Article

A system hierarchy for brain-inspired

computing

https://doi.org/10.1038/s41586-020-2782-y
Received: 24 January 2020

Accepted: 10 August 2020

Youhui Zhang'**#¥, Peng Qu"*?*%, Yu Ji'**#, Weihao Zhang®**®, Guangrong Gao®,
Guanrui Wang>*, Sen Song?®, Guoqi Li**, Wenguang Chen'?, Weimin Zheng'?, Feng Chen?’,
Jing Pei**, Rong Zhao? Mingguo Zhao?’ & Luping Shi***

Published online: 14 October 2020

M Check for updates

Neuromorphic computing draws inspiration from the brain to provide computing
technology and architecture with the potential to drive the next wave of computer

engineering' . Such brain-inspired computing also provides a promising platform
for the development of artificial general intelligence*". However, unlike conventional
computing systems, which have a well established computer hierarchy built around
the concept of Turing completeness and the von Neumann architecture'® ™8, there is
currently no generalized system hierarchy or understanding of completeness for
brain-inspired computing. This affects the compatibility between software and
hardware, impairing the programming flexibility and development productivity of
brain-inspired computing. Here we propose ‘neuromorphic completeness’, which
relaxes the requirement for hardware completeness, and a corresponding system
hierarchy, which consists of a Turing-complete software-abstraction modeland a
versatile abstract neuromorphic architecture. Using this hierarchy, various programs
canbedescribed as uniform representations and transformed into the equivalent
executable on any neuromorphic complete hardware—that s, it ensures
programming-language portability, hardware completeness and compilation
feasibility. We implement toolchain software to support the execution of different
types of program on various typical hardware platforms, demonstrating the
advantage of our system hierarchy, including a new system-design dimension
introduced by the neuromorphic completeness. We expect that our study will enable
efficient and compatible progressin all aspects of brain-inspired computing systems,
facilitating the development of various applications, including artificial general

intelligence.

Brain-inspired computingis acomputing model and architecture that
has the potential to break the von Neumann bottleneck' and drive the
next wave of computer engineering?. Brain-inspired computing sys-
tems have been used for artificial intelligence**, and may provide
aroute towards artificial general intelligence®. The application of
brain-inspired computing to more general algorithms, other than
artificial intelligence, has also been explored' 2. All these applica-
tions present challenges for the performance, programmability and
productivity of brain-inspired computing systems.

Various algorithms, computational models and software designs
for brain-inspired computing are emerging. Although numerous neu-
romorphic chips have been proposed®™, they usually require specific
software toolchains®* %, As aresult, multiple layers of the brain-inspired
computing system—including the application model, system software
and neuromorphic device—are bound together, impairing the program-
ming flexibility and development productivity. Some studies have tried
to bridge the various software and hardware through domain-specific

languages® or development frameworks'®?*%, but these studies usu-
ally either do not consider completeness or implicitly rely on Turing
completeness. Little work has been done to address more fundamen-
tal issues, such as hardware completeness, programming-language
completeness and the generalized system hierarchy of brain-inspired
computing.

Existing computer hierarchy, such as of the Turing machine'®and the
vonNeumannarchitecture?, providesinsight into theimportance of
theseissues for computing systems (Supplementary Information sec-
tion1). Nearly all existing programming languages are Turing-complete
(thatis, they have the same capability as a universal Turning machine)
and the von Neumann abstract architecture supportsaTuring machine
through a Turing-complete interface (thatis, ageneral-purposeinstruc-
tionset). Through theintroduction of Turing completeness and a hierar-
chybased on Turing completeness and the von Neumann architecture,
tight coupling between software and hardware is avoided in current
computing systems, enabling efficient, compatible and independent

'Department of Computer Science and Technology, Tsinghua University, Beijing, China. 2Center for Brain-Inspired Computing Research (CBICR), Tsinghua University, Beijing, China. *Beijing
National Research Center for Information Science and Technology, Beijing, China. “Department of Precision Instruments, Tsinghua University, Beijing, China. *Department of Electrical and
Computer Engineering, University of Delaware, Newark, DE, USA. ®Department of Biomedical Engineering, Tsinghua University, Beijing, China. "Department of Automation, Tsinghua University,
Beijing, China. *These authors contributed equally: Youhui Zhang, Peng Qu, Yu Ji, Weihao Zhang. ®e-mail: zyh02@tsinghua.edu.cn; lpshi@tsinghua.edu.cn

378 | Nature | Vol 586 | 15 October 2020

https://doi.org/10.1038/s41586-020-2782-y
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-020-2782-y&domain=pdf
mailto:zyh02@tsinghua.edu.cn
mailto:lpshi@tsinghua.edu.cn

progress. By setting the minimum requirements for hardware (Turing
completeness), it became feasible to transform any programin a
high-level language into an equivalent instruction sequence on any
von Neumann processor (compilation).

By contrast, brain-inspired computing currently lacks a simple but
sound system hierarchy to support overall development®. Asaresult,
there are no clear and complete interfaces between neuromorphic
software and hardware and the interactions between the different
research aspects are complex?. Further, because many brain-inspired
chipsare not designed for general-purpose computing and few of them
provide traditional instruction sets, it is unclear whether they are
Turing-complete, or even whether Turing completeness is necessary.

Turing completeness is the feasibility foundation of traditional
compilation, requiring equivalence in program expression and trans-
formation. By contrast, brain-inspired systems possess distinctive
attributes, such asapproximation (brain-inspired systems usually fol-
low the computing model of neural networks to mimic the behaviours
or characteristics of biological neural networks)*° 2, For example, for
many brain-inspired chips, including early neural-inspired chips® and
contemporary brain-inspired systems> ™, approximation is a way to
achieve low power and high performance, implemented using either
low-precision digital calculations>*%1%* or analogue circuits™ 133338,
We therefore propose neuromorphic completeness, amore adaptive
and broader definition of completeness for brain-inspired computing.
It relaxes the completeness requirement for neuromorphic hardware,
which could improve the compatibility between different hardware
and software designs, and enlarge the design space by introducing a
new dimension, the approximation granularity.

Neuromorphic computingis also distinct from traditional comput-
ing?in thatituses colocated computing and storage, uses event-driven
computation based on spikes® (the characteristic of spiking neural
networks) and has greater potential for high parallelism, among other
things. These differences make it difficult for traditional computer
hierarchies to describe brain-inspired applications intuitively and to
execute themefficiently. We therefore further propose asystem hierar-
chy for brain-inspired computing with high versatility and universality.
This hierarchy has three levels: software, hardware and compilation.

Software

Software refers to programming languages or frameworks and the
algorithms or models built on them. At this level, we propose a uniform
and general software-abstraction model—the programming operator
graph (POG)—toaccommodate the various brain-inspired algorithms
and model designs. The POG is composed of a unified description
method and an event-driven, parallel program-execution model that
integrates storage and processing. It describes what a brain-inspired
program is and defines how it is executed. Because the POG is Turing
complete, it supportthe various applications, programminglanguages
and frameworks to the greatest extent.

Hardware

Hardware includes all the brain-inspired chips and architecture mod-
els. We design the abstract neuromorphic architecture (ANA) as the
hardware abstraction. Itincludes an execution primitive graph (EPG) as
theinterfacetothe upperlayer todescribe the programit canexecute.
The EPG has a hybrid control-flow-dataflow representation, which
maximizesitsadaptability for different hardware and is consistent with
apromising hardware trend, the hybrid architecture®*.

Compilation

Itis the middle layer that transforms a program into an equivalent
formthat hardware supports. For feasibility, we present a basic set of
hardware execution primitives thatis widely supported by mainstream
brain-inspired chips, and prove that hardware equipped with this set
is neuromorphic-complete. We also implement a toolchain software

asaninstance of the compilation layer to demonstrate the feasibility,
rationality and advantages of the hierarchy.

