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Abstract
There is a widening gap between compute performance and the ability to store computation results. Complex
scientific codes are the most affected since they must save massive files containing meshes and fields for offline
analysis. Time and storage costs instead dictate that data analysis and visualization be combined with the simula-
tions themselves, being done in situ so data are transformed to a manageable size before they are stored. Earlier
approaches to in situ processing involved combining specific visualization algorithms into the simulation code,
limiting flexibility. We introduce a new library which instead allows a fully-featured visualization tool, VisIt, to
request data as needed from the simulation and apply visualization algorithms in situ with minimal modification
to the application code.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture—
Parallel processing I.3.4 [Computer Graphics]: Graphics Utilities—Application packages

1. Introduction

Large data processing techniques encompass methods such
as distributed parallelism, out-of-core processing, multi-
resolution, and in situ processing [Chi07]. All but the last
of these methods require management of massive I/O to
and from disk-based storage. However, recently deployed
supercomputers and those planned in the near future pro-
vide far more compute capacity than I/O bandwidth and
thus suffer from an inherent I/O bottleneck. For example,
Table 1 shows approximate I/O rates for selected historical
and future supercomputers such as LLNL’s planned Sequoia
BG/Q computer [ASC03] [FJM∗99] [MEGL01] [ASC07]
[ORN08] [ASC08] [Law09]. The “Writable FLOPS” shows
the ratio of compute performance to the I/O bandwidth, and
the “Whole-System Checkpoint” is the ratio of system RAM
to I/O bandwidth. The trend shows both that we are less able
to save data as it is generated and that we will be able to save
data less often. Even accounting for variations in reporting
practices for these statistics, it seems clear that the risk of
losing important scientific data is growing.

Clever I/O strategies can improve the rate at which data
can be stored but, particularly as we approach the exascale
era, less data must be stored if application scalability is to

be preserved. Applications not able to reduce the amount
of data they write will be faced with waiting long periods
for their data to be written to disk. Post-processing appli-
cations supporting scientific codes with large data are also
affected, as they must read all of the data that was written
by the scientific code. Thus the penalty of doing I/O to disks
is paid twice, first by the simulation, and later by the post-
processing code. For example, Peterka [PYRM08] demon-
strated Volume Rendering of massive data on BG/P; how-
ever, they cite I/O costs of over 90% of the overall runtime,
due to the fact that on the BG/P used for the experiments,
there is but one I/O node for every 64 compute nodes.

With such challenges at the fore in I/O and with the avail-
ability of cycles for computations, it makes sense to reduce
the amount of I/O required by instead using extra cycles
for activities that were historically done as post-processing
steps. This goal can be achieved by combining simulations
with in situ processing. Post-processing often consists of
data analysis and visualization, both of which significantly
reduce the size of the input data to sustainable sizes. For ex-
ample, visualization can transform petabytes of simulation
data into a pictorial representation of just a few megabytes,
thus trading very large scale, difficult to manage I/O opera-
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tions for very small I/O operations. Also, typical visualiza-
tion operations take on the order of a few seconds to tens
of seconds compared with hundreds or thousands of sec-
onds needed to write full-sized data to disk. In their intro-
duction to the challenges and opportunities for in situ visu-
alization [Ma09], the authors point out that accessing data in
situ has many advantages since all pertinent data arrays and
geometries are readily available at the full spatio-temporal
resolution. Code debugging, run-time monitoring, massive
scale calculations aimed at reducing the data’s dimensions
before I/O to disks are made possible by in situ processing.

Machine Year Writable Whole-System
FLOPS Checkpoint

ASCI Red 1997 0.075% 300 sec
ASCI Blue Pac. 1998 0.041% 400 sec
ASCI White 2001 0.026% 480 sec
ASCI Red Storm 2005 0.035% 660 sec
ASCI Purple 2005 0.025% 500 sec
NCCS XT4 2007 0.004% 1400 sec
Roadrunner 2008 0.005% 480 sec
NCCS XT5 2008 0.005% 1250 sec
ASC Sequoia 201x 0.001% 3200 sec

