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A system hierarchy for brain-inspired 
computing

Youhui Zhang1,2,3,8 ✉, Peng Qu1,2,3,8, Yu Ji1,2,3,8, Weihao Zhang2,4,8, Guangrong Gao5,  
Guanrui Wang2,4, Sen Song2,6, Guoqi Li2,4, Wenguang Chen1,3, Weimin Zheng1,3, Feng Chen2,7, 
Jing Pei2,4, Rong Zhao2, Mingguo Zhao2,7 & Luping Shi2,4 ✉

Neuromorphic computing draws inspiration from the brain to provide computing 
technology and architecture with the potential to drive the next wave of computer 
engineering1–13. Such brain-inspired computing also provides a promising platform 
for the development of artificial general intelligence14,15. However, unlike conventional 
computing systems, which have a well established computer hierarchy built around 
the concept of Turing completeness and the von Neumann architecture16–18, there is 
currently no generalized system hierarchy or understanding of completeness for 
brain-inspired computing. This affects the compatibility between software and 
hardware, impairing the programming flexibility and development productivity of 
brain-inspired computing. Here we propose ‘neuromorphic completeness’, which 
relaxes the requirement for hardware completeness, and a corresponding system 
hierarchy, which consists of a Turing-complete software-abstraction model and a 
versatile abstract neuromorphic architecture. Using this hierarchy, various programs 
can be described as uniform representations and transformed into the equivalent 
executable on any neuromorphic complete hardware—that is, it ensures 
programming-language portability, hardware completeness and compilation 
feasibility. We implement toolchain software to support the execution of different 
types of program on various typical hardware platforms, demonstrating the 
advantage of our system hierarchy, including a new system-design dimension 
introduced by the neuromorphic completeness. We expect that our study will enable 
efficient and compatible progress in all aspects of brain-inspired computing systems, 
facilitating the development of various applications, including artificial general 
intelligence.

Brain-inspired computing is a computing model and architecture that 
has the potential to break the von Neumann bottleneck1 and drive the 
next wave of computer engineering2. Brain-inspired computing sys-
tems have been used for artificial intelligence3–14, and may provide 
a route towards artificial general intelligence15. The application of 
brain-inspired computing to more general algorithms, other than 
artificial intelligence, has also been explored19–21. All these applica-
tions present challenges for the performance, programmability and 
productivity of brain-inspired computing systems.

Various algorithms, computational models and software designs 
for brain-inspired computing are emerging. Although numerous neu-
romorphic chips have been proposed5–14, they usually require specific 
software toolchains22–25. As a result, multiple layers of the brain-inspired 
computing system—including the application model, system software 
and neuromorphic device—are bound together, impairing the program-
ming flexibility and development productivity. Some studies have tried 
to bridge the various software and hardware through domain-specific 

languages26 or development frameworks19,20,27, but these studies usu-
ally either do not consider completeness or implicitly rely on Turing 
completeness. Little work has been done to address more fundamen-
tal issues, such as hardware completeness, programming-language 
completeness and the generalized system hierarchy of brain-inspired 
computing.

Existing computer hierarchy, such as of the Turing machine16 and the 
von Neumann architecture17,18, provides insight into the importance of 
these issues for computing systems (Supplementary Information sec-
tion 1). Nearly all existing programming languages are Turing-complete 
(that is, they have the same capability as a universal Turning machine) 
and the von Neumann abstract architecture supports a Turing machine 
through a Turing-complete interface (that is, a general-purpose instruc-
tion set). Through the introduction of Turing completeness and a hierar-
chy based on Turing completeness and the von Neumann architecture, 
tight coupling between software and hardware is avoided in current 
computing systems, enabling efficient, compatible and independent 
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progress. By setting the minimum requirements for hardware (Turing 
completeness), it became feasible to transform any program in a 
high-level language into an equivalent instruction sequence on any 
von Neumann processor (compilation).

By contrast, brain-inspired computing currently lacks a simple but 
sound system hierarchy to support overall development28. As a result, 
there are no clear and complete interfaces between neuromorphic 
software and hardware and the interactions between the different 
research aspects are complex29. Further, because many brain-inspired 
chips are not designed for general-purpose computing and few of them 
provide traditional instruction sets, it is unclear whether they are 
Turing-complete, or even whether Turing completeness is necessary.