With this hierarchy, we avoid tight coupling between hardware and
software, ensuring that any brain-inspired program can be represented
by the Turing-complete POG and then compiled into an equivalent and
executable EPG on any neuromorphic complete hardware (Fig.1). We
also ensure the programming portability, hardware completeness
and compilation feasibility of brain-inspired computing systems. We
present experiments that demonstrate the optimization effect of the
system design dimension that is introduced by neuromorphic com-
pleteness. Moreover, we argue that our hierarchy facilitates software—
hardware codesign.

Neuromorphic completeness

Forany givenerror gap €>0and any Turing-computable functionf(x),a
computational systemis called neuromorphic completeifit canachieve
afunction F(x) such that [|F(x) - fix)|| < € for any valid input x (Supple-
mentary Information section 2).

Neuromorphic completeness is used to measure the compatibility
of neuromorphic computing systems. It relaxes the requirement for
completeness from exactly computing a function with an algorithm
to approximating it. An algorithm in the terminology of computer
science is acomputational procedure defined by a Turing machine.
Thus, computing a function with an algorithm means that the system
simulates a Turing machine and then uses the algorithm to achieve the
function. By contrast, achieving afunction by approximation does not
require such a computation procedure.

The approximation capability of neural networks is defined by the
universal approximation theorem*°, A multilayer perceptron with
only one hidden layer can approximate any function arbitrarily well.
Itapproximates afunction by memorizing the mapping of the function.
Ontheother hand, simulating a Turing machine requires mechanisms
suchasrecursion and control flow to achieve any number of state transi-
tions. Amultilayer perceptron with one hidden layer has only two tran-
sitions between the input and output; thus, itis not Turing-complete.
However, multilayer perceptrons and Turing-complete systems are
both neuromorphic-complete.

Inessence, neuromorphic completeness connects universal approxi-
mation with universal computability. It lays the theoretical foundation
for the feasibility of converting a Turing-complete program into an
equivalent programon aneuromorphic-complete system, which broad-
ensthe scope of complete hardware. Further, because neuromorphic
completenessis compatible with approximate and exact computation,
it expands the design space of brain-inspired systems.

System hierarchy

Inthe POG (Fig. 2a, Supplementary Information section 3),a program
is defined as a directed graph in which each node is an operator, with
the edges describing the precedence relationship of different opera-
tors. The operator carries out the actual computation andis triggered
for execution when it receives all the input events; that is, the POG is
event-driven. Moreover, an operator contains only the operations that
dealwith thelocal storage and external inputs. Thus, these operations
areinherently suitable for the processing mode thatintegrates memory
and computation.

The POG greatly extends the pure dataflow activity model*** (Sup-
plementary Information section 3.6), while inheriting its support for
fine-grained parallelism. The POG s Turing-complete (Supplementary
Information section 3.5, Supplementary Fig.1). Therefore, it canalso be
regarded as a base programming language for various brain-inspired
applications and is compatible with existing brain-inspired frame-
works'®?*2¢? The POG provides dedicated operators (Extended Data
Fig.1, Supplementary Information section 3.3) to help users describe

Nature | Vol 586 | 15 October 2020 | 379

Article

Brain-inspired computing hierarchy

Modern computing hierarchy

|y F “- roda
Applications Applications u '
, L =
Software Turing-complete 4 class A{ def say(: Turing-complete
m / o private a; a = ‘Hello’
Neural-network \ /\// Programming publicb; b = ‘World,
framework =4 < . language print(a + b)
a Nengo PyTorch } JAVA Python
l Exactly equal l Exactly equal
e N A
J J J KN
4 4 4 r W
X AT A PGS Intermediate Turing-complete
H A g p
Turing-complete POG N + 0> JN 0 e P representation . &N
N N “ [| “
Compiler
l Approximately equal l Exactly equal
Neuromorphic- Tier 2 o ;
complete ERC Blocks nsiructions Turing-complete
l Exactly equal l Exactly equal
Inter-connection network L, PN
Instruction-set | INPUt ALU
architecture;
ANA von Neumann
Neuromorphic- PU PU Bl architecture Output <|
Hardware complete Turing-complete
e | mEn B nn
Neuromorphic R h R Ennm General-purpose
chips LIS chips
s E-EE pann
TrueNorth SpiNNaker Tianjic Loihi CPU GPU

Fig.1|Hierarchies of the brain-inspired computing system and traditional
computing systems. Inspired by traditional computing system hierarchy
(right), we propose a brain-inspired computing system hierarchy (left), which
also has threelevels: software (top), compiler (middle) and hardware (bottom).
Inthe traditional computing system hierarchy, the software layer refers to
various applications and the Turing-complete programming languages (such
asJAVA and Python). During the compilation procedure, intermediate
representations of software (such as the abstract syntax tree) will be converted
tointermediate representations of hardware (suchasinstructions).Inthe
hardwarelayer, theinstructions are run on central processing units (CPUs) or
graphics processing units (GPUs) that follow the von Neumann architecture.
ThevonNeumann architectureincludes anarithmetic and logic unit (ALU),
control unit, memory, input and output. The precise equivalence between

brain-inspired computing operations more easily and provide more
performance hints. Another feature of the POG is composability (Sup-
plementary Information section 3.4). We can define any part of aPOG
as anew operator, while keeping the rest unchanged, as long asiit is
supported by the underlying hardware. This enables the description of
complicated models and is conducive to software-hardware codesign
(Supplementary Information section 10.2).

The ANA (Supplementary Information section 6) contains massive
processing units, each of whichis colocated with a private memory and
scheduling unit(s). The processing units provide hardware execution
primitives, which perform the major computationin parallel, and are
scheduled by scheduling units. All these units communicate through
aninterconnected network. The ANA is a logical design that is flex-
ible to different hardware implementations (Fig. 2c). For example,
the processing unit can be implemented by memristor crossbars3+>’
or general-purpose processors. The ANAis therefore capable of being
instantiated into several well known neuromorphic chips (Supplemen-
tary Information section 6.1, Supplementary Fig. 3).

The interface of the ANA (the EPG) is a hybrid control-flow-data-
flow two-tiered graph (Fig. 2b, Supplementary Information section 4,

380 | Nature | Vol 586 | 15 October 2020

different layersis assured by Turing completeness. For the brain-inspired
computing system hierarchy, the software layer refers to the neuromorphic
applications and developing frameworks (such as Nengo and PyTorch).
Correspondingly, we propose the POG as the intermediate representations of
software and the EPG as intermediate representations of hardware (CFG,
control-flow graph). The compilationtoolsareintroduced to transformthe
POGintothe EPG. For the hardware layer, we propose ANA, whichincludes
schedule units (SUs), processing units (PUs), memory and an inter-connection
network as the abstraction of the neuromorphic hardware (TrueNorth,
SpiNNaker, Tianjic and Loihi). Considering the approximation property of
brain-inspired computing, we further propose the notion of neuromorphic
completeness, whichintroduces approximation equivalence in addition to
precise equivalence.

Supplementary Fig. 2). Tier one is a control-flow graph in which each
nodeis abasicblock containing one or more execution primitives and
the directed edges represent jumps from one basic block to another.
Tier two is a dataflow graph that is formed by execution primitives
according to the data dependency inside each basic block.

