potential is 

truncated at a cutoff distance, rij = rc2. The triplet potential 

in Eq. (1) is expressed as 
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where (x) is the step function. In Eq. (3), the cutoff 

radius, rc3, for triplet interactions is much less than that for 

pair interactions, rc2. The parameters in Eqs. (2) and (3) are 

found in Ref. [8]. These parameters are fitted to reproduce 

the experimentally measured structural and mechanical 

properties of the normal-density silica glass. 

2.2 MD Simulation 

The trajectories of atoms are discretized with a time 

discretization unit of t. In the widely used velocity Verlet 

algorithm, the positions ri(t) and velocities vi(t) of atoms (i 

= 1,..., N) at time t are updated as 

 ri(t +Dt) = ri(t)+vi(t)Dt +
1

2
ai(t)Dt

2 +O(Dt4 ),  (4) 

 vi(t + Dt) = vi(t)+
ai(t)+ai(t + Dt)

2
Dt +O(Dt3) ,  (5) 

where 

  

iii

i
i

V

mm r

F
a






1   (6) 

is the acceleration of the i-th atom. In Eq. (6), Fi is the 

force acting on the i-th atom and mi is its mass. The 

velocity Verlet algorithm repeats the body of the main MD 

simulation loop as shown in Algorithm 1. Note that the 

acceleration at time t, ai(t), has already been computed in 

the previous simulation step or before the main MD 

simulation loop is entered for the first simulation step. 

Algorithm 1: Body of the main MD simulation loop based on the 

velocity-Verlet algorithm. 

1. vi(t +
Dt

2
)¬ vi(t)+

Dt

2
ai (t)  for all i 

2. ri(t +Dt)¬ ri(t)+vi(t +
Dt

2
)Dt  for all i 

3. Compute ai(t+t) as a function of the set of atomic 

positions {r𝑖(𝑡 + ∆𝑡)| 𝑖 = 1, … , 𝑁}, according to Eq. (6) for all i 

4. vi(t + Dt)¬ vi(t +
Dt

2
)+

Dt

2
ai(t + Dt)  for all i 

On parallel computers, we employ a spatial 

decomposition approach. The simulated system is 

decomposed into spatially localized subsystems, and each 

processor is assigned the computation of forces on the 

atoms with one subsystem [7, 12, 21, 27]. Message passing 

is used to exchange necessary data for the computations. 

Specifically, before computing the forces on atoms in a 

subsystem (step 3 in Algorithm 1), atomic positions within 

the interaction cutoff radius rc2 within the boundaries of the 

neighboring subsystems are cached from the corresponding 

processors. 

 

Figure 1: The workflow of the main MD simulation loop: (a) 

main solver loop, (b) original pipelining of atomic force 

computation on CPU, (c) restructured pipeline on GPU. 

 Fig. 1 (a) shows the workflow of the main MD 

simulation loop on a parallel computer, where “Atom 
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copy” denotes this interprocessor atom caching. After 

updating the atomic positions according to the time 

stepping procedure (step 2 in Algorithm 1), some atoms 

may have moved out of its subsystem. These moved-out 

atoms are migrated to the proper neighbor processors. 

“Atom move” in Fig. 1 (a) represents this interprocessor 

atom migration along with the atomic-position update. 

2.3  Linked-List Cell Method 

A naive method of computing the forces between atoms 

in MD simulations is to first consider an atom i and then 

loop over all other j atoms to calculate their separations. 

This approach imposes an O(N2) computational complexity 

for pair interactions, and an even worse O(N3) complexity 

for triplet interactions. Thus, the naive method becomes 

untenable when the atom count, N, becomes large. 

The linked-cell list method [28] reduces this 

computational complexity to O(N) for both cases by 

dividing the simulation region into cells whose width is 

slightly greater than the pair interaction cutoff distance rc2. 

At each time step, each atom is classified by cell, and then 

only interactions between atoms in the same or adjacent 

cells are considered in the force calculation. For dynamic 

pair and triplet computations, the conventional linked-list 

cell method works as follows [12, 27]. On each processor, 

the spatial subsystem containing both the resident and 
cached atoms is divided into cells of equal volume whose 

edge is slightly larger than rc2. Lists of atoms residing in 

these cells is constructed by the linked-list method [28]. 

