Advanced: Quantum Dynamics Simulation

We will perform quantum dynamics (QD) simulation on a quantum computer for the
transverse-field Ising model (TFIM) Hamiltonian for two spins,

H = —Jogof — BYj—o 0], (D

where o; and ¢;* are Pauli Z and X matrices acting on the j-th spin, J is the exchange coupling,

and B is the magnetic field along the x axis.
Time evolution of a two-spin wave function, |¥(t)) = [Po ()1 (1)) (|P; (t)) is the wave

function of the j-th spin at time ¢), for small time step At is governed by (cf.
https://aiichironakano.github.io/phys516/03QD.pdf)

| (t + At)) = exp(—iHAL) | (1)) ()
in the atomic unit. Using Trotter expansion, the time-propagation operator is approximated as
exp(—iHAt) = exp(iAtJofof)exp(iAtBof)exp(iAtBof) + 0 (At?). (3)

Let us first consider the transverse-field propagator exp(iAtB o) acting on the j-th spin
independent of the other spin. We use the eigendecomposition (see Appendix) of Pauli X matrix,

o*=X= ((1) (1)))
Note that
o*H = ((1) (1))%(1 —11) - %G —11) ((1) —01) = Hoa?, (3)

where H is the Hadamard gate (which is column-aligned eigenvectors (1/v2,+1/v/2)T of 6*
with respective eigenvalues +1), or equivalently

c* = Ho*H, (6)
where we have used the fact H is a symmetric orthogonal matrix, i.e., H™* = HT = H and thus
H? =1 (7)

({ s the identity matrix).
Using Taylor expansion of the time propagator and Eqgs. (6) and (7) (the procedure is called
telescoping),

(iAtB) O_xn — Z;?:o (lA:l'B) (HO.ZH)TL —

exp (iAtBa*) = Y7, —~
n times
Ho?HHo?H --- Ho?H (every internal HH product becomes I) =
o (iAtB)™
Zn=0 nl 0 H=
o (—iAtB)" -
0 Zn=0 nl
QIMB _ p-iAtB\
—iAtB iAtB | ,—iAtB -

(iatB)™

2in=0

(iantB)™

HY oo ol 0" H = HY oo

(iAtB)™ (1 0)"H —

0 -1

n!

eiAtB + e—iAtB
eiAtB _

eiAtB 0 _ 1
H< . e—iAtB) H = HR,(—2AtB)H = 5(

cos (AtB) isin(AtB)
<isin(AtB) cos (AtB)

e
) — R,(~2AtB). @®)

In terms of the native gates on IBM Q computers, Eq. (8) can be implemented using either rotation
around the z axis, R,(6), along with Hadamard gate H, or solely using rotation around the x axis,
R,(8). Here, R, and R, gates are defined as

R@=(<"), ©
__(cos(8/2) —isin(8/2)
R (0) = <—isin(9 /2) cos (6/2)) (10)

(see https:/github.com/Qiskit/qiskit-tutorials/blob/master/tutorials/circuits/3_summary_of quantum_operations.ipynb).

Next, we consider the exchange-coupling propagator exp(iAtjolo?). We first consider a
tensor product of operators multiplied by a scalar constant,

1 0 1 0 iAt] 0 0 0
1o) ol S -
; z zZ _ ; 0 -1 0 -1 _ 0 _lAt] 0 0
iAtJof R of = iAt] .. (1 0) . (1 0) = 0 0 —ing 0 (11)
0 -1 0 -1 0 0 0 iAt]
Since this is a diagonal matrix, it can be exponentiated element by element as
exp(iAt]) 0 0 0
. 0 exp(—iAt]) 0 0
Z o ZY — =
exp(iAtjoéof) = 0 0 exp(—it]) 0
0 0 0 exp(iAt])

<RZ(—2At]) 0)

0 R, (2At)) (12)

Now consider the following sequence of quantum gates operating on two qubits, q, and g4,