Table 1: Historical supercomputer I/O rates

2. Related Work

Earlier works include SCIRun [JPH∗99] which was one
of the first general purpose frameworks with a visual pro-
gramming environment to assist users in assembling data
flow networks. SCIRun was designed from the ground up
to enable computational steering, by constructing re-usable
components for modeling, computation and visualization.
It was conceived to run on shared-memory machines, with
each module running as an independent thread, and favored
the inclusion of newly created simulation components. An-
other example of a tight-coupling is RVSLIB [SD01], a
commercial product of NEC providing a library of subrou-
tine calls to insert into the simulation code. Others have
elected to physically separate simulation and visualization
reosurces. Ellsworth [EHG∗06] copies simulation data to a
shared memory segment on a different set of computer nodes
to isolate mission-critical computations from other compo-
nents. Esnard [AEC06] emphasises a data redistribution with
parallel data transfer from M compute nodes to N (N « M)
visualization nodes, using CORBA to implement their com-
munication protocol. Their simulation source codes are an-
notated with the EPSN API, describing both the program
structure and the data decomposition in order to coordinate
the treatment of steering requests in parallel, and ensure the
time-coherence of parallel tasks.

More recently, we find other published works in three gen-
eral types of in-memory coupling for simulations and anal-
ysis. First come the strategies which decouple the I/O from

the simulation, staging data to a second memory location.
The ADIOS library [LZKS09] is a very flexible I/O library
enabling multiple transport methods (MPI-I/O, or NETCDF,
or HDF5), or asynchronous I/O to high-bandwidth I/O hard-
ware nodes or to remote servers, enabling other codes to in-
terface to the data. Similarly, but applicable only to simula-
tions which already have coded their I/O with the HDF5 API,
Soumagne [SBC10] emulates the MPI-I/O virtual file driver
of HDF5 but redirects the data in parallel to a distributed
shared memory buffer over multiple TCP connections. This
secondary memory buffer is then available as a data source
by an application. They present a parallel ParaView plug-
in which acts as the data consumer. Their method, however,
suffers from large memory consumption since the data ar-
rays encoded in HDF5 data streams cannot be directly re-
used by the visualization pipeline, instead requiring a second
memory-to-memory conversion into VTK objects.

Other practitioners incorporate domain knowledge and
tasks into the simulation codes. For example, Yu [YWG∗10]
describes a tight coupling of volume and particle rendering
in a combustion code, demonstrating the advantage of hav-
ing access to the fully resolved spatio-temporal data.

Finally, there are attempts to couple general coprocess-
ing libraries with the simulations. Developers at Kitware,
Inc [BB10] demonstrated a coprocessing library, whereby
a simulation can perform in situ processing for analysis sce-
narios known a priori. This method relies on a Data Adaptor
taking the raw data in memory, and formatting it into VTK
objects which the ParaView pipeline supports. Coprocessed
data may be staged using parallel socket connections to their
ParaView server running on a visualization cluster. While
this can facilitate user-directed, interactive queries, it is lim-
ited to previously coprocessed data.

Our in situ approach best resembles one that combines
general coprocessing libraries with the simulation in that
it enjoys direct access to data and sharing of compute re-
sources. However, we implement the system within a frame-
work that supports read-on-demand of any quantity exposed
by the simulation. This is key because our approach in-
tegrates a fully featured visualization and analysis system
that can be driven interactively by the user for a myriad of
analysis purposes, including scientific analysis, presentation
graphics, data exploration, and even code debugging.

3. System Design

Our library targets massively parallel simulations, and uses
the paradigm of message passing, based on the MPI library.
We address the needs of simulations using a distributed
memory parallel programming model, whereby the in situ
processing lives in the same memory space as simulations.
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3.1. Design Philosophy

We had several goals with the design of our proposed in situ
solution:

• Maximize features and capabilities. There are numerous
use cases for visualization and analysis, particularly in
situ. If we focus the feature set on making movies, for
example, then we may lack features for interactive debug-
ging.

• Minimize code modifications to simulations. We expect
this to support numerous application codes, and the least
effort it takes to apply to a new simulation, the more likely
our library will be adopted by the HPC community.

• Minimize impact to simulation codes when in use. Ideally,
codes should be able to run the same problems with or
without in situ analysis.