Basic execution primitives

The basic set of execution primitives (Supplementary Information sec-
tion 4.1) contains two types of computation primitive, as a multilayer
perceptron does: the weighted-sum operation and the element-wise
rectified linear unit operation. These primitives are generally appli-
cable to mainstream brain-inspired chips; for example, chips that
support the leaky integrate-and-fire model can also be considered to
provide two primitives (Supplementary Information section 4.2). We
provide a constructive proof that the EPG, with the basic execution
primitives, is neuromorphic-complete (Supplementary Information
section 4.3). This proof also provides direction for building the cor-
responding compiler that can transform any Turing-complete POG
into an equivalent EPG.

v d g

2

£

F 5

a

&

Vreset—> T N

o

g

Z Spike w
L

Collocated computation
b ﬁ\ and memory —
(0%

c 0 — g
e
=]
o
€
9]
o

1) <) >
S
]
(I
ELU function:
1 if (x<0)
2 output=a(e*-1);
3 else
4 output=x;

Fig.2|POG,EPGand ANA. a, APOG of the leakyintegrate-and-fire (LIF)
model—acomplicated model thatinvolves normal operators, control-flow
operators, aparameter updater, and soon. e, i, excitatory and inhibitory
synapticinputs, P, ;, corresponding synaptic weights; v, membrane potential;
Vieserr reset potential, Vs, firing threshold; P, ., model-related parameters;
F,false; T, true. The computation of the operators are defined as follows:
synapse,u.=Y e, andu; =3, iyP,; dendrite, u=Poq+ Poceatty; LIF,

U= P+ Py, +u. b, EPG. The tier-one control-flow graph (CFG) is executed by
scheduling units (SUs) to determine which basic blockis ready. If oneis ready,
the corresponding scheduling unit will assign all enabled primitives to some
processing units (PUs). If an assigned processing unitis free, it will load all
necessary datafrommemory, carry out the computation and deliver the

Moreover, the EPG, with this basic set, is anideal example to show that
the neuromorphic completeness connects universal approximation with
universal computability. Onthe one hand, the universal approximator can
beexpressed as anextreme instance of the EPG: the tier-one control-flow
graph degrades to only one block, which contains a multilayer percep-
tronthatapproximates the entire program. Onthe other hand, if we use
basic execution primitives to achieve some basic operations precisely
(for example, Boolean functions), and use these basic operations to
compose more complicated computations and control-flow schemas,
thenthe EPG constructedin this way is Turing-complete (modern digital
computers are based on deterministic Boolean circuits). Between these
two extremes, an EPG can be expressed in various forms with different
approximation granularities (Fig. 2d), with different trade-offs between
performance and resource consumption.

outputtothose processing units for the subsequent primitives.c, The
correspondence between the elements of the EPG, the units of the ANA, and
possibleimplementations: (I) the scheduling units can be implemented
centralized or distributed in the form of asoft core, look-up table, configurable
logicblock, and so on; (Il) the processing units canbe implemented as a
general-purpose core or dedicated functional unit; (111) the memory options
includeisolated memory, near or colocated processing memory, and so on; (IV)
theinter-connection network canbe abus network, network-on-chip,and so
on.d, Programs of an activation function of the exponential linear unit (ELU)
with different approximate granularities; x, input value; f(x), functions with
different approximate granularities; a, a constant.

Toolchain, applications and experiments

We build aframework for the toolchain software according to the hier-
archy, which consists of two parts: the compiler and the mapper. The
compiler (Supplementary Information section 5.1) transforms the
POG into an equivalent EPG. As shown in Fig. 3b, the compiler first
splits or merges the operators in the POG to the proper granularity
of approximation. Then, all operators that execution primitives can-
not precisely implement (determined using ‘template matching’) are
approximated using a method that follows the above constructive
proof of the neuromorphic completeness of the EPG. There are sev-
eral optimization techniques to reduce the resource consumption
of the EPG that is generated (Supplementary Information sections
5.2-5.5). The mapper (Supplementary Information section 7, Fig. 3c,

Nature | Vol 586 | 15 October 2020 | 381

Article

a
Coordinates
Camera —> CANN [———
. State signal
Microphone —>|
Balance data
Other sensors MLP —

i
1

Transform and

Template matching;
general approximation

Schedule each Put each

partition the graph sub-graph primitive on PU
d General-purpose GPU Tianjic FPSA
19.84
9.85 200 4.58 18 _10% 94 5175 5388 33

T 10 " 16| 3.84 1488 J4 o 2.38 E
2] 5] [l
o 8 o F & © 102 o &
2. < 2 PE g :
§_ .é' 8 12 F é’ 12 E 1
< 4 S o 9107k 14 |4
5 g L 1.35 Z = z
=1 © 4 1 <] 0.57
o 2 = - 0.858 2.59 1 =
= = rRo.27 1.04 0.27 =
o 0 100 .

MLP CNN SNN CANN NSM MLP CNN SNN CANN NSM MLP CNN SNN CANN NSM

e CANN SNN NSM

— :'g 3.021 3.065 - 150 121.173 P 15 1.235 1.279

g 3. 1 £

£ £ 100 £ 1.0

s 20 p © 0.573

0 2 50 g 05

< 10 < <

2.007 2.205
0.0 0.0

Approximation granularity

Fig.3|Toolchainandbicycledrivingand tracking experiment.a, A
convolutional neural network (CNN) forimage processing and object
detection, aspiking neural network (SNN) for speech recognition, acontinuous
attractor neural network (CANN) for object tracking and a multilayer
perceptron (MLP) for sensory and control tasks; an SNN-based neural state
machine (NSM) integrates them for decision-making. b, The compilation
workflow. We firstadjust the POG to an appropriate granularity and then
convertittoanEPG through template-matching and/or general
approximation. The details are provided in Supplementary Information
section 5.1. ¢, The mapping workflow. The mapper maps the EPG to the specific

SupplementaryFig.4) deploys the EPG thatis generated tothe hardware
asefficiently as possible, while satisfying the hardware constraints. We
implement a toolchain instance (Methods, Supplementary Informa-
tionsection 8) that can convert various applications into uniformand
hardware-independent intermediate representations (POGs), and
compile each POG to the EPG of execution primitives specific to the
target before mapping.

Currently, three hardware platforms are supported, all of which
aretypical neuromorphic-complete systems: (1) the general-purpose
graphics processing unit (GPU), abrain-inspired chip; (2) Tianjic**; and
(3) amemristor-based deep neural network accelerator, FPSA*. The
general-purpose GPU is a traditional Turing-complete system, whichis
completely dependent on precise computing. FPSA provides efficient
and high-density basic execution primitives, realizing different func-
tions mainly through approximation. Tianjic supports both precise
computing and approximation.

We carried out experiments for three applications to demonstrate the
feasibility and versatility of the hierarchy, and the design tradeoffintro-
duced by neuromorphic completeness (Methods). The first application

382 | Nature | Vol 586 | 15 October 2020

Approximation granularity

Approximation granularity

hardware. It contains three steps: Partition the graphinto sub-graphs, schedule
each sub-graph, and map each operator to aspecific component
(Supplementary Informationsection 7). d, The performance (throughput; red,
leftaxis) and hardware overheads (area; blue, right axis) of the neural networks
onthethree platforms. e, Resource consumption (area) versus approximation
granularity (three neural networks on FPSA). The abscissaindicates the gradual
decreaseinapproximation granularity (left toright). Asthe granularity grows,
the costdecreases gradually. If we furtherincrease the granularity, the
hardware consumptionincreases exponentially and so cannot beillustratedin
thisfigure.

isahybrid spiking-artificial neural network model for bicycle driving
and tracking™. It contains five neural networks, each a different type
(Fig. 3a, Supplementary Information section 9.1). The POG of each
neural network is the same across different hardware platforms before
compilation. The approximation error is set to zero; that is, all three
platforms behave the same in this experiment. The performance and
area consumption for the three platforms areshownin Fig.3d. Because
FPSArealizes functions through approximation, the choice of approxi-
mation granularity has alarge effect on the hardware cost (Fig. 3e).
The second application is the boids model* for bird-flock simulation.
Itis a non-neural-network application that requires many nonlinear
tensor computations (Fig. 4a, Supplementary Information section
9.2). The toolchain can support it on the three platforms; the running
performance and cost are shown in Fig. 4b. Figure 4c illustrates the
behaviour of this application with different approximation errors.
Thegreater the error (which generally means the smaller the hardware
overhead), the greater the difference from the behaviour of the exact
calculation. Because of the chaotic aspect of this model, the attributes
of the flock movement are maintained as the approximation error is

a General-purpose GPU

N O D~
PO IS
& &
F S L
RN N
E

Q

<

[

3

[

£

'_

20 50 100
Population size

c

0.1% error

V{J“';"’ y
TR
1% error

. A4y
'
“ M‘}‘“‘ﬂ[‘
A‘AA
4‘i\\“}AAA
44“‘¥‘k
e TAINLY
€« >
AR Y
>

10% error
-

»