Pair forces on the resident atoms are computed by 

traversing atomic pairs using the linked lists. An atom in a 

cell interacts only with the atoms within the cell and its 26 

neighbor cells. At the same time as the computation of pair 

forces, a list of primary pair atoms, lspr, is constructed. 

Here, lspr[i][k] stores the identifier of the k-th neighbor 

atom, which is within the shorter cutoff distance, rc3, of the 

i-th atom. Triplet forces are computed using the primary 

pair list lspr, which has been constructed during pair-force 

computations. In Eq. (1), only the resident atoms within the 

processor are included in the summation over index i to 

avoid over-counting. On the other hand, indices j and k are 

summed over both the resident and copied atoms. Partial 

derivatives of the potential energy with respect to the 

positions of j and k atoms therefore produce forces on the 

cached atoms as well as on the resident atoms. The reaction 

terms on the cached atoms are sent back to the processors 

in charge of the neighbor spatial subsystems and are added 

to the forces there. 

3  GPGPU IMPLEMENTATION 

Our focus in accelerating these codes was finding an 

efficient method of porting the main MD simulation loop to 

a graphics processing unit (GPU). To guide that process, 

we follow two fundamental principles: (1) minimization of 

control divergence (conditional branching, non-uniform 

iteration counts) within threads of a warp, and (2) 

minimization of synchronization events between threads. 

The first principle is important on a single instruction, 

multiple threads (SIMT) architecture such as GPU, since 

the kernel scheduler launches threads in groups of 32 

(called a warp). Each thread within a warp executes the 

instructions of a kernel in lockstep. Divergent execution 

from conditional branches is allowed, but the threads in a 

warp suffer large performance penalties when this occurs 

since threads will pause and resynchronize at the end of the 

conditional branch. A similar situation occurs when a load 

imbalance is present. For example, if one or more threads 

in a warp execute many more iterations of a loop, warp 

resources will sit idle while the overloaded threads execute. 

With these principles in mind, we now turn to the 

computations performed within the solver loop as outlined 

in Fig. 1 (a). The velocity half-step updates, atomic position 

updates, and atom copies (for enforcement of the periodic 

boundary conditions, etc.) are all directly translated to GPU 

kernels. These operations are trivially parallelized by 

unrolling their loops by atom. Thus, each thread of the 

corresponding GPU kernels is responsible for updating the 

state of a single atom. 

However, the vast majority of work performed by the 

solver occurs within the acceleration-computation step 

(“Compute force” in Fig. 1 (a)). This is much more difficult 

to parallelize, and here, we are forced to dramatically 

restructure the algorithm for efficient execution on GPU. 

This restructuring involves application of a pipelining 

technique to decompose the computation into a longer 

sequence of simple steps (implied, but not specifically 

discussed in Ref. [24]). Fig. 1 (b) and (c) show the original 

acceleration computation juxtaposed with the new 

pipelined approach. 

The original MD algorithm fuses the identification of 

interactions between atoms i, j (pair or two-body) and i, j, k 

(triplet or three-body) with the calculation of the potentials 

from Eqs. (2) and (3), respectively. This organization is 

appropriate for the CPU since having spent the time 

searching for the neighbors of a particular atom i, no other 

overheard is incurred to compute the potential other than 

clock cycles in the arithmetic logic unit. On GPU, however, 

this is suboptimal as a particular atom i will have a variable 

number of neighbors in its vicinity. If each thread of a 

kernel is assigned to find the neighboring interactions for a 

specific atom, it is very likely that the threads in a warp 

will be executing differing amounts of work, thus violating 

one of the optimizations principles we committed to follow. 

In addition, determining the validity of an interaction 

between atoms involves numerous checks, such as a 

comparison of atom types, resident atom within this spatial 

subsystem versus cached atom, and the distance cutoff 
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between the atoms. These checks are conditional branches, 

which cause control divergence as well. 