Turing completeness is the feasibility foundation of traditional 
compilation, requiring equivalence in program expression and trans-
formation. By contrast, brain-inspired systems possess distinctive 
attributes, such as approximation (brain-inspired systems usually fol-
low the computing model of neural networks to mimic the behaviours 
or characteristics of biological neural networks)30–32. For example, for 
many brain-inspired chips, including early neural-inspired chips33 and 
contemporary brain-inspired systems5–14, approximation is a way to 
achieve low power and high performance, implemented using either 
low-precision digital calculations5,6,8–10,14 or analogue circuits7,11–13,33–38. 
We therefore propose neuromorphic completeness, a more adaptive 
and broader definition of completeness for brain-inspired computing. 
It relaxes the completeness requirement for neuromorphic hardware, 
which could improve the compatibility between different hardware 
and software designs, and enlarge the design space by introducing a 
new dimension, the approximation granularity.

Neuromorphic computing is also distinct from traditional comput-
ing2 in that it uses colocated computing and storage, uses event-driven 
computation based on spikes39 (the characteristic of spiking neural 
networks) and has greater potential for high parallelism, among other 
things. These differences make it difficult for traditional computer 
hierarchies to describe brain-inspired applications intuitively and to 
execute them efficiently. We therefore further propose a system hierar-
chy for brain-inspired computing with high versatility and universality. 
This hierarchy has three levels: software, hardware and compilation.

Software
Software refers to programming languages or frameworks and the 
algorithms or models built on them. At this level, we propose a uniform 
and general software-abstraction model—the programming operator 
graph (POG)—to accommodate the various brain-inspired algorithms 
and model designs. The POG is composed of a unified description 
method and an event-driven, parallel program-execution model that 
integrates storage and processing. It describes what a brain-inspired 
program is and defines how it is executed. Because the POG is Turing 
complete, it support the various applications, programming languages 
and frameworks to the greatest extent.

Hardware
Hardware includes all the brain-inspired chips and architecture mod-
els. We design the abstract neuromorphic architecture (ANA) as the 
hardware abstraction. It includes an execution primitive graph (EPG) as 
the interface to the upper layer to describe the program it can execute. 
The EPG has a hybrid control-flow–dataflow representation, which 
maximizes its adaptability for different hardware and is consistent with 
a promising hardware trend, the hybrid architecture3,4.

Compilation
It is the middle layer that transforms a program into an equivalent 
form that hardware supports. For feasibility, we present a basic set of 
hardware execution primitives that is widely supported by mainstream 
brain-inspired chips, and prove that hardware equipped with this set 
is neuromorphic-complete. We also implement a toolchain software 

as an instance of the compilation layer to demonstrate the feasibility, 
rationality and advantages of the hierarchy.

With this hierarchy, we avoid tight coupling between hardware and 
software, ensuring that any brain-inspired program can be represented 
by the Turing-complete POG and then compiled into an equivalent and 
executable EPG on any neuromorphic complete hardware (Fig. 1). We 
also ensure the programming portability, hardware completeness 
and compilation feasibility of brain-inspired computing systems. We 
present experiments that demonstrate the optimization effect of the 
system design dimension that is introduced by neuromorphic com-
pleteness. Moreover, we argue that our hierarchy facilitates software–
hardware codesign.

Neuromorphic completeness
For any given error gap ε ≥ 0 and any Turing-computable function f(x), a 
computational system is called neuromorphic complete if it can achieve 
a function F(x) such that ‖F(x) − f(x)‖ ≤ ε for any valid input x (Supple-
mentary Information section 2).

Neuromorphic completeness is used to measure the compatibility 
of neuromorphic computing systems. It relaxes the requirement for 
completeness from exactly computing a function with an algorithm 
to approximating it. An algorithm in the terminology of computer 
science is a computational procedure defined by a Turing machine. 
Thus, computing a function with an algorithm means that the system 
simulates a Turing machine and then uses the algorithm to achieve the 
function. By contrast, achieving a function by approximation does not 
require such a computation procedure.