• Zero impact to simulation codes when not active. Our aim
here is that simulation codes should be able to build a sin-
gle executable, with in situ support built-in, and suffer no
detrimental side effects. This allows users to start an in
situ session on demand instead of deciding before running
a simulation whether or not they will want these capabili-
ties.

3.2. Design Overview

To accomplish these goals, we made several decisions about
the architecture of our proposed system. First, we use
VisIt [CBB∗05] as the data analysis and visualization system
to interface with simulation codes. VisIt is an open-source
visualization project available on a wide variety of comput-
ing platforms. We chose VisIt both for its large feature set
and for its proven ability to execute efficiently on massively
parallel computer systems [CPA∗10].

To interface with VisIt, we created a simulation library
(“Libsim”) that is capable of interfacing with VisIt clients as
if it were a parallel VisIt server, providing simulation data to
the VisIt processing engine, and advertising computational
steering capabilities to an interactive VisIt client.

3.3. VisIt Architecture

VisIt provides a client/server architecture in which the tasks
of visualization and data analysis are separated into differ-
ent component programs. The client programs run on a lo-
cal computer and leverage hardware acceleration. The server
programs run remotely on large supercomputers and are re-
sponsible for browsing the file system and for parallel com-
putations. As plots are requested by the client, the VisIt com-
pute server is instructed to read data, assemble data flow
networks, execute them, and send the results back to the
client for display. VisIt’s compute server is optimized for
distributed memory parallelism using MPI, and it creates
identical data flow networks, consisting partially of VTK
[SML96] filters, on all processors. Each data flow network

then executes using different pieces of the larger data set.
This computation is governed by a central executive that op-
timizes work flow using contracts. Contracts are a part of
the request generated for each operation; they make their
way upstream to the source of the data flow network (such
as a file format reader plug-in), being modified incremen-
tally by each filter to optimize the size, dimension, extents
and ranges of the data the sources should make available.
The data sources then initiate the execution of the networks,
providing data objects which fit the contracts and are succes-
sively transformed by each filter as execution "flows" down
the chain of filters, creating the result at the terminal end of
the network. See Figure 1 for an example of this.

Figure 1: VisIt architecture diagram for client/server pro-
cessing of file data using a parallel compute server.

3.4. In Situ Processing with VisIt

As seen in Figure 2, in a fully running in situ analysis
session, the processing diagram looks much the same as
a normal parallel VisIt analysis session, except that the
VisIt server and the scientific simulation are now the same
process, with VisIt’s server logic having been dynamically
loaded into the simulation. The steps typically proceed as
follows:

1. The simulation code launches and starts execution.
2. The simulation regularly checks for connection attempts

from VisIt clients.
3. When a VisIt client attempts to connect, the simulation

loads the VisIt server library and allows it to complete
the connection.

4. The VisIt server asks the simulation for a description of
its meshes and data types.

5. Either running or paused, the simulation relies on the
VisIt server to handle any VisIt-specific operations, hand-
ing it pointers to data when requested.
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Figure 2: VisIt architecture diagram for client/server pro-
cessing of parallel simulation data with in situ library.

A few minor changes were made to VisIt proper to allow
it to function as an in situ solution. Some changes were inter-
nal, such as allowing VisIt to connect to an already-running
server process instead of launching a new one. Some were
graphical, such as new user interface elements to show cur-
rent simulation connections and advertise control commands
supported by the simulation. And some were in the build
process, such as linking the VisIt server as both a standalone
executable and as a runtime library. Otherwise, VisIt’s archi-
tecture was already suitable for this style of in situ process-
ing.

3.5. “Libsim”: Coupling VisIt and Simulations

There are two interfaces in Libsim: one to drive the VisIt
server, and one to hand data to the VisIt server upon request.

The control interface is capable of advertising itself to au-
thorized VisIt clients, listening for incoming connections,
initiating the connection back to the VisIt client, handling
VisIt requests such as plot creation and data queries, and let-
ting the client know when the simulation has advanced and
that new data is available.