The GPU implementation alternatively factors out the 

computation of two-body and three-body potentials from 

the identification of the participating interactions (Fig. 1 

(c)). The calculation of potentials is an embarrassingly 

parallel operation, with little control divergence and no 

synchronization required other than an atomicAdd() to sum 

the potential contributions for an atom i across many 

threads. Thus, calculating two-body potentials is now a 

two-step process: construct a list (or array) of valid 

interactions within the cutoff distance rc2 for all atom pairs 

i, j, and then compute the potential contribution from each 

interaction in parallel. The same process can be used for 

three-body potentials. In other words, GPU parallelizes the 

potential computation by interaction rather than atom. 

With this factorization, we achieve a significant speedup 

in performance over a baseline GPU implementation that 

mirrored the CPU approach with parallelization by atom 

(Fig. 1 (c)). Having separated the easily parallelizable 

computation from the tricky interaction determination, we 

can then focus on ways to efficiently accelerate the 

construction of two-body and three-body interaction lists 

on GPU. The approaches we employed to accomplish this 

are explained in the following section 

3.1 Two-Body Interaction List Generation 

The two-body interaction list generator used in our 

application draws inspiration from the Verlet neighbor-list 

algorithm by Lipscomb et al. [24], but has significant 

differences. The Lipscomb method is elegant and simple, 

yet it does exhibit a drawback. The method relies on the 

complete enumeration of all possible two-body atomic 

interactions at the outset (the master list), before the sorted 

member list can be generated. With the cell structure of 

MD, the number of such interactions is bounded by O(N), 

however, the hidden constant factor is very large. In 

addition, Ref. [24] does not address how to generate the 

master list; the implication is that it may have been 

generated on CPU and transferred to GPU. We instead 

would like the list generation to occur entirely on GPU. 

To address this problem, we extend the interaction 

metaphor to its logical conclusion — we not only consider 

atomic interactions, but also cell interactions. At the outset, 

during application initialization, once the problem space 

has been decomposed into cells, the program catalogs all 

combinations of pairs of cells u, v that are adjacent to one 

another within the lattice (including interaction with self, 

and interaction with the boundary cells). This cell 

interaction list Iu,v is saved for future use, and is immutable 

for the runtime of the application. Within the source code, 

the cell interaction list is represented by two arrays, linterci 

and lintercj. 

More concretely, as the solver executes on GPU, the 

kernel responsible for the array-cell list phase scans the 

atoms in the lattice in parallel, classifies each by the cell 

they are located within, and counts the number of atoms in 

each cell. The identifier of each atom is stored in an array 

Au, where u is the scalar-index of the cell that the atom is 

located within. Thus, there is one such array for each scalar 

cell in the problem domain. The atom counts per cell is 

kept in Cu, again where u is the scalar cell index. Within 

the source code, Au is implemented as the two-dimensional 

array cellatomT, while the cell counts are represented in the 

array cellcount. 

Using the CUDA Thrust software development kit 

(SDK) [29], the set of cell counts Cu is scanned to find the 

maximum value m = maxu(Cu), representing the cell with 

the most atoms. At this point, the application has sufficient 

information to explore the entire space of possible 

interactions in parallel. Any pair of interacting cells Iu,v 

will have at most m2 combinations of two-body interactions 

since the maximum number of atoms in any given cell is m. 

And since there are ||Iu,v|| possible cell interactions, an 

upper bound on the number of two-body atomic 

interactions in the problem domain is 

   t =m2 Iu,v .   (7) 

A kernel is then launched with t threads to execute the 

“identify 2B interactions” phase in Fig. 1 (c). Inside the 

kernel, each thread tid extracts the identifiers of one pair of 

atoms i, j to test for two-body interaction via the following 

multi-step process. First, the index of the cell interaction, 

ic, and the atomic interaction combination within that cell, 

ac, are computed from the thread identifier tid by 

   ic = tid mod Iu,v ,  (8) 

   ac = tid Iu,v .  (9) 

Then, the indices of the interacting cells, u and v, are 

determined by looking up the ic entry in Iu,v: 

   {u,v} = Iu,v(ic) .  (10) 

The index positions of the (possibly) interacting atoms 

in Au and Av are computed by 

   iidx = ac /Cv ,   (11) 

   jidx = ac modCv .   (12) 