G = CX(40,1) - RE (~28¢]) - CX(q0,01), (13)
where
X(na) = (y) (14)

is the controlled X (CNOT) gate, with g, and g, being the control and target bits, and R is the R*
gate acting on q;. When operating on two qubits, R signifies a tensor product,

1-R*(-2At)) 0-R*(=2At))\ _ (R*(-2At)) 0 s
0-R%Z(=2AtJ)) 1-R?(=2At)) 0 R% (=2At)) (15)

Substituting Egs. (14) and (15) in Eq. (13), we obtain

_ (1 0\ (R*(-2At) 0 I 0y _ (R*(=24t) 0
G_(o X)< 0 RZ(—ZAt])>(O X)_< 0 XRZ(—ZAt])X>' (16)

Here,

I ® R% (=2At)) = <

XR? (—2At])X = (O 1) <eXp(iAt]) 0)(0 1)

1 0 0 exp(—iAt/)/)\1 0
0 exp(—iAt/)\ (0 1\ _ (exp(—iAt]) 0 o,
<exp(iAt]) 0)(1 o) B < 0 exp(i At])) = R” (24¢)). (17)

Substituting Eq. (17) in Eq. (16) and compare the result with Eq. (12), we arrive at the identity,
R? (—2At)) 0
0 R? (2At))

where the last equality results from Eq. (12). Namely, G = CX(q,,q1) - RZ(—2At]) - CX(q0,q1)
is a quantum-gate implementation of the exchange-coupling propagator exp(iAtjai o?).

® o

Combining Eqgs. (8) and (18) for the transverse-field and exchange-coupling time propagators,
respectively, quantum-circuit implementation for a single time step of time evolution for the TFIM
model, Eq. (1), is given by

exp(—iHAt) = exp(iAtjofaf)exp(iAtBag)exp(iAtBoy) =
CX(qo, q1)RT (—2At])CX(qo, 91) Ry (—2AtB)RY (—2AtB). (18)

QO-E (@,
Bomo =
. L 1.

Fig. 1: Quantum circuit for time evolution of TFIM in IBM Quantum Lab.

G = CX(q0,q1)RT(—2At]))CX(q0,91) = < > = exp(iAtjoiaf). (18)

Hands-on Exercise (try it at https:/quantum-computing.ibm.com using IBM Quantum Lab)

Execute the following Qiskit program to perform a single time step of QD simulation. Here,
we have used model parameters, /] = 1, B = 0.5 and At = 0.01, in atomic units.
Single step of Trotter propagation in transverse-field Ising model
import numpy as np

Import standard Qiskit libraries
from giskit import QuantumCircuit
from giskit aer import AerSimulator
from giskit.visualization import *
from ibm quantum widgets import *

Physical parameters (atomic units)
J =1.0 # Exchange coupling

B = 0.5 # Transverse magnetic field

dt = 0.01 # Time-discretization unit

Build a circuit
circ = QuantumCircuit(2, 2) # 2 quantum & 2 classical registers

circ.rx(-2*dt*B, 0) # Transverse-field propagation of spin 0
circ.rx(-2*dt*B, 1) # Transverse-field propagation of spin 1

circ.cx(0, 1) # Exchange-coupling time propagation (1)
circ.rz(-2*dt*J, 1) # (2)
circ.cx(0, 1) # (3)

circ.measure(range(2), range(2)) # Measure both spins
circ.draw('mpl')

This will build a circuit and draw it, which should then be transpiled and run on a simulator as follows.
Simulate on OpenQASM backend

Use Aer simulator

backend = AerSimulator()

Transpile the quantum circuit to low-level QASM instructions
from giskit import transpile

circ compiled = transpile(circ, backend)

Execute the circuit on the Qasm simulator, repeating 1024 times
job_sim = backend.run(circ_compiled, shots=1024)

Grab the results from the job

result sim = job sim.result()

Get the result

counts = result_sim.get_ counts(circ_compiled)

Plot histogram

from giskit.visualization import plot histogram

plot histogram(counts)

Table I: Qiskit program for single-time-step QD simulation of TFIM: tfim-Istep.qiskit
(https://aiichironakano.github.io/phys516/sre/QComp/tfim-1step.qiskit).

