VMD & OVITO Visualization of Molecular Dynamics

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations Department of Computer Science Department of Physics & Astronomy Department of Quantitative & Computational Biology University of Southern California

Email: anakano@usc.edu

Goal: Publication-quality image of "your" data (gallery as final project?)

Scientific Visualization Tools

- Atomsviewer: Billion-atom visualizer http://cpc.cs.qub.ac.uk/summaries/ADUM_v1_0.html
- VMD: Molecular-dynamics data http://www.ks.uiuc.edu/Research/vmd
- OVITO: Open visualization tool https://ovito.org
- VisIT: General visualization system https://visit.llnl.gov
- ParaView: General visualization system
 <u>http://www.paraview.org</u>

In Situ vs. Post-processing

In situ visualization using common visualization software? See <u>B. Whitlock *et al.*, *PGV11*</u>

VMD Software

- VMD (Visual Molecular Dynamics): Molecular visualization program developed at the University of Illinois, Urbana-Champaign.
- Downloadable for various platforms—Linux, Windows, and Mac.
- Install it on your laptop.

Version 1.9.4 LATEST ALPHA (2022-04-27) Platforms:

Latest pre-release ALPHA test version

- Source Code
- LINUX_64 (RHEL 7+) OpenGL, CUDA, OptiX RTX, OSPRay (Linux (RHEL 7+) 64-bit Intel/AMD x86_64 SSE/AVX+ with CUDA 10, OptiX6.5 RTX, OSPRay)
- LINUX_64 (RHEL 7+) OpenGL, CUDA, OptiX RTX, OSPRay, RTX RTRT (Linux (RHEL 7+) 64-bit Intel/AMD x86_64 SSE/AVX+ with CUDA 10, OptiX6.5 RTX, OSPRay, RTX RTRT)
- MacOS 11.x, ARM64 (64-bit "M1" Macs) (Apple MacOS-X 11 or later)
- MacOS 10.15, x86_64 (64-bit Intel x86_64) (Apple MacOS-X 10.15 or later)
- Windows 64-bit, CUDA, OptiX, OSPRay (64-bit Intel x86_64) (Windows 10)

Version 1.9.3 (2016-11-30) Platforms:

We recommend that all users upgrade to VMD 1.9.3

http://www.ks.uiuc.edu/Research/vmd

XYZ File Format

- VMD can read various file formats such as XYZ and PDB (Protein Data Bank).
- XYZ file format:

Repeat the following for as many times as the number of frames (*i.e.* time steps) you would like to store

line 1: <number of atoms, N>
line 2: comment line
line 3-N+2: atomic element, atom's x, y & z coordinates
 (space delimited; coordinate in angstrom)

Example: a methane molecule

5			
methane	molecule (in	ångströms)	
С	0.000000	0.000000	0.000000
н	0.000000	0.000000	1.089000
H	1.026719	0.000000	-0.363000
H	-0.513360	-0.889165	-0.363000
H	-0.513360	0.889165	-0.363000

Writing an XYZ File from 1md.c

```
#define SIGMA 3.4 // Lennard-Jones length scale in angstrom
FILE *fxyz;
. . .
int main(int argc, char **argv) () {
  fxyz = fopen("lmd.xyz","w");
  ... // Main MD for loop
  fclose(fxyz);
  . . .
}
void EvalProps() {
  fprintf(fxyz, "%d\n", nAtom);
  fprintf(fxyz, "Molecular dynamics simulation of argon\n");
  for (n=0; n<nAtom; n++)</pre>
    fprintf(fxyz, "Ar %f %f %f \n", r[n][0]*SIGMA, r[n][1]*SIGMA, r[n][2]*SIGMA);
}
```

• Run the program with the following input parameters in lmd.in

3 3 3 // # of crystalline unit cells in the x, y & z directions 0.8 // Density in the Lennard-Jones (LJ) unit 1.0 // Temperature in the LJ unit 0.005 // Time discretization unit in the LJ unit 500 // Total # of time steps 10 // Interval between consecutive dumps to the XYZ file

Start VMD

• It will open 3 windows

Load the MD-Trajectory XYZ File

• In the File menu in the VMD main window, select New Molecule; the following new window will open.