4

4

4

v

v 4

—

o N B OO O

FPSA

Tianjic

™ ™)
& & (]
o) NS
S8
20 50 100 0 0 20 50 100
Population size Population size

f

Approximator

700

600

500
400
300
200
100

Cost

» a

4

v"é "' [3
'v‘{v fra

ror

L3

IS

Strategy

>
»~

NS

YZyr

D>
W,
a9

A [

4
>
»

<
L 8

v

>

v
-

-

-
Fig.4 | Experimental results. a, Boids model. The formal definitionis
providedin Methods section ‘Boids model for bird flock simulation’. Each bird
(or boid; black triangles) follows three rules to determine their behaviour: a
separationrule, analignmentruleand acoherentrule. Each rule has an
associated field of perception (defined by the relevant perception distance; eg,
redcircle) and field of view (FOV; eg, red shaded region). For simplicity, we
adopt the configuration on theleft (green and blue). The perception distances
forthealignmentrule (r,) and the separationrule (r,) are limited (withr,>r,);
the corresponding fields of view are the entire green (FOV,) and blue (FOV,)
circles. The perceptiondistance for the cohesionrule (r.) is unlimited; the
corresponding field of view (FOV,) is the whole simulation space.
b, Performance (throughput; red, left axis) and hardware consumption (area;
blue, right axis) of the boids model. ¢, Boids model at different error rates.
Allimages are captured at frame 500, inwhich every triangle represents abird:
blueistheresult of approximation; blackis the result of exact calculation, for

limited. This experiment demonstrates that the application scope of
our proposal extends to non-neural networks, by taking advantage of
relevant approximations.

The third application is QR decomposition, acommon mathemati-
cal algorithm (Supplementary Information section 9.3). It requires
various nonlinear calculations, which makes it a challenge for some
brain-inspired platforms. We use the universal approximator to real-
izeallthe calculations showninFig. 4d (others are linear, which can be
calculated exactly). An approximator can cover one or more successive
steps (different approximate granularity), which leads to multiple
approximation strategies. We therefore use a fusion space network
(Fig.4e) tovisually represent the strategy space, and a heuristic search-
ing method asanoptimization strategy (Fig. 4f, g). This experiment fur-
ther demonstrates that our proposal supportsarbitrary applications.
Italso shows that the tradeoff between approximation granularity and
performanceintroduced by neuromorphic completeness is beneficial
to reducing hardware cost, provided that some error limit is met.

x|

Xy

Granularity

comparison.d, The partial calculation steps for QR decomposition. Each node
isabasicstep,and the numbersrepresent the calculation function (indicated
below). e, The fusion space network enumerates all the possible approximators
ind.Eachnodeidentifies aunique approximator and the numbers represent
thesuccessive stepsitapproximates. Thered triangles indicate the coverage of
agivenapproximator (orange nodes). The two red triangles shown (for two
approximators, ‘12’ and ‘345’) form an approximation strategy of the entire QR
decomposition. f, Cost of allapproximators. Each corresponds toanodeinthe
fusionspacenetworkine; the values of each pointare provided in Extended
Data Tablel. The colour of eachcircleidentifies the fusion level; the size
indicates the cost. Moreover, theredder the point, the higher the cost. g, Cost
ofallapproximation strategies and their approximate granularity (values of
eachpointare provided in Extended Data Table 2). The strategy of
approximators ‘12" and ‘345’ is optimal (red lines; ‘Best’); the greenlines are the
search path fromthe heuristic algorithm.

Conclusion

We have proposed definition of completeness for brain-inspired
systems, which broadens the scope of the complete hardware
and introduces a new dimension of system design, the approxi-
mation granularity. Combined with the proposed system hier-
archy, which includes the software- and hardware-abstraction
models, the extended definition of completeness enables the
equivalent conversion between Turing-complete software and
neuromorphic-complete hardware; thatis, it decouples the software
and hardware. Our design philosophy makes clearer the interfaces
and divisions between the different aspect of the system, which
may help multi-disciplinary studies. We hope that further effort
will be devoted to this fundamental hierarchy to improve the pro-
ductivity of brain-inspired computing development*¢, including
the development of artificial general intelligence (Supplementary
Information section 10).

Nature | Vol 586 | 15 October 2020 | 383

Article

Online content

Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-020-2782-y.

20.

21.

Waldrop, M. The chips are down for Moore’s law. Nature 530, 144-147 (2016).

Kendall, J. D. & Kumar, S. The building blocks of a brain-inspired computer. Appl. Phys.
Rev.7, 011305 (2020).

Zhang, B., Shi, L. P. & Song, S. Creating more intelligent robots through brain-inspired
computing. Science 354 (Spons. Suppl.), 4-9 (2016).

Roy, K., Jaiswal, A. & Panda, P. Towards spike-based machine intelligence with
neuromorphic computing. Nature 575, 607-617 (2019).

Chen, Y. et al. DianNao family: energy-efficient hardware accelerators for machine
learning. Commun. ACM 59, 105-112 (2016).

Jouppi, N. P. et al. In-datacenter performance analysis of a tensor processing unit. In Proc.
44th Annu. Int. Symp. Computer Architecture 1-12 (IEEE, 2017).

Schemmel, J. et al. A wafer-scale neuromorphic hardware system for large-scale neural
modeling. In Proc. 2010 IEEE Int. Symp. Circuits and Systems 1947-1950 (IEEE, 2010).
Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable
communication network and interface. Science 345, 668-673 (2014).

Furber, S. B. et al. The spinnaker project. Proc. IEEE 102, 652-665 (2014).

Davies, M. et al. Loihi: a neuromorphic manycore processor with on-chip learning. IEEE
Micro 38, 82-99 (2018).

Benjamin, B. V. et al. Neurogrid: a mixed-analog-digital multichip system for large-scale
neural simulations. Proc. IEEE 102, 699-716 (2014).

Friedmann, S. et al. Demonstrating hybrid learning in a flexible neuromorphic hardware
system. IEEE Trans. Biomed. Circuits Syst. 11,128-142 (2017).

Neckar, A. et al. Braindrop: a mixed-signal neuromorphic architecture with a dynamical
systems-based programming model. Proc. IEEE 107, 144-164 (2019).

Pei, J. et al. Towards artificial general intelligence with hybrid Tianjic chip architecture.
Nature 572,106-111(2019).

Goertzel, B. Artificial general intelligence: concept, state of the art, and future prospects.
J. Artif. Gen. Intell. 5, 1-48 (2014).

Turing, A. M. On computable numbers, with an application to the Entscheidungsproblem.
Proc. Lond. Math. Soc. 2, 230-265 (1937).

Eckert, J. P. Jr & Mauchly, J. W. Automatic High-speed Computing: A Progress Report on
the EDVAC. Report No. W-670-ORD-4926 (Univ. Pennsylvania, 1945).

von Neumann, J. First draft of a report on the EDVAC. IEEE Ann. Hist. Comput. 15, 27-75
(1993).

Aimone, J. B., Severa, W. & Vineyard, C. M. Composing neural algorithms with Fugu. In
Proc. Int. Conf. Neuromorphic Systems 1-8 (ACM, 2019).