If iidx ≥ Cu, the atomic interaction combination ac is not 

in the set of possible interactions for cells u and v, and that 

thread terminates. Otherwise, the atom identifiers i and j 

are finally retrieved from Au and Av: 

   
i = Au iidx( ) ,  (13) 

   
j = Av iidx( ) .   (14) 
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At this point, a final check is performed to remove 

duplicate i, j interactions when considering cell interactions 

with u = v (again, by termination). The remaining running 

threads then each submits its i, j pair of atoms to the same 

cutoff threshold testing as the original MD code, and 

appends i, j to the two-body interaction list if it passes the 

threshold tests. In this manner, the entire set of possible 

two-body atomic interactions are tested in parallel, and in 

situ, on GPU. A single contiguous list of interactions is 

produced, which can then be evaluated in parallel within 

the “calculate 2B forces” phase in Fig. 1 (c). Within the 

code, the list is represented by the arrays linteri and linterj. 

Fig. 2 illustrates the procedure of two-body list 

construction on GPU. Each thread examines an interaction 

between atom i and j, and transfers the index pair to linteri 

and linterj only if it passes the threshold test. 

 

Figure 2: Concurrent construction of valid interactions. 

At first glance, this method may seem wasteful of 

processor resources. It is true that perhaps even one-half of 

the threads will terminate without ever testing two atoms 

for an interaction, due to imbalances in the distribution of 

atoms among the cells. However, the terminating threads 

are often grouped contiguously in large swathes within the 

thread space, allowing the GPU warp scheduler to 

immediately marshal those released resources for other 

warps waiting in the run queue. Another disadvantage that 

should be noted is this method’s reliance on a global 

counter, incremented with atomicAdd() when new i, j 

interactions are appended to the interaction list. Despite 

testing various alternative solutions, which replace that 

counter with other data structures, the current 

implementation provides the best overall runtime 

performance. We discuss a possible solution to this 

problem in the concluding remarks. 

3.2 Three-Body Interaction List Generation 

The three-body interaction list generator utilizes a 

different algorithm than its two-body counterpart. This 

method examines the two-body interaction list produced in 

the previous section, and searches for those interactions 

that fall within the more restrictive three-body distance 

threshold, rc3. Those interactions that fall within this cutoff 

are saved in the lspr array in much the same way as is done 

in the original MD code explained in Section 2.3. However, 

in the GPU implementation, this array is populated by a 

kernel that inspects each two-body interaction in parallel 

(one thread per interaction). As shown in Algorithm 2, 

kernel gen_lspr produces array lspr from the existing two-

body interaction lists linteri and linterj. 

Algorithm 2: GPU implementation of the generation of three-

body lists. 

CUDA kernel, gen_lspr 

// tid is thread ID 

// lnum3b[i] is the number of atoms within rc3 of atom i 

// linteri and linterj are two-body interaction pairs 

i ← linteri[tid] 

j ← linterj[tid] 

if rij < rc3 

 lspr[i][lnum3b[i]] ← j 

 lspr[j][lnum3b[j]] ← i 

 lnum3b[i]++ 

 lnum3b[j]++ 

end if 

CUDA kernel, gen_3body_list 

// offset is the prefix-sum from Thrust operation 

i ← tid 

for j from 1 to lnum3b[i] 

 for k form j + 1 to lnum3b[i] 

 linter3i[offset] ← i 

 linter3j[offset] ← lspr[i][j] 

 linter3k[offset] ← lspr[i][k] 

 update offset by computing prefix-sum of 

combinations 

 end for 

end for 

Once the lspr array is populated, Thrust is used to scan 

the neighbor counts for each atom to generate an array of 

prefix sums, with the sums produced after applying a 

function to the neighbor counts. More specifically, the 

number of three-body interactions, ni, associated with atom 

i is computed with the formula, 

  𝑛𝑖 =  
𝑐𝑖(𝑐𝑖−1)

2
   (15) 

where ci is the number of neighboring atoms for atom i in 

lspr. Then the array of ni is used as input into the Thrust 

prefix-sum operation to produce a new array of values pi. 

Thrust is also employed to compute the total number of 
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three-body interactions by simply performing a reduction 

on ni. 