The approximation capability of neural networks is defined by the 
universal approximation theorem40. A multilayer perceptron with 
only one hidden layer can approximate any function arbitrarily well. 
It approximates a function by memorizing the mapping of the function. 
On the other hand, simulating a Turing machine requires mechanisms 
such as recursion and control flow to achieve any number of state transi-
tions. A multilayer perceptron with one hidden layer has only two tran-
sitions between the input and output; thus, it is not Turing-complete. 
However, multilayer perceptrons and Turing-complete systems are 
both neuromorphic-complete.

In essence, neuromorphic completeness connects universal approxi-
mation with universal computability. It lays the theoretical foundation 
for the feasibility of converting a Turing-complete program into an 
equivalent program on a neuromorphic-complete system, which broad-
ens the scope of complete hardware. Further, because neuromorphic 
completeness is compatible with approximate and exact computation, 
it expands the design space of brain-inspired systems.

System hierarchy
In the POG (Fig. 2a, Supplementary Information section 3), a program 
is defined as a directed graph in which each node is an operator, with 
the edges describing the precedence relationship of different opera-
tors. The operator carries out the actual computation and is triggered 
for execution when it receives all the input events; that is, the POG is 
event-driven. Moreover, an operator contains only the operations that 
deal with the local storage and external inputs. Thus, these operations 
are inherently suitable for the processing mode that integrates memory 
and computation.

The POG greatly extends the pure dataflow activity model41,42 (Sup-
plementary Information section 3.6), while inheriting its support for 
fine-grained parallelism. The POG is Turing-complete (Supplementary 
Information section 3.5, Supplementary Fig. 1). Therefore, it can also be 
regarded as a base programming language for various brain-inspired 
applications and is compatible with existing brain-inspired frame-
works19,20,26,27. The POG provides dedicated operators (Extended Data 
Fig. 1, Supplementary Information section 3.3) to help users describe 
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brain-inspired computing operations more easily and provide more 
performance hints. Another feature of the POG is composability (Sup-
plementary Information section 3.4). We can define any part of a POG 
as a new operator, while keeping the rest unchanged, as long as it is 
supported by the underlying hardware. This enables the description of 
complicated models and is conducive to software–hardware codesign 
(Supplementary Information section 10.2).

The ANA (Supplementary Information section 6) contains massive 
processing units, each of which is colocated with a private memory and 
scheduling unit(s). The processing units provide hardware execution 
primitives, which perform the major computation in parallel, and are 
scheduled by scheduling units. All these units communicate through 
an interconnected network. The ANA is a logical design that is flex-
ible to different hardware implementations (Fig. 2c). For example, 
the processing unit can be implemented by memristor crossbars34–37 
or general-purpose processors. The ANA is therefore capable of being 
instantiated into several well known neuromorphic chips (Supplemen-
tary Information section 6.1, Supplementary Fig. 3).

The interface of the ANA (the EPG) is a hybrid control-flow–data-
flow two-tiered graph (Fig. 2b, Supplementary Information section 4, 

Supplementary Fig. 2). Tier one is a control-flow graph in which each 
node is a basic block containing one or more execution primitives and 
the directed edges represent jumps from one basic block to another. 
Tier two is a dataflow graph that is formed by execution primitives 
according to the data dependency inside each basic block.

Basic execution primitives
The basic set of execution primitives (Supplementary Information sec-
tion 4.1) contains two types of computation primitive, as a multilayer 
perceptron does: the weighted-sum operation and the element-wise 
rectified linear unit operation. These primitives are generally appli-
cable to mainstream brain-inspired chips; for example, chips that 
support the leaky integrate-and-fire model can also be considered to 
provide two primitives (Supplementary Information section 4.2). We 
provide a constructive proof that the EPG, with the basic execution 
primitives, is neuromorphic-complete (Supplementary Information 
section 4.3). This proof also provides direction for building the cor-
responding compiler that can transform any Turing-complete POG 
into an equivalent EPG.