Lagorce, X. & Benosman, R. Stick: spike time interval computational kernel, a framework
for general purpose computation using neurons, precise timing, delays, and synchrony.
Neural Comput. 27, 2261-2317 (2015).

Aimone, J. B. et al. Non-neural network applications for spiking neuromorphic hardware.
Proc. 3rd Int. Worksh. Post Moores Era Supercomputing 24-26 (IEEE-TCHPC, 2018).

384 | Nature | Vol 586 | 15 October 2020

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Sawada, J. et al. Truenorth ecosystem for brain-inspired computing: scalable systems,
software, and applications. In Proc. Int. Conf. High Performance Computing, Networking,
Storage and Analysis 130-141 (IEEE, 2016).

Rowley, A. G. D. et al. SpiNNTools: the execution engine for the SpiNNaker platform. Front.
Neurosci. 13, 231(2019).

Rhodes, O. et al. sPyNNaker: a software package for running PyNN simulations on
SpiNNaker. Front. Neurosci. 12, 816 (2018).

Lin, C. K. et al. Programming spiking neural networks on Intel’s Loihi. Computer 51, 52-61
(2018).

Davison, A. P. et al. PyNN: a common interface for neuronal network simulators. Front.
Neuroinform. 2,11(2009).

Bekolay, T. et al. Nengo: a Python tool for building large-scale functional brain models.
Front. Neuroinform. 7, 48 (2014).

Hashmi, A., Nere, A., Thomas, J. J. and Lipasti, M. A case for neuromorphic ISAs. In ACM
SIGARCH Computer Architecture News Vol. 39, 145-158 (ACM, 2011).

Schuman, C. D. et al. A survey of neuromorphic computing and neural networks in
hardware. Preprint at https://arxiv.org/abs/1705.06963 (2017).

LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444 (2015).

Poggio, T. & Girosi, F. Networks for approximation and learning. Proc. IEEE 78, 1481-1497
(1990).

Esmaeilzadeh, H., Sampson, A., Ceze, L. & Burger, D. Neural acceleration for
general-purpose approximate programs. IEEE Micro 33, 16-27 (2013).

Mead, C. & Ismail, M. Analog VLSI Implementation of Neural Systems Ch. 5-6 (Springer,
1989).

Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found.
Nature 453, 80-83 (2008).

Prezioso, M. et al. Training and operation of an integrated neuromorphic network based
on metal-oxide memristors. Nature 521, 61-64 (2015).

Ji, Y. et al. FPSA: a full system stack solution for reconfigurable ReRAM-based NN
accelerator architecture. In Proc. 24th Int. Conf. Architectural Support for Programming
Languages and Operating Systems 733-747 (ACM, 2019).

Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A. & Eleftheriou, E. Stochastic phase-change
neurons. Nat. Nanotechnol. 11, 693-699 (2016).

Negrov, D. et al. An approximate backpropagation learning rule for memristor based
neural networks using synaptic plasticity. Neurocomputing 237, 193-199 (2016).

Maass, W. Networks of spiking neurons: the third generation of neural network models.
Neural Netw. 10, 1659-1671 (1997).

Leshno, M. et al. Multilayer feedforward networks with a nonpolynomial activation
function can approximate any function. Neural Netw. 6, 861-867 (1993).

Dennis, J. B., Fosseen, J. B. & Linderman, J. P. Data flow schemas. In Int. Symp. Theoretical
Programming 187-216 (Springer, 1974).

Jagannathan, R. Coarse-grain dataflow programming of conventional parallel computers.
In Advanced Topics in Dataflow Computing and Multithreading 113-129 (IEEE, 1995).
Zhang, W. & Yang, Y. A survey of mathematical modeling based on flocking system.
Vibroengineering PROCEDIA 13, 243-248 (2017).

Hennessy, J. & Patterson, D. A new golden age for computer architecture. Commun. ACM
62, 48-60 (2019).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020

https://doi.org/10.1038/s41586-020-2782-y
https://arxiv.org/abs/1705.06963

Methods

We carry out three experiments to show the decoupling feature and the
new optimization space introduced by neuromorphic completeness.
The first two experiments, bicycle driving and tracking and the boids
modelforbird flock simulation, are deployed on three target hardware
by the toolchain: general-purpose GPU, Tianjic chip and FPSA*. The
last one, QR decomposition by Givensrotationsisatheoretical analysis
experiment.

Hardware platforms

General-purpose GPU. Itis Turing-complete and providesrich appli-
cation development interfaces (such as CUDA and cuBLAS). The GPU
server we used has an Intel Xeon E5-2680 v4 CPU, NVIDIA Tesla P100
with 3,584 CUDA cores and 512 GB memory.

Tianjic. Tianjic'* is a many-core neuromorphic chip that supports the
massive parallel execution of ANNs, SNNs and ANN-SNN hybrids. Its
scheduling components support the general control-flow logic of the
ANN/SNN. Moreover, Tianjic adopts the near-memory computing
mode, and the memory in a Tianjic core can be shared by many primi-
tives in the same core or used as a buffer for intermediate data (Sup-
plementary Fig. 5).

FPSA. The architecture of FPSA* includes massive compact and effi-
cient memristor-based processing elements (Supplementary Fig. 6),
which support only the ReLU and in situ weighted-sum operations.
Its communication subsystem is an FPGA-like reconfigurable route-
ing architecture with massive wiring resources. Moreover, it provides
spiking memory blocks as on-chip buffers for caching intermediate
dataand configurable logic blocks to support arbitrary control logic.

Toolchain

The toolchain includes compilation and mapping. For compilation,
one key technique is template matching (Supplementary Fig. 7). It is
an equivalent conversion that uses one or more execution primitives
to match specific operator graph(s) in the POG.

The other technique is to construct the universal approximator for
any given function (Supplementary Fig. 7). It is based on the afore-
mentioned constructive proofand requires the pointsto be sorted to
satisfy the induction condition and determine the hypersurface for
each point. Directly picking the points according to the definition of
theinduction conditionis time-consuming. By contrast, we pick them
inareverse order, from X, to X;,. We first constructa convex hull with
all m points, and then randomly pick one vertex of the convex hull as
X and remove it from the points. The rest of the points form a new
convex hull. The facets facing X|,,, can be used as a hypersurface to
separate X, fromother points. We pick the one with the largest distance
fromX(,,. Then, we pick a vertex from the new convex hull as X, and
repeat the process until only n+1points remain. The last points satisfy
theinduction conditioninany order. Werandomly pick them, and get
thebest separation hypersurface for each of them. Thebest oneis the
onewiththelargest distance. Thus, if we move the origin to the picked
points, the normal vector of the hypersurface should fall in the linear
subspace spanned by the rest of the points and the hypersurface should
pass through all the rest of the points. Suppose the chosen point is
X,, the rest of the points are X=(X,, ..., X;) and the normal vector is N.
Then, N=a(X-expand(X,)), and N(X - expand(X,)) + b=0.Here, ais
acoefficient vector, expand(X,) = (X,, Xo, ..., Xo) Which has kelements
andb=(b, b, ..., b); because we care only about the normal vector N,
we can set b to any non-zero value. Thus, we solve (X — expand(X,))
(X-expand(X,))'a+b=0togetaand thenN.

With the sorted points and the corresponding hypersurface, we
use the aforementioned constructive proof to construct universal
approximators. The cost depends on the number of points. Toreduce

the cost, we decrease the number of points and fine-tune the universal
approximator using backpropagation with Adam optimization. Usu-
ally, we set a conditionto stop the fine-tuneiteration, such astheerror
being smaller than a certain threshold.

The mapping is hardware dependent. For the GPU, the primitives
in the EPG are the same as those in the POG, and the control flow is
expressed as the control flow of CUDA.