Mol	ecule File Browser		
Load files for: New Moleo	ule	•	
Filename: aiichironakano/Documents/ANMB/Imd.xyz Browse			
Determine file type:			
Automatically	•	Load	
Frames:	Volumetric Datasets		
First: Last: Stride:			
OLad in background			
Load all at once			

- Drag and drop the XYZ file you have created in the Filename field (or press the browse button to locate the file).
- Click the Load button to load the file.

Choose the Graphic Representation

• In the Graphics menu in the VMD main window, select Representations; the following new window will open.

• In the Drawing Method menu, choose the VDW (van der Waals radius) representation.

000 Graphical Representations				
Selected Molecule				
0: Imd.xyz		•		
Create Rep		Delete Rep		
Style	Color	Selection		
VDW I	Name	all		
S	elected Atom	15		
all				
Draw style Select Coloring Method Name	tions Trajec	ctory Periodic Material paque		
Drawing Method		Default		
Sph Sphere R	ere Scale () Resolution () Apply C Automa	1.0) 1 8 1<		

Animation

• Click the play button in the VMD main window to play the movie.

Optional: Creating a Movie File (1)

• Choose the Extensions \rightarrow Visualization \rightarrow Movie Maker menu; this will open a VMD Movie Generator window.

& (2) "Delete image files" options, while clicking the "Trajectory" option, in the "Movie Settings" menu.

- **Trajectory Rock** User Defined Procedure
 - 1: Image smoothing
 - 2: Half-size rescaling
 - 3: Text labelling

Abort

- 4: Delete image files
- Text label settings...

Optional: Creating a Movie File (2)

• Choose a directory, in which a sequence of image files will be stored, using the "Set working directory" field.

OOO VMD Movie	Generator	
Renderer	‡ Format	‡ Help ‡
Set working directory: /Users/aiichi	ronakano/Desktop/	/ArMovie
Name of movie: untitled		ArMovie
Rotation angle: 180	Back	View Arrange Action Dropbox Share
Trajectory step size: 1	FAVORITES Dropbox All My Files	Name I untitled.0000.ppm untitled.0001.ppm
Movie duration (seconds): 10	 AirDrop Applications Desktop 	 untitled.0002.ppm untitled.0003.ppm untitled.0004.ppm untitled.0005.ppm
Status: Ready Stage: 0 of 0	Documents	 untitled.0006.ppm untitled.0007.ppm
Progress: 0 of 0	Google D	 untitled.0008.ppm untitled.0009.ppm untitled.0010.ppm
Make Movie Abort	DEVICES	

• Click the "Make Movie" button; you will find image files in the directory.

Optional: Creating a Movie File (3)

(portable pixmap) image files created by VMD to PNG (portable network graphics) image files that QuickTime Player can read, using the GraphicsConverter software.

Gaussian Cube File Format

• Cube file format: Describes volumetric data (*e.g.*, electronic wave function or charge density) as well as atom positions

<heat< th=""><th>der></th><th></th><th></th><th></th><th></th><th>A₃</th></heat<>	der>					A ₃
24 63 63	0.000000 0.198958 -0.099479	0.000000 0.000000 0.172302	0.000000 0.000000 0.000000	// # atoms // # of vox //	& origin els 1st axis 2nd	
189 42 42	0.000000 0.000000 0.000000	0.000000 -0.000013 6.267168	0.194054 3.618358 3.618358	// 4.860106 4.860106	3rd // atomic #, // & atomic p	nuclear charge, position vector
<pre> 0.29654E-04 0.25769E-04 0.20454E-04 0.15027E-04 0.98477E-05 0.53243E-05 // volumetric data (see the code below)</pre>						

```
for (ix=0;ix<NX;ix++) {
  for (iy=0;iy<NY;iy++) {
    for (iz=0;iz<NZ;iz++) {
        printf("%g ",data[ix][iy][iz]); if (iz % 6 == 5) printf("\n");
        } printf("\n");
   }
}</pre>
```

Isosurface Rendering

- Load a cube file https://aiichironakano.github.io/cs596/src/viz/MoSe2-hole.cube
- Draw atoms using VDW representation & bond between atoms using dynamic-bond representation (adjust sphere radius & bond cutoff)
- Draw the volumetric data using isosurface representation (adjust isovalue)

Isosurface Rendering

Wave Functions in MoSe₂ Bilayer

- Highest occupied states (blue) are d_{z2}-like
- Lowest unoccupied states (red) are d_{xy}-like

M.-F. Lin et al., Nature Commun. 8, 1745 ('17)

Electron Hole Try a different rendering method: File → render → tachyon internal

Beautify in One Hour?

