
1

Advanced: Quantum Dynamics Simulation

We will perform quantum dynamics (QD) simulation on a quantum computer for the
transverse-field Ising model (TFIM) Hamiltonian for two spins,

𝐻 = −𝐽𝜎!"𝜎#" − 𝐵∑ 𝜎$%#
$&! , (1)

where 𝜎$" and 𝜎$% are Pauli Z and X matrices acting on the j-th spin, J is the exchange coupling,
and B is the magnetic field along the x axis.

Time evolution of a two-spin wave function, |𝛹(𝑡)⟩ = |𝜓!(𝑡)⟩|𝜓#(𝑡)⟩ (|𝜓$(𝑡)/ is the wave
function of the j-th spin at time t), for small time step ∆𝑡 is governed by (cf.
https://aiichironakano.github.io/phys516/03QD.pdf)

|𝛹(𝑡 + ∆𝑡)⟩ = exp(−𝑖𝐻∆𝑡)|𝛹(𝑡)⟩ (2)

in the atomic unit. Using Trotter expansion, the time-propagation operator is approximated as

exp(−𝑖𝐻∆𝑡) = exp(𝑖∆𝑡𝐽𝜎!"𝜎#")exp(𝑖∆𝑡𝐵𝜎!%)exp(𝑖∆𝑡𝐵𝜎#%) + 𝑂(∆𝑡'). (3)

Let us first consider the transverse-field propagator exp7𝑖∆𝑡𝐵𝜎$%8 acting on the j-th spin
independent of the other spin. We use the eigendecomposition (see Appendix) of Pauli X matrix,

𝜎% = 𝑋 = :0 1
1 0=. (4)

Note that

𝜎%𝐻 = :0 1
1 0=

#
√'
:1 1
1 −1= =

#
√'
:1 1
1 −1= :

1 0
0 −1= = 𝐻𝜎", (5)

where H is the Hadamard gate (which is column-aligned eigenvectors (1/√2,±1/√2)) of 𝜎%
with respective eigenvalues ±1), or equivalently

𝜎% = 𝐻𝜎"𝐻, (6)

where we have used the fact H is a symmetric orthogonal matrix, i.e., 𝐻*# = 𝐻) = 𝐻 and thus

𝐻' = 𝐼 (7)

(I is the identity matrix).
Using Taylor expansion of the time propagator and Eqs. (6) and (7) (the procedure is called
telescoping),

exp	(𝑖∆𝑡𝐵𝜎%) = ∑ (,∆./)!

1!
𝜎%13

1&! = ∑ (,∆./)!

1!
(𝐻𝜎"𝐻)13

1&! =

∑ (,∆./)!

1!
𝐻𝜎"𝐻𝐻𝜎"𝐻⋯𝐻𝜎"𝐻FGGGGGGHGGGGGGI

1	56789
3
1&! 	(every	internal	HH	product	becomes	𝐼) =

𝐻∑ (,∆./)!

1!
𝜎"13

1&! 𝐻 = 𝐻∑ (,∆./)!

1!
:1 0
0 −1=

1
3
1&! 𝐻 = 𝐻Z

∑ (,∆./)!

1!
3
1&! 0

0 ∑ (*,∆./)!

1!
3
1&!

[𝐻 =

𝐻 \𝑒
,∆./ 0
0 𝑒*,∆./

^𝐻 = 𝐻𝑅"(−2∆𝑡𝐵)𝐻 = #
'
\𝑒

,∆./ + 𝑒*,∆./ 𝑒,∆./ − 𝑒*,∆./
𝑒,∆./ − 𝑒*,∆./ 𝑒,∆./ + 𝑒*,∆./

^ =

\cos	(∆𝑡𝐵) 𝑖sin(∆𝑡𝐵)
𝑖sin(∆𝑡𝐵) cos	(∆𝑡𝐵)^ = 𝑅%(−2∆𝑡𝐵). (8)

2

In terms of the native gates on IBM Q computers, Eq. (8) can be implemented using either rotation
around the z axis, 𝑅"(𝜃), along with Hadamard gate H, or solely using rotation around the x axis,
𝑅%(𝜃). Here, 𝑅" and 𝑅% gates are defined as

𝑅"(𝜃) = \𝑒
*,:/' 0
0 𝑒,:/'

^, (9)

𝑅%(𝜃) = \ cos	(𝜃/2) −𝑖sin(𝜃/2)
−𝑖sin(𝜃/2) cos	(𝜃/2) ^. (10)

(see https://github.com/Qiskit/qiskit-tutorials/blob/master/tutorials/circuits/3_summary_of_quantum_operations.ipynb).