Software

Compiler

Hardware

Turing-complete

Neuromorphic- 
complete

Neuromorphic- 
complete

Brain-inspired computing hierarchy

Approximately equal

Modern computing hierarchy

Instructions lw su
b

ad
d

m
ul

t

sh ju
m

p

···ad
d

Intermediate 
representation

···POG

Tier 1 
CFG Blocks

Tier 2
EPG

Exactly equal

Exactly equal

SpiNNaker LoihiTianjicTrueNorth

PUSU

Memory

PUSU

Memory

PUSU

Memory
···

Inter-connection network

ANA

Neuromorphic 
chips

JAVA

···

Applications

Programming 
language

Python

class A {
private a;
public b;
...

}

def say():
a = ‘Hello’
b = ‘World’
print(a + b)···

Applications

Neural-network 
framework

中
A

Nengo PyTorch

CPU GPU

Instruction-set 
architecture; 

von Neumann 
architecture

General-purpose  
chips

Input

Output

Memory

ALU

Control unit

Exactly equal

Turing-complete Turing-complete

Turing-complete

Turing-complete

Turing-complete

Exactly equalExactly equal

Fig. 1 | Hierarchies of the brain-inspired computing system and traditional 
computing systems. Inspired by traditional computing system hierarchy 
(right), we propose a brain-inspired computing system hierarchy (left), which 
also has three levels: software (top), compiler (middle) and hardware (bottom). 
In the traditional computing system hierarchy, the software layer refers to 
various applications and the Turing-complete programming languages (such 
as JAVA and Python). During the compilation procedure, intermediate 
representations of software (such as the abstract syntax tree) will be converted 
to intermediate representations of hardware (such as instructions). In the 
hardware layer, the instructions are run on central processing units (CPUs) or 
graphics processing units (GPUs) that follow the von Neumann architecture. 
The von Neumann architecture includes an arithmetic and logic unit (ALU), 
control unit, memory, input and output. The precise equivalence between 

different layers is assured by Turing completeness. For the brain-inspired 
computing system hierarchy, the software layer refers to the neuromorphic 
applications and developing frameworks (such as Nengo and PyTorch). 
Correspondingly, we propose the POG as the intermediate representations of 
software and the EPG as intermediate representations of hardware (CFG, 
control-flow graph). The compilation tools are introduced to transform the 
POG into the EPG. For the hardware layer, we propose ANA, which includes 
schedule units (SUs), processing units (PUs), memory and an inter-connection 
network as the abstraction of the neuromorphic hardware (TrueNorth, 
SpiNNaker, Tianjic and Loihi). Considering the approximation property of 
brain-inspired computing, we further propose the notion of neuromorphic 
completeness, which introduces approximation equivalence in addition to 
precise equivalence.
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Moreover, the EPG, with this basic set, is an ideal example to show that 
the neuromorphic completeness connects universal approximation with 
universal computability. On the one hand, the universal approximator can 
be expressed as an extreme instance of the EPG: the tier-one control-flow 
graph degrades to only one block, which contains a multilayer percep-
tron that approximates the entire program. On the other hand, if we use 
basic execution primitives to achieve some basic operations precisely 
(for example, Boolean functions), and use these basic operations to 
compose more complicated computations and control-flow schemas, 
then the EPG constructed in this way is Turing-complete (modern digital 
computers are based on deterministic Boolean circuits). Between these 
two extremes, an EPG can be expressed in various forms with different 
approximation granularities (Fig. 2d), with different trade-offs between 
performance and resource consumption.

Toolchain, applications and experiments
We build a framework for the toolchain software according to the hier-
archy, which consists of two parts: the compiler and the mapper. The 
compiler (Supplementary Information section 5.1) transforms the 
POG into an equivalent EPG. As shown in Fig. 3b, the compiler first 
splits or merges the operators in the POG to the proper granularity 
of approximation. Then, all operators that execution primitives can-
not precisely implement (determined using ‘template matching’) are 
approximated using a method that follows the above constructive 
proof of the neuromorphic completeness of the EPG. There are sev-
eral optimization techniques to reduce the resource consumption 
of the EPG that is generated (Supplementary Information sections 
5.2–5.5). The mapper (Supplementary Information section 7, Fig. 3c, 

Tier 1 
CFG

Block 1

Block n

Tier 2

···

Collocated computation
and memory

Inter-
connection 
network

PU

SU

Memory (IV)