The prefix-sum array pi is then used as input by a 

follow-on kernel that populates the actual three-body 

interaction list. Each thread in the kernel is assigned to 

process an atom i, and it iterates through the ni 3-tuple 

combinations for that atom in lspr. The threads save the 

resulting i, j, k interactions into the three-body interaction 

list starting at offset pi. The result of this complicated 

process is a fully populated i, j, k interaction list, entirely 

produced on GPU, which can be used in the “calculate 3B 

forces” phase in Fig. 1 (c). In the source code, this 

interaction list is represented by the trio of arrays linter3i, 

linter3j, and linter3k. In Algorithm 2, kernel 

gen_3body_list is implemented to store the three-body 

interactions into these arrays. 

This interaction list generator is remarkably different 

from its counterpart. Its primary advantage is the 

elimination of a global counter for insertion into the three-

body interaction list. The purpose of the prefix-sum array is 

to assign a dedicated range of entries within the final 

interaction list to each thread (atom) so that no explicit 

coordination is required between threads. 

This is a significant advantage, but it comes with a cost. 

This method does not scale when there are large numbers 

of three-body interactions per atom since the memory write 

into the final interaction list is strided by the number of 

combinations. Thus, as the interaction count per atom 

increases, the stride correspondingly increases, and 

memory coalescing worsens. We have found in practice 

that the combination counts are typically very small, as 

well as the total number of three-body interactions, so the 

performance degradation from the poor coalescing strategy 

is minimal. It should be noted here that rc3 << rc2, as stated 

before. This comes from a physical principle that higher-

order n-tuple interactions (n  3) are short-ranged and only 

a few neighbors per atom contribute to them, compared to 

hundreds of neighbors for pair interactions. 

4 BENCHMARKING AND VALIDATION 

To evaluate the runtime performance of the GPU 

implementations, we run a series of benchmarking tests at a 

center for high performance computing that operates both a 

large, heterogeneous CPU cluster and a GPU-accelerated 

cluster. The GPU-accelerated cluster is comprised of 264 

compute nodes, each with two Nvidia Kepler K20m GPU 

accelerators. We demonstrate the performance 

improvement of the new TD approach on MD simulations 

by analyzing two comparisons: TD’s GPU implementation 

versus (1) the original MD code and (2) a baseline GPU 

implementation that directly mirrors the CPU 

implementation. 

4.1 GPU Implementation versus the Original 

MD Code 

For this timing experiment, we have selected three 

reference CPU chipsets from the collection of available 

compute nodes on the CPU cluster at HPC. We compare 

the original MD runtime performance on those chipsets 

versus the GPU implementation executing on the Kepler 

K20m for a series of MD simulations. The lattice sizes in 

the simulations varies from 444 to 161616 crystalline 

unit cells (where each unit cell contains 24 atoms), and 

each simulation runs for 1,000 time steps. The CPU 

chipsets used in the comparison are AMD Opteron 2356 

with a clock speed of 2.3 GHz and 2 MB cache, AMD 

Opteron 2376 (2.3 GHz, 6 MB cache), and Intel Xeon E5-

2665 (2.4 GHz, 20 MB cache). The purpose behind the 

multi-chipset comparison is to give a comprehensive view 

of the GPU implementation’s performance characteristics 

versus a range of common CPUs. 

Fig. 3 plots the wall-clock time versus simulation size 

(i.e., the number of atoms) for the three CPU chipsets and 

the GPU. The corresponding speedups of the GPU 

implementation over the three CPU implementations are 

plotted as a function of the simulation size in Fig. 4. As can 

be seen in the graph, the speedup varies greatly with the 

power of the reference CPU, with the newer Intel Xeon 

faring better than its counterparts. However, even against 

the Xeon, the GPU implementation demonstrates a 

significant speedup of up to 6-fold, which improves as the 

lattice size is increased. This overall trend is expected as 

the overhead costs of device initialization, PCI bus 

communications, and kernel launches are amortized over a 

larger set of atoms. 