Next, we consider the exchange-coupling propagator exp(𝑖∆𝑡𝐽𝜎!"𝜎#"). We first consider a
tensor product of operators multiplied by a scalar constant,

𝑖∆𝑡𝐽𝜎!" ⊗𝜎#" = 𝑖∆𝑡𝐽 Z
1 ∙ :1 0

0 −1= 0 ∙ :1 0
0 −1=

0 ∙ :1 0
0 −1= −1 ∙ :1 0

0 −1=
[= c

𝑖∆𝑡𝐽 0
0 −𝑖∆𝑡𝐽

0 0
0 0

0 0
0 0

−𝑖∆𝑡𝐽 0
0 𝑖∆𝑡𝐽

d. (11)

Since this is a diagonal matrix, it can be exponentiated element by element as

exp(𝑖∆𝑡𝐽𝜎!"𝜎#") =

⎝

⎛

exp(𝑖∆𝑡𝐽) 0
0 exp(−𝑖∆𝑡𝐽)

0 0
0 0

0 0
0 0

exp(−𝑖∆𝑡𝐽) 0
0 exp(𝑖∆𝑡𝐽)⎠

⎞ =

\𝑅"
(−2∆𝑡𝐽) 0
0 𝑅"(2∆𝑡𝐽)

^. (12)

Now consider the following sequence of quantum gates operating on two qubits, 𝑞! and 𝑞#,

𝐺 = 𝐶𝑋(𝑞!, 𝑞#) ∙ 𝑅#"(−2∆𝑡𝐽) ∙ 𝐶𝑋(𝑞!, 𝑞#), (13)
where

𝐶𝑋(𝑞!, 𝑞#) = :𝐼 0
0 𝑋= (14)

is the controlled X (CNOT) gate, with 𝑞! and 𝑞# being the control and target bits, and 𝑅#" is the 𝑅"
gate acting on 𝑞#. When operating on two qubits, 𝑅#" signifies a tensor product,

𝐼 ⊗ 𝑅" (−2∆𝑡𝐽) = l
1 ∙ 𝑅" (−2∆𝑡𝐽) 0 ∙ 𝑅" (−2∆𝑡𝐽)
0 ∙ 𝑅" (−2∆𝑡𝐽) 1 ∙ 𝑅" (−2∆𝑡𝐽)m = l

𝑅" (−2∆𝑡𝐽) 0
0 𝑅" (−2∆𝑡𝐽)m. (15)

Substituting Eqs. (14) and (15) in Eq. (13), we obtain

𝐺 = :𝐼 0
0 𝑋= l

𝑅" (−2∆𝑡𝐽) 0
0 𝑅" (−2∆𝑡𝐽)m :

𝐼 0
0 𝑋= = l

𝑅" (−2∆𝑡𝐽) 0
0 𝑋𝑅" (−2∆𝑡𝐽)𝑋m. (16)

Here,

𝑋𝑅" (−2∆𝑡𝐽)𝑋 = :0 1
1 0= \

exp(𝑖∆𝑡𝐽) 0
0 exp(−𝑖∆𝑡𝐽)^ :

0 1
1 0= =

\ 0 exp(−𝑖∆𝑡𝐽)
exp(𝑖∆𝑡𝐽) 0 ^ :0 1

1 0= = \exp
(−𝑖∆𝑡𝐽) 0
0 exp(𝑖∆𝑡𝐽)^ = 𝑅" (2∆𝑡𝐽). (17)

3

Substituting Eq. (17) in Eq. (16) and compare the result with Eq. (12), we arrive at the identity,

𝐺 = 𝐶𝑋(𝑞!, 𝑞#)𝑅#"(−2∆𝑡𝐽)𝐶𝑋(𝑞!, 𝑞#) = l
𝑅" (−2∆𝑡𝐽) 0

0 𝑅" (2∆𝑡𝐽)m = exp(𝑖∆𝑡𝐽𝜎!"𝜎#"). (18)

where the last equality results from Eq. (12). Namely, 𝐺 = 𝐶𝑋(𝑞!, 𝑞#) ∙ 𝑅#"(−2∆𝑡𝐽) ∙ 𝐶𝑋(𝑞!, 𝑞#)
is a quantum-gate implementation of the exchange-coupling propagator exp(𝑖∆𝑡𝐽𝜎!"𝜎#").