The data interface uses the extensible plug-in model of
VisIt to get data into VisIt’s processing pipeline. Our contri-
bution differs from most VisIt database plug-ins which read
files from disk. In the Libsim library, we instead created a
database plug-in which uses data access callback functions
to read data from memory – i.e. from running simulations.
This plug-in will usually pass data pointers for simulation
data as needed to respond to requests from the VisIt server.
In some cases, coordinate transformations or data gather op-
erations will be required for legacy codes.

“Libsim” itself is divided into two pieces. The first is a
small, lightweight static library which is linked with the sim-
ulation code during compilation, and it is literally a front-end
to a second, heavier weight library which is pulled in only
when in situ analysis begins at runtime. We call the former
the “front-end library” and the latter the “runtime library”.

3.6. Architectural Implications

Several aspects of the proposed in situ library result in bene-
fits for interacting and interfacing with simulations. The sep-
aration between the front-end library and the runtime library
is one such aspect. In particular, modifications to simulation
codes to support Libsim can be minimal, as the front-end
library contains only approximately twenty simple control
functions (most of which take no arguments), and only as
many data functions as the simulation code wishes to ex-
pose. This separation also enables the front-end library to
be written in pure C. As such, despite the usage of C++ in
VisIt, no C++ dependencies are introduced into the simula-
tion by linking to the front-end library. This is critical since
many simulations are written in C and Fortran. Additionally,
by providing a C interface, the process of automatically gen-
erating bindings to other programming languages is greatly
simplified. The separation into front-end and runtime library
components also means that the runtime library implementa-
tion is free to change as VisIt is upgraded, letting the simula-
tion benefit from these changes automatically without relink-
ing to create a new executable. In addition, by deferring the
heavyweight library loading to runtime, there is effectively
zero overhead and performance impact on a simulation code
linked with Libsim when the library is not in use.

Another beneficial aspect is the manner in which data
are retrieved from the simulations. First, as soon as an in
situ connection is established, the simulation is queried for
metadata containing the list of meshes and fields that the
simulation wishes to expose for analysis. Just as in normal
VisIt operation, this list is transmitted to the client, where
users can generate plots and queries. Once the user creates
a plot and VisIt starts executing the plot’s data flow net-
work, the simulation’s data access functions are invoked to
retrieve only the data needed for the calculation. By contrast,
ParaView’s CoProcessing Library [BB10] requires adding
all problem-sized fields to a dataset before the minimal set
of variables is known, potentially causing unnecessary data
copying. Whenever possible in our approach, simulation ar-
rays are used directly in the VTK objects to avoid array
duplication, minimizing the impact on the performance and
scaling capabilities of simulation codes.

VisIt’s contracts are also important for in situ analysis.
They provide a uniform method for passing metadata among
filters in the data flow network, and they work in several
ways to enhance efficiency and scalability. For example, they
permit the coordination of data reducing optimizations, such
as selecting only data with spatial or variable extents within
the range relevant for a given analysis or visualization oper-
ation. Contracts also play a role when requesting data: filters
append the names of the data arrays they need to a contract
as it is sent towards the data source, so that the source only
reads and processes the arrays needed for the current oper-
ation. All these aspects of contracts are enabled for in situ
analysis and thus allow interactive in situ processing to be
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done economically, as only the minimal necessary data are
assembled for the data flow networks that the user creates on
the fly.

4. Instrumenting a Simulation Code

Simulation codes need to be instrumented to utilize our Lib-
sim library interface. Additions to the source code are usu-
ally minimal, and follow three incremental steps. The first
phase initializes the library and alters the simulation’s main
iterative loop to listen for request for connection from a VisIt
client. The second phase involves writing the data access
callback functions, the intermediate layer that bridges VisIt
simulations to allow data to be shared. The final phase adds
functions that let VisIt steer the simulation.

4.1. Adapting the Main Loop

VisIt connects to a simulation by opening a small data file
called a .sim2 file. The .sim2 file is a small file output by the
simulation and it contains information such as the host id and
port that VisIt needs to connect to the simulation. A simula-
tion must perform a small amount of initialization at startup,
including making library calls that write out the .sim2 file.
All simulations must call VisItSetupEnvironment and VisI-
tInitializeSocketAndDumpSimFile during their initialization.
The former function adds important VisIt-related environ-
ment variables that ensure VisIt can locate its shared libraries
and plug-ins, while the latter function actually writes out the
.sim2 file that VisIt uses to connect to the simulation. Par-
allel simulations require a small amount of additional ini-
tialization, telling Libsim about the simulation’s MPI com-
municator and providing callback functions for broadcasting
information.