For the FPSA, the primitives are supported by the processing ele-
ment directly. The control flow is synthesized to configurable logic
blocks and the buffers required are synthesized to spiking memory
blocks. The processing elements, configurable logic blocks and spiking
memory blocks form a netlist to achieve the functionality of the EPG.
Then, the placement and routeing tools of the FPSA generate the chip
configuration from the netlist. Details are provided in Supplementary
Information sections 8.2.5and 8.2.6.

For Tianjic, the EPG should be divided onto many cores and the task
of each core should be satisfied with the resource restriction (that is,
storagerestriction and computation restriction). The corresponding
control, memory and routeing information will also be configured®.

Bicycle driving and tracking

The bicycle driving and tracking experiment is a hybrid ANN-SNN
system™, constructed from five different neural networks: a CNN, an
SNN, a CANN, an MLP and a NSM.

CNN. Itis forimage processing and object detection, which has three
convolutional layers, two max-pooling layers and two fully connected
layers. It takes 70 x 70 greyscale images as the input and outputs the
coordinates of the human and obstacles.

SNN. It processes voice signal from the microphone and outputs the
corresponding control commands. It is a 510-256-7 fully connected
network. Each neuronis an LIF model. A detailed definitionis provided
inSupplementary Information section 9.2.

CANN.Itis designed for object tracking. Itis aone-layer fully connected
recurrent neural network, which contains 20 x 24 neurons. It receives
theimages clipped by the initial human coordinates from the CNN and
outputs the coordinates of the tracked target.

MLP. It takes in the motion information from the sensors and some
related state signals from NSM, and outputs information about the
balance state of the bike. Itis a three-layered (30-256-32-1) network.

NSM. It controls all the above networks. It performs as a finite state
machine with six states and nine transition conditions. The inputs
are the signals from the CNN and the SNN, and the signals of internal
states. The state transition and decision-making are achieved by aseries
of linear operations and LIF neurons, which are the same as the SNN.

The POGs of these cases and their connection relationship are shown
in Extended Data Fig. 2.

We deploy these networks on three target hardware: general-purpose
GPU, Tianjic chip™ and FPSA*. For Tianjic, vector-matrix accumula-
tion (y = Ws, where Wis the input matrix, s is the input vector and y
is the resultant vector) replaces the weighted-sum operations in the
convolution and fully connected layers, and the vector-matrix mul-
tiplications in the CANN and NSM. The element-wise operations are
replaced with vector-vector accumulation and vector-vector mul-
tiplication. The pooling primitives are used as the pooling layer. The
LIF neuronis replaced by the vector-matrix accumulation primitive
and the LIF primitive.

The compiler also approximates other operators, for example,
using the look-up table to support the division operationinthe CANN.
Because the look-up table supports the mapping of only 8-bit input-
output, we scale the operands beforehand. The Tianjic computation

Article

primitives usedin this casearelisted in Extended Data Table 3. During
mapping, all the primitives of the EPG are distributed to each core, as
load-balanced as possible, and meet the hardware constraints.

For FPSA, because the complexity of the universal approximator
depends on the number of possible valid inputs, approximating the
entire model is not practical. Therefore, we partition each network
into parts, divided by continuous weighted-sum operations. Each
weighted-sumoperationis supported directly. Most of the remaining
operations (between the weighted-sum operations) are element-wise
operations (such as multiplication, addition and computationinan LIF
model) and the inputs are either 1-bit spikes or 8-bit numbers. Accord-
ingly, we generate approximators for these unary and binary opera-
tionswith zero error; thatis, the transformationis exactly equivalent.
Besides, some operations have a large number of inputs, such as nor-
malization, whichwouldlead to animpractical cost if we approximate
them directly. We therefore split them into many addition and division
operations according to the mathematic definition, and then approxi-
mate these operationsinstead. With this partition strategy, the cost for
allmodels is acceptable. Moreover, adjacent operations can be fused
and approximated as a whole to further reduce the cost.

The compilation results are evaluated on the FPSA simulator. It
is a cycle-accurate simulator based on the circuit-level parameters
extracted from either a memristor circuit-level simulator (Nvsim*®)
or register transfer language synthesis. These parameters are listed
in Extended Data Table 4. The communication subsystem in the
FPSA is a memristor-based FPGA-like routeing architecture. We
developed a mapping tool to turn the EPG into a netlist composed
of memristor-based processing elements, buffers and configurable
logic blocks. We use the corresponding placement and routeing tool
(mrVPR*), whichis extended from awidely used FPGA placement and
routeing tool*®, to map the generated netlist onto the FPSA and get the
critical communication latency of the routeing.

Theresources used to approximate different types of operationare
presented in Extended Data Fig. 3. Our toolchain enables the flexible
approximation of these models with an acceptable cost.

Boids model for bird flock simulation
Theboids model (Supplementary Figs. 8, 9) is used to study the behav-
iour of biological flock, such as bird flock®. In this model, each bird is
called aboid, and follows three rules to achieve natural reality: (1) the
separation rule, whereby a bird tries to keep a certain distance from
nearby birds (that is, not too close); (2) the cohesion rule, whereby
abird tries to fly towards the centre of all the other birds; and (3) the
alignmentrule, whereby abird tries to maintain the same speed as the
surrounding birds.

Aformal definition of Boids modelis as follows*™. There are Nboids
inaEuclidean vector space (Nis the population size) V=R (ingeneral,
d=2,3).Eachboid hasaninternal state g € Q:

Q = {qlq: (pr vv l‘, FOV! m! Um'ﬁ]1)}

where p, v € Vare position and velocity of the boid, respectively;
r=(r,r, rJ)represents the separation, alignment and cohesion percep-
tiondistances; FOV=(FOV,, FOV,, FOV,) represents the fields of view of
thethree rules; misthe mass of the boid, whichis often1and soignored
by the model; v, is the maximal speed; andf;, is the maximal available
changeinthespeed. Here, we refer to an open-source implementation
named XBoids®. We adopt the two-dimensional simulation. In our
implementation, we choose r= (25, 50, «), and the field of view is the
whole circle. Detailed configurations are provided in Supplementary
Information section 9.2.

We implement the boids model with the POG and deploy it on the
three hardware platforms. All the platforms evaluate the boids model
for population sizes of N=20, N=50 and N =100 (Supplementary
Tables1-3).

The boids model contains several linear tensor operations, which
can be converted to the EPG through template-matching; the nonlin-
ear operations (for example, square, square-root and reciprocal) are
supported through approximation. For Tianjic, we use the look-up
table to approximate (Supplementary Fig. 10). For the FPSA, we use
universal approximatorsinstead. For the GPU, we can flexibly support
these operations in its EPG.

We measure the performance and resource utilization for the boids
model (throughput for all hardware; areafor Tianjicand FPSA). We also
study the effect of the degree of approximation. Wefirst construct three
square-rootapproximators, withrelative errors of 0.1%,1% and 10%. Then,
allthe square-root operationsinthe EPG arereplaced by these approxi-
mators. The running results of the 500th frame are shown in Fig. 4c.

QR decomposition by Givens rotations

QR decomposition is a mathematical procedure that decomposes a
matrix A into an orthogonal matrix Q and an upper-triangular matrix
R.Here, we adopt the Givens rotation method*, the pseudocode of
whichis shown in Extended Data Fig. 4a. We focus on the steps (1-5)
in Extended Data Fig. 4a, which are also the steps shown in Fig. 4d.

In this experiment, we test the design-space exploration of the
approximation granularity: from the most finely grained to coarser
granularities. In the most finely grained case, each basic operation is
approximated by one universal approximator. In other cases, several
successive operations are approximated by an approximator asacom-
positive operator. We further propose a dedicated representation—a
fusion space network—to illustrate different approximators (Fig. 4e,
Supplementary Fig. 11). In the fusion space network, the red triangle
(cover triangle) represents the cover scope of one approximator. A valid
approximation strategy should ensure that the triangles can cover all
basic operations and that there is no overlap. The approximators are
then fine-tuned by backpropagation.

