How Computers Calculate Square Root?

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations Department of Computer Science Department of Physics & Astronomy Department of Chemical Engineering & Materials Science Department of Biological Sciences University of Southern California

Email: anakano@usc.edu

Demystifying mathematical-function black box

Basic Computer Architecture

Computer System Architecture, Mano, Copyright (C) 1993 Prentice-Hall, Inc.

M. M. Mano, *Computer System Architecture* (Prentice-Hall)

FLOATING-POINT UNIT DESIGN

USING TAYLOR-SERIES EXPANSION ALGORITHMS

by

Taek-Jun Kwon

Thesis Proposal

UNIVERISITY OF SOUTHERN CALIFORNIA ELECTRICAL ENGINEERING

September 2006

How Time Consuming Is SQRT()?

Table 1.1 Summary of prototype FPUs

• Latency: How many clock cycles to compete 1 operation

• Throughput: Cycles before the next operation can be issued

Hardware Implementation of SQRT()

Figure 2.1 Newton-Raphson algorithm for finding the root of $f(x)$

• Series expansion

$$
\sqrt{b} \approx Y_0 \left\{ 1 - \frac{1}{2} \left(1 - \frac{b}{Y_0^2} \right) - \frac{1}{8} \left(1 - \frac{b}{Y_0^2} \right)^2 - \frac{1}{16} \left(1 - \frac{b}{Y_0^2} \right)^3 - \frac{15}{128} \left(1 - \frac{b}{Y_0^2} \right)^4 \right\}
$$

Simple SQRT() Routine

• Initial Guess

$$
r = s^{\frac{1}{2}}
$$

\n
$$
\approx f(s) = c_0 + c_1 s + c_2 s^2 + c_3 s^3
$$

\n
$$
= c_0 + s \times (c_1 + s \times (c_2 + s \times c_3))
$$

where $0.1 < r^2 < 1.0$ $c_0 = 0.188030699$; $c_1 = 1.48359853$ $c_2 = -1.0979059$; $c_3 = 0.430357353$

• Newton-Raphson Refinement

 $\delta s \leftarrow s - f(s)^2$ $r \leftarrow f(s) + \delta s/2 f(s)$

M.P. Allen & D.J. Tildesley, *Computer Simulation of Liquids* (Oxford Univ. Press, Oxford, 1987) p.143

Fused multiply-add (FMA) unit

 $a \leftarrow a + b \times c$

with 1-cycle throughput

SIMD/Vector Operation

- **• Each FMA operation can work on a set of multiple operands concurrently**
- **• Single-instruction multiple-data (SIMD) parallelism: An arithmetic operation is operated on multiple operand-pairs stored in vector registers, each of which can hold multiple double-precision numbers.**

Example: Vector multiplier (VMUL) loads data from two vector registers, R1 and R2, each holding 4 double-precision numbers, concurrently performs 4 multiplications, and stores the results on vector register R3.