In order for VisIt to connect to the simulation, Libsim cre-
ates a listening socket that can be used to detect inbound
VisIt connections. Of course, this means that the simulation
must service the socket as well as any input that eventu-
ally comes from VisIt. Libsim provides the VisItDetectInput
function for this purpose. VisItDetectInput must be called
periodically from a simulation’s main loop when VisIt con-
nections are permitted. VisItDetectInput can be called in a
blocking or non-blocking fashion, depending on the needs of
the simulation. This allows both timeout and polling-based
event handling schemes to be implemented. When no input
is available, the simulation is free to return to its calcula-
tions. When input is available, VisItDetectInput returns var-
ious codes which indicate the following conditions: VisIt is
trying to connect, VisIt has sent some commands, or, for
simulations which accept console input during runs, that a
console file descriptor has input to be read (see Figure 3).
The simulation is then free to handle the inputs appropri-
ately. It is worth noting that VisItDetectInput is called only
from the rank 0 process in a parallel application, as only that
process has a TCP connection to VisIt. The rank 0 process

reads commands from VisIt and all processors participate in
a collective MPI broadcast, after which all processors exe-
cute the commands in unison.

Figure 3: Simulation control flow after introducing in situ
processing.

4.2. Sharing Data

After instrumenting the simulation’s main loop with func-
tions that let VisIt connect and accept commands, the next
step is implementing data access callback functions. Data
access callback functions are written in C or Fortran and
are registered with the simulation runtime library, which will
call them on demand when gathering inputs for a data flow
network. This model ensures that no resources are wasted
exposing simulation arrays that will not be used by the data
flow network. Data access callbacks call library functions
to allocate opaque handles to data objects such as metadata,
mesh, and variable objects. The callback then populates and
returns the data object so the simulation runtime library can
transform it into a VTK object that can be used inside of
VisIt.

The required data layout for data objects matches that
of VTK, which means contiguous homogeneous arrays of
built-in C types (e.g. int, float, double) are used. If the simu-
lation data layout is incompatible with the VTK data layout
then the data access callback can create new temporary stor-
age into which data can be copied and given to VisIt. Such
arrays can be marked as being owned by VisIt so VisIt will
dispose of the associated memory after completing its calcu-
lations. An array whose data layout is compatible with the
VTK data objects can be marked as being owned by the sim-
ulation so VisIt will treat it as read-only and will make no
attempt to free its memory. In that case, the array is used
directly in the reference-counted VTK object during in situ
processing.
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4.3. Metadata

All VisIt database reader plug-ins expose methods for read-
ing both metadata and data. Metadata is lightweight infor-
mation about the real data such as type, dimensions, extents,
and whether the data exists in several pieces, called domains.
VisIt uses metadata internally for optimization and to popu-
late variable menus that allow the user to create plots. Re-
trieval of metadata, domain lists, and plottable data such as
meshes, variables, materials, and material species is done
using data access callback functions. Libsim provides func-
tions for registering the various data access callback func-
tions so they can be invoked. Metadata is central to VisIt’s
operation so the metadata callback function should be writ-
ten first. The role of the metadata callback function is to re-
turn a populated metadata object, which serves as a container
for global state and for various other objects such as mesh
and variable metadata objects.

4.4. Meshes

A metadata object will need to include at least one mesh
metadata object if real data are to be requested later during
analysis. Data flow networks are set up using metadata infor-
mation, and only when they are executed does VisIt request
the real data from the simulation. This contrasts with other
in situ schemes which build up an entire data object before
the data flow network’s inputs are known. Mesh metadata
objects contain information about the mesh, including the
number of domains which compose it. The number of do-
mains will vary depending on the simulation’s scheme for
parallelization and load balancing, but it is common to have
a 1:1 partition of domains to processors. In that case, the
number of domains reported for the mesh would equal the
number of processors. However, in VisIt, there is nothing to
prevent other more exotic workload distributions. VisIt gains
knowledge of how work is distributed among ranks through
the use of the domain list callback function. The domain list
callback simply returns a domain list object which contains
a list of integer identifiers corresponding to the domains that
are owned by the calling processor. VisIt’s load balancer uses
a domain list to restrict work to the processors that have it,
meaning that domains will be requested by only their local
task.