Before

After

Default VMD rendering http://www.ks.uiuc.edu/Research/vmd

Enhanced with POV-ray ray tracer http://www.povray.org

Try: File → **render** → **POV-Ray**

M.F. Lin et al., Nature Commun. 8, 1745 ('17)

OVITO Software

• OVITO (Open Visualization Tool): Scientific visualization and analysis software for atomistic & particle simulation data.

A. Stukowski, "Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool," *Modelling Simul. Mater. Sci. Eng.* **18**, 015012 ('10)

- Downloadable for various platforms—Linux, Windows, and Mac.
- Install it on your laptop. https://www.ovito.org

OVITO Basic

OVITO Pro

Open-source software - limited feature set

Version 3.9.2 - 31 Aug, 2023

Professional version - full functionality

Version 3.9.2 - 31 Aug, 2023

Unfortunately, the isosurface feature is no longer free!

Isosurface Rendering Using OVITO

- Start OVITO & choose the "file" then "load file" menu
- (1) Load a cube file <u>https://aiichironakano.github.io/cs596/src/viz/MoSe2-hole.cube</u>,
 (2) specifying "Gaussian Cube Files" format

Isosurface Rendering Using OVITO

• Choose (1) "Add modification" then (2) "Create isosurface" menu

Isosurface Rendering Using OVITO

• Adjust isolevel to draw a desired isosurface

OVITO Basic (Open Visualization Tool) 🔶 🖒 0 n a 0 y 0 MoSe2-hole.cube [Cube] Add modification.. Visual elements Simulation cell \checkmark Particles Voxel arid \checkmark Isosurface Modifications Create isosurface Data source MoSe2-hole.cube [Cube] Simulation cell Ê Particle types Create isosurface Voxel grid: Voxel grid Operate on: Field quantity: Property Perspective 0.0003 1 A Isolevel Histogram: 600000 500000 400000 300000 200000 100000 0.002 0.004 0.006 0.008 0.01 0 Property Field value range: [0, 0.0085018] Surface Surface color: Transparency: 0% Smooth shading Flip surface orientation Highlight edges Particles Global Attributes Data Tables Voxel Grids Surfaces Cap polygons Screenshot КЛ A A 🖹 🕓 💽 > **OT** 0

Dynamic Coloring

In VMD, USER fields in the TRAJECTORY data category can be animated as color changes according to one of the built-in color scales occupied **Fe**²⁺ oxidation reduction Occupation: 1.00 **Fe**³⁺ 0.50 0.00 unoccupied

C. M. Nakano, H.S. Byun, H. Ma, T. Wei, & M.Y. El-Naggar, Comput. Phys. Commun. 193, 1 ('15)

Scripting in VMD

- VMD allows Tcl scripting language for user to control visualization
- Go to File → New Molecule menus → load complex16.pdb—cytochrome (MtrF-OmcA) dimer data—in Filename textbox
 > Graphics → Representations → choose NewCartoon in Drawing Method
- Extensions → Tk Console → type the following commands in console
 %cd csci596-as07 Absolute path that contains Tcl script named userb.tcl
 %source userb.tcl
- It loads FeOcc.pdb—time series of Fe positions & their occupations (0 or 1)
 - > Graphics → Representations (make sure Selected Molecule is FeOcc.pdb)
 - >> Drawing Method -> VDW; set sphere scale to be 4.0
 - >> Coloring Method -> Trajectory -> User -> User
 - > Graphics → Colors → Color scale → Method: BWR
- Click play button in VMD main window for animation

Tcl Script

• In FeOcc.pdb file, "beta" value in the last column is customized to represent electron occupation (0 or 1) for each Fe atom; Tcl script FeOcc.pdb transfers it to "user" field used for VMD coloring

https://aiichironakano.github.io/cs596/src/viz/userb.tcl

```
mol new FeOcc.pdb waitfor all
set all [atomselect top all]
set frame 0
set in [open FeOcc.pdb r]
set beta {}
while { [gets \ line] != -1 } {
  switch -- [string range $line 0 3] {
     END {
       $all frame $frame
       $all set user $beta
       set beta {}
       incr frame
      }
     HETA -
     ATOM {
       lappend beta [expr [string range $line 60 65]]
      }
  }
}
```