After opening a Qiskit (ipykenel) notebook, you can copy and paste the above code into a cell
in the Python notebook. Here, we have used QASM simulator as a backend. Actual quantum
dynamics simulation [L. Bassman et al., Phys. Rev. B 101, 184305 (°20)] will iterate this unit-time
stepping for many time steps. For Python programming underlying Qiskit, see A. Scopatz and K.
D. Huff, Effective Computation in Physics (O’Reilly, ’15).

Appendix: Eigendecomposition

For a 2 X 2 Hermitian matrix,

a-[e b] (A1)
where a and b are real and complex numbers, respectively, consider an eigenvalue problem,

a byul_ _[u

5 ool =< ()
or equivalently

e—a —bu_710

[—b* e£—a [U] - [O] (A3)

For nontrivial solutions (i.e., other than u = v = 0), the determinant of the matrix in Eq. (A3)
should be zero. (Otherwise, one can invert Eq. (A3) to get u = v = 0.) Hence,

S__b*a g__ba| = (¢ —a)? — |b|? = 0, Secular (characteristic) equation (A4)

which has two solutions,
&4 = a * |b|. Eigenvalues (AS5)

The corresponding eigenvectors can be obtained by solving Eq. (A3) for these eigenvalues

|b| —b] _ [—|b| —-b] 0
—b* |b| o] —|b|] [o] (A6)
with the answers (note the degeneracy of the two linear equations for each eigenvalue, e.g.,

|blu, —bv, = 0= (x m) —b*u, + |blv, = 0)

U4 1 b)
Wi = [vi] =l [ilbl]. Eigenvectors (A7)
In Eq. (A7), we have normalized each eigenvector so that
IbJ?
s s [Y£] _ BB+IbI?
wiw, = [uh vil[,7] =" =1, (A8)

where wJ_t denotes the Hermitian conjugate (or conjugate transpose) of w,. . Also, the two eigenvectors are
orthogonal:

IbJ?
s s [Y£] _ BB-b|?
iy = 021 [12] = EE @
Now, define a 2 x 2 matrix composed of column aligned eivenvectors,
B LU+ U7 b
v=pe wi=[r =l il (A10
then
.l..
ty = [WH[w, w_1=[1 0=
uty [wi][-ow=[,)=t (A1)

where I is the 2 X 2 identity matrix and we have used the orthonormalization relations, Egs. (A8) and (A9).
Using the explicit formula for U in Eq. (A10), we can also verify that UU' = I and hence U is a unitary
matrix:

UtU = UU' = I Unitary (A12)

The two solutions of Eq. (A2) can now be combined into a matrix form as

b ool =[]

a b+ u- _ Uy U_ [€+ 0]
[:* Z] [1;:] =E&_ [1;:] = [b*A a] [17+ - 17_] [17+ s v_] 0 _ e |’ (A13)
ie.,
S (A14)
where we have defined a diagonal matrix,
- [So+ 80_]. (A15)

[Zi 5] =e [:Z] and [I;I o] [80_] = e [}7] 1% & 2*-column pickers

Multiplying both sides of Eq. (A14) by UT from the right hand and using the unitary, Eq. (A12),
we obtain

A = UDUT. Eigendecomposition (A16)
or more explicitly

a bl_ 1 [b b]a+|b| 0 '1[b* |b|]
[b* a]_mm[lbl —Iblfl 0 a—|bllvzei[p* —|b|I (A17)
(Example) Pauli X matrix, i.e.,a =0and b = 1

_[0 13_2q1 1371 0721 17_
=l o]_ﬁ[1 —1”0 —11@[1 —q| = HEH. (A18)

where H and Z are matrix representations of Hadamard and Pauli Z gates.