4.5. Variables

After mesh-related implementation has been completed, the
rest of the metadata object can be filled out so VisIt will
know which variables can be used. The simulation’s vari-
able callback function is called by VisIt any time field data
(scalars, vectors, tensors, arrays, and labels) is needed by the
data flow network. The variable callback must create a vari-
able data object and initialize it with simulation arrays (see
Figure 4). This mode simply passes simulation data arrays
back to VisIt for use in VTK objects. If the simulation data

layout is incompatible with VTK’s data layout then simula-
tion data must be copied into temporary arrays that can be
used to initialize VTK objects.

visit_handle
GetVariable(int domain, const char *name,

void *cbdata)
{

visit_handle h = VISIT_INVALID_HANDLE;
SimData_t *sim = (SimData_t *)cbdata;
if(strcmp(name, "pressure") == 0)
{
VisIt_VariableData_alloc(&h);
VisIt_VariableData_setDataD(h,
VISIT_OWNER_SIM, 1, sim->nx*sim->ny,
sim->pressure);

}
return h;

}

Figure 4: Variable callback function written in C.

4.6. Adding Control Functions

Simulations sometimes have command line interfaces which
let their users control them using textual console commands
as they execute. Libsim contributes some basic capabilities
that let the user advertise simple commands that appear
in the VisIt graphical user interface’s Simulation window.
These command buttons provide basic simulation steering
interactively within VisIt. We have outfitted many of our
simulation examples with command buttons that let the user
run, halt, and single step through simulations (see Figure 5),
though the nature of the buttons can be selected entirely by
the simulation writer. Commands are implemented by ex-
posing command objects in the simulation metadata and then
implementing a command callback function in the simula-
tion. Future work will add custom simulation user interfaces
to VisIt.

Figure 5: Command buttons in VisIt’s Simulation window.
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5. Results

We conducted our experiments on a 216 node visualization
cluster with two, 6 core 2.8GHz Intel Xeon 5660 processors
and 96Gb of memory per node. Our test system utilizes an
InfiniBand QDR high-speed interconnect and a Lustre par-
allel file system. We ran two types of tests to characterize
the performance of our library. The first test determined the
cost associated with introducing Libsim into the main loop
of a toy simulation. The second test investigated the perfor-
mance of in situ visualization versus I/O in a real simulation
code.

Adding Libsim to a typical simulation main loop means
calling VisItDetectInput and MPI_Bcast. We added timing
code to Libsim’s updateplots example program to measure
the associated overhead without VisIt connected to the sim-
ulation. We then ran the example program through 10K main
loop iterations. The timing results were 2µs and 8µs, respec-
tively for 512 core runs. The measurements remain consis-
tent once VisIt connects and is not requesting data. Connect-
ing to VisIt does increase the amount of memory used by
the simulation as this initiates loading the VisIt runtime li-
braries, which imposes a one time cost of approximately 1
second.

It has been demonstrated that I/O dominates VisIt’s execu-
tion time on diverse supercomputer architectures [CPA∗10].
That study indicated that VisIt’s iso-contouring performance
at 8K up to 64K cores was on average over an order of mag-
nitude faster than the I/O operations needed to obtain the
data from disk. In situ visualization uses simulation arrays
directly, and usually allows VisIt’s pipeline to execute in a
fraction of the time required for I/O. Although tests using
thousands of cores would better represent large supercom-
puters, in situ’s performance advantage over I/O even be-
comes apparent at modest core counts.

For our in situ experiment, we instrumented GADGET-
2 [Spr05], a distributed-memory parallel code for cosmolog-
ical simulations of structure formation (see Figure 6). We
ran GADGET-2 at 3 levels of concurrency: 32, 256, and
512 cores to measure in situ performance versus I/O per-
formance. We isolated the time required for GADGET-2 to
write its data to disk in two modes: one using collective I/O
to a single file, and again in a mode where each task writes its
own disk file. We separately recorded the timings of just the
visualization/analysis processing in the VisIt pipeline, ren-
dering a Pseudocolor plot of a scalar variable and saving a
2048 square pixel image to disk. We ran each of these tests
using 2 sets of initial conditions for GADGET-2, generating
particle sets with 16 million and 100 million particles.