PU

SU

Memory

Input: x 

Output

Output

Output E
nt

ire
ly

 c
om

p
ut

at
io

n

ELU function:

PU

Memory

SU

···

···

1 if (x< 0)

2

3 else

4 output=x;

output= (ex−1);

a

b

e0e1 eN–1eN

ue

ui

i0i1 iN–1iN

u

v

v1

Vreset

Spike

T

F

Synapse
(Pe)

Synapse
(Pi)

Dendrite
(Pacc)

LIF
(PLIF)

v1 > Vthresh

d

c (I)

(II)

(III)

E
nt

ire
ly

 a
p

p
ro

xi
m

at
io

n

f(x) = ELU(x)

Input: x 

x > 0 

x f(x) = (ex − 1) 

Input: x 

x > 0 

x

f(x) = ex

f(x) = x − 1

f(x) = x 
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synaptic inputs, Pe,i, corresponding synaptic weights; v, membrane potential; 
Vreset, reset potential, Vthresh firing threshold; Pacc,LIF, model-related parameters; 
F, false; T, true. The computation of the operators are defined as follows: 
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v1 =  PLIF1v + PLIF2 + u. b, EPG. The tier-one control-flow graph (CFG) is executed by 
scheduling units (SUs) to determine which basic block is ready. If one is ready, 
the corresponding scheduling unit will assign all enabled primitives to some 
processing units (PUs). If an assigned processing unit is free, it will load all 
necessary data from memory, carry out the computation and deliver the 

output to those processing units for the subsequent primitives. c, The 
correspondence between the elements of the EPG, the units of the ANA, and 
possible implementations: (I) the scheduling units can be implemented 
centralized or distributed in the form of a soft core, look-up table, configurable 
logic block, and so on; (II) the processing units can be implemented as a 
general-purpose core or dedicated functional unit; (III) the memory options 
include isolated memory, near or colocated processing memory, and so on; (IV) 
the inter-connection network can be a bus network, network-on-chip, and so 
on. d, Programs of an activation function of the exponential linear unit (ELU) 
with different approximate granularities; x, input value; f(x), functions with 
different approximate granularities; α, a constant.
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Supplementary Fig. 4) deploys the EPG that is generated to the hardware 
as efficiently as possible, while satisfying the hardware constraints. We 
implement a toolchain instance (Methods, Supplementary Informa-
tion section 8) that can convert various applications into uniform and 
hardware-independent intermediate representations (POGs), and 
compile each POG to the EPG of execution primitives specific to the 
target before mapping.

Currently, three hardware platforms are supported, all of which 
are typical neuromorphic-complete systems: (1) the general-purpose 
graphics processing unit (GPU), a brain-inspired chip; (2) Tianjic14; and 
(3) a memristor-based deep neural network accelerator, FPSA36. The 
general-purpose GPU is a traditional Turing-complete system, which is 
completely dependent on precise computing. FPSA provides efficient 
and high-density basic execution primitives, realizing different func-
tions mainly through approximation. Tianjic supports both precise 
computing and approximation.

We carried out experiments for three applications to demonstrate the 
feasibility and versatility of the hierarchy, and the design tradeoff intro-
duced by neuromorphic completeness (Methods). The first application 

is a hybrid spiking–artificial neural network model for bicycle driving 
and tracking14. It contains five neural networks, each a different type 
(Fig. 3a, Supplementary Information section 9.1). The POG of each 
neural network is the same across different hardware platforms before 
compilation. The approximation error is set to zero; that is, all three 
platforms behave the same in this experiment. The performance and 
area consumption for the three platforms are shown in Fig. 3d. Because 
FPSA realizes functions through approximation, the choice of approxi-
mation granularity has a large effect on the hardware cost (Fig. 3e).