Combining Eqs. (8) and (18) for the transverse-field and exchange-coupling time propagators,

respectively, quantum-circuit implementation for a single time step of time evolution for the TFIM
model, Eq. (1), is given by

exp(−𝑖𝐻∆𝑡) = exp(𝑖∆𝑡𝐽𝜎!"𝜎#")exp(𝑖∆𝑡𝐵𝜎!%)exp(𝑖∆𝑡𝐵𝜎#%) =
𝐶𝑋(𝑞!, 𝑞#)𝑅#"(−2∆𝑡𝐽)𝐶𝑋(𝑞!, 𝑞#)𝑅!%(−2∆𝑡𝐵)𝑅#%(−2∆𝑡𝐵). (18)

Fig. 1: Quantum circuit for time evolution of TFIM in IBM Quantum Lab.

4

Hands-on Exercise (try it at https://quantum-computing.ibm.com using IBM Quantum Lab)
Execute the following Qiskit program to perform a single time step of QD simulation. Here,

we have used model parameters, 𝐽 = 1, 𝐵 = 0.5	and ∆𝑡 = 0.01, in atomic units.
Single step of Trotter propagation in transverse-field Ising model #####

import numpy as np

Import standard Qiskit libraries
from qiskit import QuantumCircuit
from qiskit_aer import AerSimulator
from qiskit.visualization import *
from ibm_quantum_widgets import *

Physical parameters (atomic units) ###
J = 1.0 # Exchange coupling
B = 0.5 # Transverse magnetic field
dt = 0.01 # Time-discretization unit

Build a circuit ###

circ = QuantumCircuit(2, 2) # 2 quantum & 2 classical registers

circ.rx(-2*dt*B, 0) # Transverse-field propagation of spin 0
circ.rx(-2*dt*B, 1) # Transverse-field propagation of spin 1
circ.cx(0, 1) # Exchange-coupling time propagation (1)
circ.rz(-2*dt*J, 1) # (2)
circ.cx(0, 1) # (3)
circ.measure(range(2), range(2)) # Measure both spins
circ.draw('mpl')

This will build a circuit and draw it, which should then be transpiled and run on a simulator as follows.
Simulate on OpenQASM backend ###

Use Aer simulator
backend = AerSimulator()
Transpile the quantum circuit to low-level QASM instructions
from qiskit import transpile
circ_compiled = transpile(circ, backend)
Execute the circuit on the Qasm simulator, repeating 1024 times
job_sim = backend.run(circ_compiled, shots=1024)
Grab the results from the job
result_sim = job_sim.result()
Get the result
counts = result_sim.get_counts(circ_compiled)
Plot histogram
from qiskit.visualization import plot_histogram
plot_histogram(counts)

Table I: Qiskit program for single-time-step QD simulation of TFIM: tfim-1step.qiskit
(https://aiichironakano.github.io/phys516/src/QComp/tfim-1step.qiskit).

After opening a Qiskit (ipykenel) notebook, you can copy and paste the above code into a cell
in the Python notebook. Here, we have used QASM simulator as a backend. Actual quantum
dynamics simulation [L. Bassman et al., Phys. Rev. B 101, 184305 (’20)] will iterate this unit-time
stepping for many time steps. For Python programming underlying Qiskit, see A. Scopatz and K.
D. Huff, Effective Computation in Physics (O’Reilly, ’15).

5

Appendix: Eigendecomposition

For a 2 × 2 Hermitian matrix,

𝐀 = % 𝑎 𝑏
𝑏∗ 𝑎(, (A1)

where a and b are real and complex numbers, respectively, consider an eigenvalue problem,

% 𝑎 𝑏
𝑏∗ 𝑎(%

𝑢
𝑣(= 𝜀 %𝑢𝑣(. (A2)

or equivalently

%𝜀 − 𝑎 −𝑏
−𝑏∗ 𝜀 − 𝑎(%

𝑢
𝑣(= %00(. (A3)

For nontrivial solutions (i.e., other than 𝑢 = 𝑣 = 0), the determinant of the matrix in Eq. (A3)
should be zero. (Otherwise, one can invert Eq. (A3) to get 𝑢 = 𝑣 = 0.) Hence,

.𝜀 − 𝑎 −𝑏
−𝑏∗ 𝜀 − 𝑎. = (𝜀 − 𝑎)" − |𝑏|" = 0, Secular (characteristic) equation (A4)

which has two solutions,

𝜀± = 𝑎 ± |𝑏|. Eigenvalues (A5)