In the larger test case where 100M particles were saved,
GADGET-2 would generate a 2.8Gb snapshot file. Since the
amount of data was constant for each test run, we find that
the timings for collective I/O are relatively consistent. In-
dependent files are the fastest means of writing files with

16 Million Particles
32 cores 256 cores 512 cores

I/O 1 file 2.76s 4.72s -
I/O N files 0.74s 0.31s -
VisIt pipeline 0.77s 0.34s -

100 Million Particles
32 cores 256 cores 512 cores

I/O 1 file 24.45s 26.7s 25.27s
I/O N files 0.69s 1.43s 2.29s
VisIt pipeline 1.70s 0.46s 0.64s

Table 2: Performance of visualization/analysis vs. I/O for
16M and 100M particles at different levels of concurrency.

Figure 6: VisIt client connected to GADGET-2 instrumented
with Libsim.

smaller core counts, though performance in this mode is in-
versely proportional to the core count, as the I/O subsystem
can absorb only a limited number of simultaneous requests
before its performance starts to degrade. By substituting a
visualization operation, in this case a Pseudocolor plot, for
writing a full 2.8Gb GADGET-2 snapshot file, we were able
to reduce the amount of data we write to a single 12Mb im-
age file. From our data, shown in Table 2, we observe that
for the selected visualization operation, in situ processing is
competitive with single-file I/O and exceeds collective I/O
performance. For smaller core counts with large sets of par-
ticles, the work performed per core is higher, resulting in a
longer run time versus single-file I/O. However, as the num-
ber of cores increases, the run time of the visualization pro-
cessing alone is far lower than that of either single-file I/O
or collective I/O. The margin of performance is large enough
that we could have generated several in situ visualizations in
the time needed to write a full size snapshot file. This makes
in situ analysis an attractive use of extra compute cycles in
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upcoming exascale computers and a powerful acceleration
technique for large scale computations.

6. Conclusions

We have demonstrated why in situ processing of simula-
tion data will become more important than ever as compute
capacity on new supercomputers further overwhelms their
I/O subsystems. We have implemented Libsim, an easy to
use library that enables in situ computations within simula-
tion codes by leveraging the analysis and visualization capa-
bilities of VisIt. Libsim adheres to design principles which
are likely to find acceptance within simulation code design
teams. Namely, we minimize impact to simulation perfor-
mance, minimize amount of new code that must be written,
and we provide access to a fully featured, parallel visualiza-
tion and analysis tool that excels at scale. Finally, we have
demonstrated how to instrument GADGET-2, a well-known
open source simulation, using our library and that adopting
in situ techniques results in speedups relative to traditional
I/O-based post-processing. Libsim is fully integrated with
the open-source distribution of VisIt, and our instrumenta-
tion of the GADGET-2 code has been re-distributed to its
original author to serve as an example for the community.

7. Future Work

We have created a useful library for instrumenting simula-
tion codes for in situ data analysis and visualization, and
there are many ways it can be enhanced. To handle the in-
herent challenges at the highest levels of concurrency, we
expect to enhance our library to provide means of more au-
tomatic in situ analysis so it can be less user-driven. In ad-
dition, we plan to further limit resources consumed by the
VisIt runtime libraries in order to lessen the impact that in
situ analysis has on the simulation.

The in situ visualization community will also be faced
with many challenges, as highlighted by Ma [Ma09]. There
are general challenges such as the need to reformulate some
classic visualization algorithms to better take advantage of
the domain decomposition imposed by the simulations, the
need to more carefully schedule inter-processor communica-
tions at high concurrency, and the need to accommodate data
extraction needs which can never be fully formulated before
the scientists actually “see” their data. We believe that a fully
featured library such as VisIt is best positioned to accommo-
date the high degree of flexibility required for interactive and
exploratory in situ visualization and analysis.
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