The second application is the boids model43 for bird-flock simulation. 
It is a non-neural-network application that requires many nonlinear 
tensor computations (Fig. 4a, Supplementary Information section 
9.2). The toolchain can support it on the three platforms; the running 
performance and cost are shown in Fig. 4b. Figure 4c illustrates the 
behaviour of this application with different approximation errors. 
The greater the error (which generally means the smaller the hardware 
overhead), the greater the difference from the behaviour of the exact 
calculation. Because of the chaotic aspect of this model, the attributes 
of the flock movement are maintained as the approximation error is 
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Fig. 3 | Toolchain and bicycle driving and tracking experiment. a, A 
convolutional neural network (CNN) for image processing and object 
detection, a spiking neural network (SNN) for speech recognition, a continuous 
attractor neural network (CANN) for object tracking and a multilayer 
perceptron (MLP) for sensory and control tasks; an SNN-based neural state 
machine (NSM) integrates them for decision-making. b, The compilation 
workflow. We first adjust the POG to an appropriate granularity and then 
convert it to an EPG through template-matching and/or general 
approximation. The details are provided in Supplementary Information 
section 5.1. c, The mapping workflow. The mapper maps the EPG to the specific 

hardware. It contains three steps: Partition the graph into sub-graphs, schedule 
each sub-graph, and map each operator to a specific component 
(Supplementary Information section 7). d, The performance (throughput; red, 
left axis) and hardware overheads (area; blue, right axis) of the neural networks 
on the three platforms. e, Resource consumption (area) versus approximation 
granularity (three neural networks on FPSA). The abscissa indicates the gradual 
decrease in approximation granularity (left to right). As the granularity grows, 
the cost decreases gradually. If we further increase the granularity, the 
hardware consumption increases exponentially and so cannot be illustrated in 
this figure.
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limited. This experiment demonstrates that the application scope of 
our proposal extends to non-neural networks, by taking advantage of 
relevant approximations.

The third application is QR decomposition, a common mathemati-
cal algorithm (Supplementary Information section 9.3). It requires 
various nonlinear calculations, which makes it a challenge for some 
brain-inspired platforms. We use the universal approximator to real-
ize all the calculations shown in Fig. 4d (others are linear, which can be 
calculated exactly). An approximator can cover one or more successive 
steps (different approximate granularity), which leads to multiple 
approximation strategies. We therefore use a fusion space network 
(Fig. 4e) to visually represent the strategy space, and a heuristic search-
ing method as an optimization strategy (Fig. 4f, g). This experiment fur-
ther demonstrates that our proposal supports arbitrary applications. 
It also shows that the tradeoff between approximation granularity and 
performance introduced by neuromorphic completeness is beneficial 
to reducing hardware cost, provided that some error limit is met.

Conclusion
We have proposed definition of completeness for brain-inspired 
systems, which broadens the scope of the complete hardware 
and introduces a new dimension of system design, the approxi-
mation granularity. Combined with the proposed system hier-
archy, which includes the software- and hardware-abstraction 
models, the extended definition of completeness enables the 
equivalent conversion between Turing-complete software and 
neuromorphic-complete hardware; that is, it decouples the software 
and hardware. Our design philosophy makes clearer the interfaces 
and divisions between the different aspect of the system, which 
may help multi-disciplinary studies. We hope that further effort 
will be devoted to this fundamental hierarchy to improve the pro-
ductivity of brain-inspired computing development44, including 
the development of artificial general intelligence (Supplementary 
Information section 10).
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Fig. 4 | Experimental results. a, Boids model. The formal definition is 
provided in Methods section ‘Boids model for bird flock simulation’. Each bird 
(or boid; black triangles) follows three rules to determine their behaviour: a 
separation rule, an alignment rule and a coherent rule. Each rule has an 
associated field of perception (defined by the relevant perception distance; eg, 
red circle) and field of view (FOV; eg, red shaded region). For simplicity, we 
adopt the configuration on the left (green and blue). The perception distances 
for the alignment rule (ra) and the separation rule (rs) are limited (with ra > rs); 
the corresponding fields of view are the entire green (FOVa) and blue (FOVs) 
circles. The perception distance for the cohesion rule (rc) is unlimited; the 
corresponding field of view (FOVc) is the whole simulation space.  
b, Performance (throughput; red, left axis) and hardware consumption (area; 
blue, right axis) of the boids model. c, Boids model at different error rates.  
All images are captured at frame 500, in which every triangle represents a bird: 
blue is the result of approximation; black is the result of exact calculation, for 