The corresponding eigenvectors can be obtained by solving Eq. (A3) for these eigenvalues

2
|𝑏| −𝑏
−𝑏∗ |𝑏|3 %

𝑢#
𝑣#(= %00(;	2

−|𝑏| −𝑏
−𝑏∗ −|𝑏|3 %

𝑢$
𝑣$(= %00((A6)

with the answers (note the degeneracy of the two linear equations for each eigenvalue, e.g.,
|𝑏|𝑢+ − 𝑏𝑣+ = 0 ⟹ :× −𝑏∗

|𝑏|
=	−𝑏∗𝑢+ + |𝑏|𝑣+ = 0)

𝐰± = %
𝑢±
𝑣±(=

)
√"|,|

2 𝑏
±|𝑏|3. Eigenvectors (A7)

In Eq. (A7), we have normalized each eigenvector so that

𝐰±
-𝐰± = [𝑢±∗ 𝑣±∗] %

𝑢±
𝑣±(=

,∗,.
|#|$

#|,|$

"|,|$
= 1, (A8)

where 𝐰±
- denotes the Hermitian conjugate (or conjugate transpose) of 𝐰± . Also, the two eigenvectors are

orthogonal:

𝐰∓
-𝐰± = [𝑢∓

∗ 𝑣∓
∗] %

𝑢±
𝑣±(=

,∗,.
|#|$

$|,|$

"|,|$
= 0. (A9)

Now, define a 2 × 2 matrix composed of column aligned eivenvectors,

𝐔 = [𝐰# 𝐰$] = %
𝑢# 𝑢$
𝑣# 𝑣$(=

)
√"|,|

2 𝑏 𝑏
|𝑏| −|𝑏|3, (A10)

then

𝐔-𝐔 = >𝐰#
-

𝐰$
-? [𝐰# 𝐰$] = %1 0

0 1(= 𝐈, (A11)

6

where I is the 2 × 2 identity matrix and we have used the orthonormalization relations, Eqs. (A8) and (A9).
Using the explicit formula for U in Eq. (A10), we can also verify that 𝐔𝐔- = 𝐈 and hence 𝐔 is a unitary
matrix:

𝐔-𝐔 = 𝐔𝐔- = 𝐈. Unitary (A12)

The two solutions of Eq. (A2) can now be combined into a matrix form as

u
v𝑎 𝑏
𝑏∗ 𝑎w v

𝑢>
𝑣>w = 𝜀> v

𝑢>
𝑣>w

v𝑎 𝑏
𝑏∗ 𝑎w v

𝑢*
𝑣*w = 𝜀* v

𝑢*
𝑣*w

	⟺	 v𝑎 𝑏
𝑏∗ 𝑎wyz{z|

𝐀

v
𝑢> 𝑢*
𝑣> 𝑣*wyzz{zz|

𝐔

= v
𝑢> 𝑢*
𝑣> 𝑣*wyzz{zz|

𝐔

}𝜀> 0
0 𝜀*

~yzz{zz|
𝐃

, (A13)

i.e.,

𝐀𝐔 = 𝐔𝐃, (A14)

where we have defined a diagonal matrix,

𝐃 = }𝜀> 0
0 𝜀*

~. (A15)

∵ v
𝑢> 𝑢*
𝑣> 𝑣*w v

𝜀>
0 w = 𝜀> v

𝑢>
𝑣>w 	and	 v

𝑢> 𝑢*
𝑣> 𝑣*w }

0
𝜀*
~ = 𝜀* v

𝑢*
𝑣*w 1

st & 2nd-column pickers

Multiplying both sides of Eq. (A14) by 𝐔† from the right hand and using the unitary, Eq. (A12),
we obtain

𝐀 = 𝐔𝐃𝐔B. Eigendecomposition (A16)
or more explicitly

v 𝑎 𝑏
𝑏∗ 𝑎w =

#
√'|D|

} 𝑏 𝑏
|𝑏| −|𝑏|~ }

𝑎 + |𝑏| 0
0 𝑎 − |𝑏|~

#
√'|D|

}𝑏
∗ |𝑏|
𝑏∗ −|𝑏|~. (A17)

(Example) Pauli X matrix, i.e., 𝑎 = 0 and 𝑏 = 1

𝐗 = v0 1
1 0w =

#
√'
v1 1
1 −1w v

1 0
0 −1w

#
√'
v1 1
1 −1w = 𝐇𝐙𝐇. (A18)

where H and Z are matrix representations of Hadamard and Pauli Z gates.