An interesting observation noticeable in those charts is 

the large increase in speedup that the GPU application 

experiences for the largest simulation versus the two AMD 

Opteron CPUs. This is because the Opteron cache size (6 

MB) is not large enough to accommodate the entire 98,304 

atomic states along with other necessary data, and the 

cache-miss rate increases dramatically at that point. If we 

were to scale up the tests further, we would likely continue 

to see their runtime performance drop in comparison to the 

GPU. 

To validate the simulation results generated by the GPU, 

we have compared the final atomic positions and velocities 

with those of reference datasets produced by the original 

MD code. We have examined simulations with lattice sizes 

444, 888, 101010, 121212, and 161616, all 

executed over a span of 1,000 time steps. Across all 

configurations, these output parameters agreed within a 

tolerance of 10-9. However, we did discover a problem with 

accumulating numerical error that caused the GPU results 

to drift from that of the CPU while testing extended 
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simulations of more than 4,000 time steps. This problem is 

analyzed further in the concluding remarks. 

 

Figure 3: Concurrent construction of valid interactions. 

 

Figure 4: Speedup of GPU MD over reference CPU MD for 

varying numbers of atoms. 

4.2 GPU Implementation versus the Baseline 

The TD approach is doubtlessly designed to outperform 

its sequential origin since parallelization is employed 

aggressively. The advantage of the tuple-based 

restructuring of computations, however, is still nontrivial 

and must be investigated. To address this problem, we 

introduced a straightforward GPU implementation of the 

original MD code, which is based on particle 

decomposition (PD), as a baseline for comparison. As 

illustrated in Fig. 1, the TD approach separates the 

computation and identification of 2-body and 3-body 

interactions into different kernels. The baseline approach, 

on the contrary, fuses the two kernels back into a single one 

with each GPU thread scanning the interatomic potentials 

followed by calculation of the potentials. Thus, this code is 

simply a GPU-accelerated implementation of the original 

MD code on CPU. 

The results are collected on Tesla K20m with 

simulations ran in the lattice sizes ranging from 444 to 

323232, or equivalently the number of atoms from 1,536 

to 786,430. As shown in Fig. 5, our TD approach achieves 

an approximately 20% performance improvement over the 

baseline (PD). We observe that the wall-clock time for TD 

is higher than that of the baseline upon the first two lattice 

sizes. The likely reason is that our TD implementation 

launches two extra CUDA kernels than the baseline in each 

time step, and the overhead of initializing these kernels is 

relatively high on a small number of atoms, which needs to 

be large enough to leverage the computational capability of 

GPU. 

 

Figure 5: Wall-clock time of the TD approach (orange circles) 

and that of baseline (PD, black squares) as a function of the 

number of atoms. The figure also shows the performance 

improvement of the TD approach over the baseline as a 

function of the number of atom. 

To better understand the performance characteristics of 

the TD and PD approaches, we next carry out performance 

profiling on the most compute-intensive CUDA kernels 

that account for approximately 90% of the total running 

time for both implementations, i.e., 2body_inter in baseline, 

and gen_lists_2body_inter and compute_accel_2body_inter 

in TD. We use the NVIDIA profiling tool, nvprof, for the 

measurements. 

Fig. 6 compares the wall-clock time of the TD approach 

with that of the baseline for these most compute-intensive 

kernel executions. The total number of atoms is 786,432. 

As their names suggest, the test case consists of computing 

2-body interactions in a unit time step. Here, the running 

time of each kernel is measured on average throughout the 
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entire CUDA threads, because a single thread may not 

execute the kernel when the interaction it carries falls out of 

cutoff radius. The TD approach (right column) is 

approximately 23% faster than the baseline (left column), 

which in turn echoes the global performance improvement 

of the former over the latter in Fig. 5. Within the TD 

approach, generation of the 2-body interaction list and 

actual computation of 2-body interactions using the list 

account for approximately identical computing times. 

 

Figure 6: Wall-clock time on kernels for 2-body potential 

computation per time step for the baseline (left) and TD 

(right) approaches. 