Find more examples: <u>https://www.ks.uiuc.edu/Research/vmd/script_library/</u> Publish your Tcl script as VMD plugin: I. Balabin *et al.*, <u>J. Comput. Chem. 33</u>, 906 ('12)

Make Journal Covers

V. Kochat et al., Adv. Mater. 29, 1703754 ('17)

Showcasing research from Collaboratory for Advanced Computing and Simulations (CACS), University of Southern California, Los Angeles, USA.

Semiconductor-metal structural phase transformation in $MoTe_2$ monolayers by electronic excitation

Optical control of transformations between semiconducting and metallic phases of two-dimensional materials can open the door for phase patterning of heterostructures for 2D electronics and catalysis applications. This work shows how opticallyinduced changes to the electronic structure and Fermi surface of monolayer semiconductors couple to lattice distortions, resulting in a more facile phase transformation pathway. This work highlights photoexcitation as a viable technique for functionalizing these material systems. As featured in:

See Aravind Krishnamoorthy *et al.*, *Nanoscale*, 2018, **10**, 2742.

ROYAL SOCIETY OF **CHEMISTRY**

rsc.li/nanoscale

A. Krishnamoorthy et al., Nanoscale 10, 2742 ('18)

BES

BASIC ENERGY SCIENCES EXASCALE REQUIREMENTS

An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Basic Energy Sciences

Or report cover

16,661-atom QMD

Shimamura et al.. Nano Lett. **14**, 4090 ('14)

10⁹-atom RMD Shekhar et al., Phys. Rev. Lett. **111**, 184503 ('13)

NOVEMBER 3-5, 2015

ROCKVILLE, MARYLAND

Touch of Art

Where to Go from Here

- Keep refining your visualization skill using the examples in this lecture as a starting point: "Seeing is believing"
- It's the content that matters: "Summarize your work in 100 milliseconds or less... the importance of the table of contents image," J. Buriak, ACS Nano 5, 7687 ('11); <u>https://aiichironakano.github.io/cs596/Buriak-ToC-ACSNano11.pdf</u>
- Appeal to fast thinking by ToC image, convince *via* slow thinking by abstract; see "Thinking about thinking" by Daniel Kahneman:

https://www.edge.org/events/the-edge-master-class-2007-a-short-course-in-thinking-about-thinking

Application of First-Principles-Based Artificial Neural Network Potentials to Multiscale-Shock Dynamics Simulations on Solid Materials

Masaaki Misawa,* Shogo Fukushima, Akihide Koura, Kohei Shimamura, Fuyuki Shimojo, Subodh Tiwari, Ken-ichi Nomura, Rajiv K. Kalia, Aiichiro Nakano, and Priya Vashishta

Read Online

ACCESS

III Metrics & More

E Article Recommendations

Supporting Information

ABSTRACT: The use of artificial neural network (ANN) potentials trained with firstprinciples calculations has emerged as a promising approach for molecular dynamics (MD) simulations encompassing large space and time scales while retaining first-principles accuracy. To date, however, the application of ANN-MD has been limited to *near-equilibrium* processes. Here we combine first-principles-trained ANN-MD with multiscale shock theory (MSST) to successfully describe *far-from-equilibrium* shock phenomena. Our ANN-MSST-MD approach describes shock-wave propagation in solids with first-principles accuracy but a 5000 times shorter computing time. Accordingly, ANN-MD-MSST was able to resolve fine, long-time elastic deformation at low shock speed, which was impossible with first-principles MD because of the high computational cost. This work thus lays a foundation of ANN-MD simulation to study a wide range of far-from-equilibrium processes.

Squishing skyrmions: symmetry-guided dynamic transformation of polar topologies under compression T. Linker *et al.*, *J. Phys. Chem.*

Lett. **13**, 11335 ('22)

Where to Go from Here

There are two types of people:

 Those that can extrapolate from incomplete data.

Assignment package provides enough materials to get started! Animation, ray tracing, scripting, ...