Anapproximator can be viewed as a three-layer MLP withan ReLU acti-
vation function. Assuming the number of nodesin theinput, hiddenand
outputlayersare m, nand1, respectively, the cost of this approximator is
measured as C(A) =(mn+ n)t. Here tis the number of times this approxi-
mator is used during the computation, which also means that ¢ copies of
itshould be mapped onthe hardwareif there is no time-division multi-
plexing. The approximationgranularity G(-) is defined as the number of
nodes covered by the triangule; for example, G(A4,,;) =6 and G(A) ;3= 3.
Accordingly, the granularity (cost) of agiven strategy is defined as the
sum of the granularity (cost) of its approximators.

Intuitively, the cost of anapproximationis positively correlated with
the approximation precision. To focus on therelation between granu-
larity and cost, we set a fixed upper limit of the error for each approxi-
mator, E,.,,=3%. Then, we use abinary search to find an approximator
with minimal cost. The error metric we adopt is the mean absolute
percentage error:

100% &
nj

MAPE = yprecise -y

=1 yprecise

where nisthe number of points sampled for error calculation. All points
should be within the input domain. The domain we set for step 1is
[-8, 8]; domains for other steps are deduced from this. To avoid having
azerointhe denominator, [-0.01, 0.01] is excluded.

We present the cost distributions on approximators and strategies
inFig. 4f, g. Specificinformation about approximators and strategies
is listed in Extended Data Tables 1and 2, respectively.

We also propose asimple heuristic search algorithmto find an opti-
mized approximation strategy on fusion space network, which consists
of three steps.

Step 1. The algorithm starts with the most finely grained strategy. The
selected approximators in the strategy form trees. Two adjacent and

selected approximators are the tree’s leaves, and the lowest approxima-
tor in the fusion space network that covers them s the tree’s root. For
example, A;and A,, with A, astheroot, forms tree {A,,: A;, A,}.

Step 2. We evaluate the cost of the root approximatorin eachtree and
then determine the saved cost of each tree (the cost saved if we replace
the leafapproximators with the corresponding root approximator). If
the saved cost is positive, then we can reduce the total cost.

Step 3. We select the root approximator with the highest saved cost
toreplace the corresponding leaf approximators.

These steps arerepeated until thereis no positive saved cost. Extended
DataFig.4bshowsthe heuristic searchalgorithm for QR decomposition.
The search pathis also marked by agreen arrow in Fig. 4g.

We control theresulting error of the QR decompositionin alimited
and acceptable range. We repeat the experiment 10 times. During the
experiment, the meansquare error ofthe Q matrixisless than 0.1, that
of the R matrix is less than 0.5 and the input is a random 4 x 4 matrix
with element values ranging from -8 to 8.

Data availability

The example applications that we used are publicly available, as
described in the text and the relevant references. The experimental
setups for demonstration and measurements are detailed in the text
and the relevant references. Other data that support the findings of
this study are available from the corresponding authors on reason-
ablerequest.

Code availability

The codes used for the software toolchain and the demonstration neu-
ral networks are available fromthe corresponding authors onreason-
ablerequest.

45. Deng, L. et al. Tianjic: a unified and scalable chip bridging spike-based and continuous
neural computation. IEEE J. Solid-State Circuits 55, 2228-2246 (2020).

46. Dong, X. et al. Nvsim: a circuit-level performance, energy, and area model for emerging
nonvolatile memory. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 31, 994-1007
(2012).

47. Cong, J. & Xiao, B. mrFPGA: a novel FPGA architecture with memristor-based
reconfiguration. In 2011 IEEE/ACM Int. Symp. Nanoscale Architectures 1-8 (IEEE, 2011).

48. Luu, J. etal. VTR 7.0: next generation architecture and CAD system for FPGAs. ACM Trans.
Reconfig. Technol. Syst. 7, 6 (2014).

49. Reynolds, C. W. Flocks, herds and schools: a distributed behavioral model. In Proc. 14th
Annu. Conf. Computer Graphics and Interactive Techniques 25-34 (ACM, 1987).

50. Bajec, I. L., Zimic, N. & Mraz, M. The computational beauty of flocking: boids revisited.
Math. Comput. Model. Dyn. Syst. 13, 331-347 (2007).

51. Parker, C. XBoids, GPL version 2 licensed. http://www.vergenet.net/~conrad/boids/
download (2002).

52. Aslan, S., Niu, S. & Saniie, J. FPGA implementation of fast QR decomposition based on
givens rotation. Proc. 55th Int. Midwest Symp. Circuits and Systems 470-473 (IEEE, 2012).

Acknowledgements This work was partly supported by Beijing Academy of Artificial
Intelligence (No. BAAI2019ZD0403), NSFC (No. 61836004), Brain-Science Special Program of
Beijing under grant Z181100001518006, Beijing National Research Center for Information
Science and Technology, Beijing Innovation Center for Future Chips, Tsinghua University and
Tsinghua University-China Electronics Technology HIK Group Co. Joint Research Center for
Brain-inspired Computing, JCBIC.

Author contributions Y.Z., P.Q., Y.J. and W. Zhang proposed the idea for the brain-inspired
hierarchy. Y.Z. was in charge of the whole design. P.Q. proposed the ideas for the POG and the
proof of its Turing completeness. Y.J. proposed the ideas for neuromorphic completeness, the
EPG, the basic execution primitives and the constructive proof of its neuromorphic
completeness. W. Zhang proposed the ideas for the ANA and the mapping from the EPG to it.
P.Q. performed the experiment on the GPU. Y.J. performed the experiment on the FPSA. W.
Zhang and G.W. performed the experiments on Tianjic. Y.J. and W. Zhang performed the
experiments on the Boid model and QR decomposition for the revision. G.G. gave advice on
the theory of architecture and hierarchy. L.S. was in charge of Tianjic work and proposed the
idea to bridge dual-driven brain-inspired computing with artificial general intelligence. G.G.,
S.S., G.L., WC. W. Zheng, F.C., J.P., R.Z.,M.Z. and L.S. contributed to the analysis and
interpretation of results. All authors contributed to the discussion of the design principle of the
brain-inspired hierarchy. Y.Z., L.S., PQ. and R.Z. revised the manuscript, with input from all
authors. Y.Z. and L.S. supervised the project.

Competing interests The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41586-020-
2782-y.

Correspondence and requests for materials should be addressed to Y.Z. or L.S.

Peer review information Nature thanks Oliver Rhodes and the other, anonymous, reviewer(s)
for their contribution to the peer review of this work.

Reprints and permissions information is available at http://www.nature.com/reprints.

http://www.vergenet.net/%7econrad/boids/download
http://www.vergenet.net/%7econrad/boids/download
https://doi.org/10.1038/s41586-020-2782-y
https://doi.org/10.1038/s41586-020-2782-y
http://www.nature.com/reprints

Article

e :?' %

op2: ®=hti

OP1: 0 =iy +1i, 0, =iy +P

(a) Operator

icandi«tion ifa.lse

y i
t \ ltrue lcondu.‘um

Orue Ofalse

Decider Conditional merger

L Leondition t Leondition

OP: branch
o

o
True and false gates
(d) Control flow operators

Extended DataFig.1|POG. a, Two sample operators: the leftisasingle
mathematical operationand the right is asimple algorithm that consists of
several computation operations. b, Asample operator graph for rectified
linear units (ReLU). ¢, Parameter updater. More details are provided

inSupplementary Informationsection 3.3.1.d, Main control-flow operators:

conditional decider, conditional merger, true gate and false gate.