In addition, we investigate a major concern of our design 

mentioned in Section 3, i.e., unbalanced workloads over 

threads. We introduce “achieved occupancy” into our 

analysis as a metric to quantify the workload balance on 

GPU. More precisely, it is defined as the ratio of active 

warps on a streaming multiprocessor (SM) to the maximum 

number of active warps supported by the SM [30]. Table 

1shows the achieved occupancy of kernels measured by 

nvprof. The compound achieved occupancy of TD, though 

with statistical variation, is apparently higher than the 

baseline, indicating that the procedure of fetching the 

interatomic pairs from the restructured tuple-list followed 

by calculating the interactions produces more balanced 

workload distributions over time compared with the 

baseline approach. 

Table 1: Achieved occupancy of kernel execution. 

Baseline TD 

2body_inter 0.386 
gen_lists_2body_inter 0.916 

compute_accel_2body_inter 0.461 

We next perform a hardware-level analysis to unveil the 

reason behind the achieved occupancy for the three kernels 

in Table . Occupancy is limited by multiple factors such as 

shared memory usage. In this application, register usage per 

SM is found to be the determining factor. As Fig. 7 shows, 

the kernel gen_list_2body_inter uses 32 registers per 

thread, thereby maximizing the capacity of K20m to hold 

64 warps active (2 blocks) per SM, while the other two 

kernels take up 41 registers per thread (41,984 for 1 block). 

The testing device, Tesla K20m, provides up to 65,536 

registers for each block with up to 2 blocks supported on 

each SM. However, these two kernels use 41,984 registers 

for one block, thereby each SM can only have 1 block (32 

warps as the red dot suggests) run in parallel. Thus, the 

achieved occupancy is limited to the upper bound of 0.5, 

which prevents it from fully utilizing the GPU. This 

analysis thus demonstrates that the register footprint plays a 

key role in dictating the GPU performance. 

4.3 Dynamic Quadruplet Computation in 

ReaxFF 

To test the performance portability of the TD approach 

to more general dynamic n-tuple computations, we consider 

first principles-informed RMD simulations based on the 

ReaxFF method [6, 9, 10]. The ReaxFF approach 

significantly reduces the computational cost of simulating 

chemical reactions, while reproducing the energy surfaces 

and barriers as well as charge distributions of quantum-

mechanical calculations. RMD simulations describe 

formation and breakage of chemical bonds using reactive 

bond orders [6, 31, 32], while a charge-equilibration (QEq) 

scheme [33-35] is used to describe charge transfer between 

atoms. The ReaxFF interatomic forces involve up to 

quadruplets (n = 4) explicitly and sextuplets (n = 6) 

implicitly through the chain rule of differentiation. In this 

work, we test the TD approach in the quadruplet-interaction 

computations in a production RMD simulation program 

named XRMD [10]. 

 

Figure 7: Relationship between the number of warps per SM 

and the number of registers per thread for kernels. 

The quadruplet-interaction is one of the most 

computationally expensive functions in the ReaxFF 

method. It requires traversing deeply nested neighbor-list 

loops, within which the value of bond-order of a covalent 

bond or the combination of those is checked to be greater 

than predefined cutoff values, which can create significant 
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code branching. Our TD approach performs the neighbor-

list traversal and the branch-condition evaluation on the 

CPU and the numerically intensive computations on the 

GPU, enabling us to take advantage of both host and GPU 

architectures. The GPU implementation of the TD approach 

for the computation of quadruplet interactions is shown in 

Algorithm 3. 

Algorithm 3: GPU implementation of the generation of 4-body 

lists and computation of quadruplet forces in XRMD. 

CUDA kernel, gen_4body_list  

// tid is thread ID 

// i, j, k, l are atom IDs and BOij, BOik, BOlk are bond orders 

 between pairs (i j), (i k) and (k l) 

// ie4b is the list for four body and ne4b is interaction

 number for 4 body 

 j ← tid 

 k ← nbrlist[j,k1] 

 if BOjk > BOcutoff 

  i ← nbrlist[j,i1] 

  if i  k 

   if BOij > BOcutoff && BOij ×BOjk > BOcutoff 

    l ← nbrlist[k, l1] 

    if i  l && j  l 

     if BOkl > BOcutoff && BOjk×BOkl > BOcutoff 

      if BOij ×BOjk
2 ×BOkl > BOcutoff2 

       ne4b++ 

       ie4b[1:4][ne4b]  (j, i1, k1, l1) 

CUDA kernel, gen_4body_list compute_4body_force 

 ne4b ← tid 

  i ← ie4b[1][ne4b] 

  j ← ie4b[2][ne4b] 

  k ← ie4b[3][ne4b] 

  l ← ie4b[4][ne4b] 

  call E4b[i,j,k,l] 

Fig. 8 compares the wall-clock time of the quadruplet 

interaction calculation using the TD and baseline (PD) 

approaches for three different problem sizes, i.e., the 

number of atoms N = 1,344, 4,536 and 10,752. For this 

kernel invocation, we employ one-dimensional thread 

assignment with the number of threads per grid, Nthreads, 

to be 32 and the number of grids to be the number of 

atomic quadruplets divided by Nthreads + 1. The figure 

shows that the TD approach consistently outperforms the 

baseline, providing nearly 1.3 speedup for the three 

system sizes. 

 

Figure 8: Timing comparison of the TD approach and 

baseline (PD) for the computation of quadruplet interactions 

in ReaxFF. The histogram shows wall-clock times per MD 

step in milliseconds averaged over 100 time steps. We use 

RDX material for this benchmark. 

As stated in the introduction, our global-local separation 

scheme completely insulates the optimization of intranode 

computations of dynamic n-tuples from internode 

parallelization. In order to test the internode scalability of 

our parallel ReaxFF MD code, Fig. 9 shows the computing 

time per MD step as a function of the number of IBM Blue 

Gene/Q cores in both weak- and strong-scaling settings. 

The weak-scaling test simulates 86,016P-atom C3H6N6O6 

molecular-crystal system on P cores, while the strong-

scaling test simulates N = 4,227,858,432 atoms 

independent of P. The weak-scaling parallel efficiency is 

0.977 for P = 786,432 for N = 67,645,734,912. The strong-

scaling parallel efficiency is 0.886 for P = 786,432 for a 

much smaller system of N = 4,227,858,432. 

 

Figure 9: Strong and weak scaling of the parallel ReaxFF MD 

code on Blue Gene/Q. 
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In this paper, we have presented a new computational 

approach for performing many-body MD simulations on 

GPGPU. Our tuple-decomposition approach utilizes 

pipelining and efficient in situ generation of pair and triplet 

interaction lists to accelerate the application. Through a 

wide-ranging set of benchmarking tests, we have 

demonstrated that these relatively simple algorithmic 

changes provide significant performance speedups for 

varying simulation sizes and applications. 

The algorithms we described for producing lists of pair 

and triplet interactions can be improved with further 

research. One possibility is combining our candidate two-

body 

interaction generator with the Lipscomb algorithm [24] 

for Verlet neighbor-list generation. Our approach addresses 

the major weakness in their algorithm — the generation of 

the master list — while their approach eliminates a need for 

synchronization through a global counter. We will 

synthesize these two methods to yield an exceptional 

hybrid approach. 

We have also examined various techniques for fusing 

the pair and triplet interaction list generation into the same 

overall algorithm, but this proved to be too difficult as their 

requirements are slightly different. Further research could 

yield a way to integrate them in an elegant manner. This 

would simplify our computation model immensely. 

Although the focus of this work is primarily on MD 

algorithm development on GPU, there are various 

optimizations that could be made to boost the performance 

even further. Memory coalescing could be improved in 

many places by restructuring the atomic state information 

stored in device global memory, and utilizing shared 

memory to coordinate reads among threads. With the 

former technique, the goal is to have adjacent threads in a 

thread block read data from adjacent addresses in global 

memory. The latter technique allows the efficient loading 

of strided array structures into local memory where the 

access times are much lower. 

An intriguing idea that we plan to explore is imposing a 

sort order on the atoms, so that adjacent threads in the 

kernel tend to access adjacent atoms in the atom list. 

Theoretically, this could improve` memory coalescing. 

Determining a proper sort order is difficult, however, and 

enforcing it is expensive because it implies that a parallel 

sort be performed each time step since the atoms move 

throughout the simulation. A compromise may be to 

periodically sort the atoms and hope that that the benefits of 

temporarily improved coalescing outweigh the sorting cost. 
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