(b) Operator Graph

Lcondition

ig Lys=s’

P=P
OP: oy =ig+P
P'=ig+P

OG 0 = RelU (i)
(c) Parameter updater

Qg iy . iyepin

0 N
OP: loop OP: o= Z icPy
k=0
(e) Control flow OGs (f) Synapse

e, Control-flow operator graphs of the branch and theloop. f, Synapse
operator:itisenabled whenany of theinputsarrive. i, input; o, output; T/F,
true/false branch; P, parameter of the operator; P/, the new value of P; OGyy,
operator graph ofthe true/false branch; Body, operator graph of theloop body;
Cond, operator graph of the loop condition.

(a) CNN

(b) SNN (c) CANN

Input

Output Hidden
State
(f) Overall NN Structure
Coordinates
Camera
State signal _
Microphone VE=veV
Output Balance data 2
Other sensors Do 4
________________________ put = kY V2
(d) MLP *All outputs are synthesized to the motor controller Output
mput P—0o0y0 r—— Pl ==

1 () NSM
1
| Input
1
1
1 Output
1
1
1
1
1
1
1

Output !

Extended DataFig.2|Bicycledriving and tracking task.a-e,POGs of the model; Norm, normalization operator; W, b, weight and bias parameters for the
five neural network examples. Conv2d, two-dimensional convolution corresponding operator. f, The overall relationships between these networks.

operator; MatMul, matrix multiplication operator; LIF, operator of the LIF

Article

MLP CNN SNN

5%

Basic Primitive
Max Pooling

LIF Neuron

CANN NSM RSNy

8% Sum

Normalize

[
1%

Extended DataFig. 3 |Resource consumption of the FPSA for different operators.

Input: A square matrix A
Output: Q and R
n, n = A.shape

Step 1

15 [12 168
W W A
A» 2 12 LZSBA

R=A

QT = Identical Matrix(n, n)

fori=0ton-1

forj=0ton-1
x =Rl
% =Rl Priority /q 2
X7, X} = x; X x;, X X %; 1 Queue / \\i
X = x? +x} 2 @ 2 12 16
xfs = |xf 3 Saved 3
> cost

x% s 1=1/x} _sqrt 4

cos_sin_=x; X x4_s_1,x; xx%_s.1 5

ij-S- ij-S-
Q_this = Identical Matrix(n, n)
Q_this{il[i]= cos._ ks
Q_this{ilfj]= sin_ /}«
Q_this[j][i]= —sin_ :
Q_thisl[j][j]= cos_
R = Q_this x R
QT = QT x Q_this

/I Matrix Multiplication
/I Matrix Multiplication

return QT .transpose, R

Step 4

Extended DataFig.4|The experimentusing QRdecomposition.a, Pseudocode
for QR decomposition by Givensrotation. b, The heuristic search algorithmon
QR decomposition. Each step of this figure includes approximators that have
beenevaluated and the current priority queue. Thenumber on each node
represents the cost of that approximator. Thered triangle represents the
currentstrategy. Eachstep, thefirst treein the queueisselected (green

Step 3

rectangle) and the leaves are replaced by the root approximator. The dashed
circles represent the approximators that do not need to be constructed and
evaluated. The whole procedure explores only four (out of 16) strategies. In this
case, thefinal strategy happenstobe the best, butingeneral, this algorithmis
notguaranteed to produce the optimal result.

Article

Extended Data Table 1| Universal approximators in the QR decomposition

Approximator Function Input Domain Granularity Cost
A, fx) = x2 Unary 8~8 1 52
A, fy)=x+y Binary (0, 0) ~ (64, 64) 1 2
As fx) =yx Unary 0~128 1 12
4, £ :% Unary 0.01 ~ 12(8V2) 1 16
As flx,y) =xy Binary (0, -8) ~ (100, 8) 1 258
Agy flx,y) = x2 + y? Binary (-8,-8) ~ (8, 8) 3 51
Ags fy)=Jx+y Binary (0, 0) ~ (64, 64) 3 15

1
Asy o = = Unary 0.01 ~ 128 3 12
Ags flx,y) = % Binary (0.01, -8) ~ (12, 8) 3 168
Aszs floy) =Jx2 +y2 Binary (-8,-8) ~ (8, 8) 6 21
1)
Az3s fGey) = W Binary (0.01, 0.01) ~ (64, 64) 6 15
Asgs fly) = % Binary (0.01, -8) ~ (128, 8) 6 120
Az fl,y) = \/ﬁ Binary (-8, -8)~(8, 8) /[-0.01,0.01] 10 573
Z
Az fGy,2) = S Ternary (0.01, 0.01, -8) ~ (64, 64,8) 10 264
y)
Y. e fGy) = Binary (-8, -8)~(8, 8) /[-0.01,0.01] 15 660

Extended Data Table 2 | Granularity and cost of different strategies

Strategy Granularity Cost
${1,2,3,4,5} 5 340
5{12,3,4,5} 6 337
5{1,23,4,5} 6 341
5{1,2,34,5} 6 324
5{1,2,3,45} 6 234
${12,34,5} 7 321
${12,3,45} 7 231
5{1,23,45} 7 235
${123,4,5} 8 295
5{1,234,5} 8 325
5{1,2,345} 8 174
${123,45} 9 289
${12,345} 9 171
${1234,5} 11 831
${1,2345} 11 316

5{12345) 15 660

Article

Extended Data Table 3 | Part of the Tianjic primitives

Primitive Full name Definition Used in

VMA Vector Matrix Accumulation y=W-s SNN, NSM
. f CNN, MLP, NSM,

VMM Vector Matrix Multiplication y=W-x CANN

VVA Vector Vector Accumulation y= z_xi =10, N NSM, CANN
13

VVM Vector Vector Multiplication y = x,0x, NSM, CANN

VS Vector Scale y=ax CANN

max
: B yy=—

Poollng i avg({ij € pooli}) CANN
RelLU Rectified Linear Unit i =x;>02x;:0 CNN, MLP
LUT Look-up Table y = ¢(x) CANN

LIF model:
= av + leacky +
LIF Leaky Integrate-and-Fire i SNN, NSM

spike = vy > Vipresn? 1: 0

v = spike? Vyeger: V1

Extended Data Table 4 | FPSA function blocks at 400 MHz, 45 nm

Component Specification Power (mW) Area (mm?) Latency (ns)
Configurable Logic Block o out 1.271 0.0060 0.229
Spiking Memory L
Block Size: 16Kb 0.471 0.0054 0.578
Processing element (PE) breakdown (latency for 256 cycles to support 8-bit 1/0)
Memristor Crossbar Level/cell: 16 0.429 0.0085 0.0
Charging Unit Number: 256 0.094 0.0006 18.1
Neuron Unit Number: 512 8.130 0.0099 374.8
Spike Subtractor Number: 256 3.661 0.0031 232.8
11.909 0.0221 625.7

PE Total

Size: 256 X 256

W-8bit & 1/O-8bit 9.501 TOP/s/mm?

	A system hierarchy for brain-inspired computing

	Software

	Hardware

	Compilation

	Neuromorphic completeness

	System hierarchy

	Basic execution primitives

	Toolchain, applications and experiments

	Conclusion

	Online content

	Fig. 1 Hierarchies of the brain-inspired computing system and traditional computing systems.
	Fig. 2 POG, EPG and ANA.
	Fig. 3 Toolchain and bicycle driving and tracking experiment.
	Fig. 4 Experimental results.
	Extended Data Fig. 1 POG.
	Extended Data Fig. 2 Bicycle driving and tracking task.
	Extended Data Fig. 3 Resource consumption of the FPSA for different operators .
	Extended Data Fig. 4 The experiment using QR decomposition.
	Extended Data Table 1 Universal approximators in the QR decomposition.
	Extended Data Table 2 Granularity and cost of different strategies.
	Extended Data Table 3 Part of the Tianjic primitives.
	Extended Data Table 4 FPSA function blocks at 400 MHz, 45 nm.