comparison. d, The partial calculation steps for QR decomposition. Each node 
is a basic step, and the numbers represent the calculation function (indicated 
below). e, The fusion space network enumerates all the possible approximators 
in d. Each node identifies a unique approximator and the numbers represent 
the successive steps it approximates. The red triangles indicate the coverage of 
a given approximator (orange nodes). The two red triangles shown (for two 
approximators, ‘12’ and ‘345’) form an approximation strategy of the entire QR 
decomposition. f, Cost of all approximators. Each corresponds to a node in the 
fusion space network in e; the values of each point are provided in Extended 
Data Table 1. The colour of each circle identifies the fusion level; the size 
indicates the cost. Moreover, the redder the point, the higher the cost. g, Cost 
of all approximation strategies and their approximate granularity (values of 
each point are provided in Extended Data Table 2). The strategy of 
approximators ‘12’ and ‘345’ is optimal (red lines; ‘Best’); the green lines are the 
search path from the heuristic algorithm.



384  |  Nature  |  Vol 586  |  15 October 2020

Article

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-020-2782-y.

1.	 Waldrop, M. The chips are down for Moore’s law. Nature 530, 144–147 (2016).
2.	 Kendall, J. D. & Kumar, S. The building blocks of a brain-inspired computer. Appl. Phys. 

Rev. 7, 011305 (2020).
3.	 Zhang, B., Shi, L. P. & Song, S. Creating more intelligent robots through brain-inspired 

computing. Science 354 (Spons. Suppl.), 4–9 (2016).
4.	 Roy, K., Jaiswal, A. & Panda, P. Towards spike-based machine intelligence with 

neuromorphic computing. Nature 575, 607–617 (2019).
5.	 Chen, Y. et al. DianNao family: energy-efficient hardware accelerators for machine 

learning. Commun. ACM 59, 105–112 (2016).
6.	 Jouppi, N. P. et al. In-datacenter performance analysis of a tensor processing unit. In Proc. 

44th Annu. Int. Symp. Computer Architecture 1–12 (IEEE, 2017).
7.	 Schemmel, J. et al. A wafer-scale neuromorphic hardware system for large-scale neural 

modeling. In Proc. 2010 IEEE Int. Symp. Circuits and Systems 1947–1950 (IEEE, 2010).
8.	 Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable 

communication network and interface. Science 345, 668–673 (2014).
9.	 Furber, S. B. et al. The spinnaker project. Proc. IEEE 102, 652–665 (2014).
10.	 Davies, M. et al. Loihi: a neuromorphic manycore processor with on-chip learning. IEEE 

Micro 38, 82–99 (2018).
11.	 Benjamin, B. V. et al. Neurogrid: a mixed-analog-digital multichip system for large-scale 

neural simulations. Proc. IEEE 102, 699–716 (2014).
12.	 Friedmann, S. et al. Demonstrating hybrid learning in a flexible neuromorphic hardware 

system. IEEE Trans. Biomed. Circuits Syst. 11, 128–142 (2017).
13.	 Neckar, A. et al. Braindrop: a mixed-signal neuromorphic architecture with a dynamical 

systems-based programming model. Proc. IEEE 107, 144–164 (2019).
14.	 Pei, J. et al. Towards artificial general intelligence with hybrid Tianjic chip architecture. 

Nature 572, 106–111 (2019).
15.	 Goertzel, B. Artificial general intelligence: concept, state of the art, and future prospects. 

J. Artif. Gen. Intell. 5, 1–48 (2014).
16.	 Turing, A. M. On computable numbers, with an application to the Entscheidungsproblem. 

Proc. Lond. Math. Soc. 2, 230–265 (1937).
17.	 Eckert, J. P. Jr & Mauchly, J. W. Automatic High-speed Computing: A Progress Report on 

the EDVAC. Report No. W-670-ORD-4926 (Univ. Pennsylvania, 1945).
18.	 von Neumann, J. First draft of a report on the EDVAC. IEEE Ann. Hist. Comput. 15, 27–75 

(1993).
19.	 Aimone, J. B., Severa, W. & Vineyard, C. M. Composing neural algorithms with Fugu. In 

Proc. Int. Conf. Neuromorphic Systems 1–8 (ACM, 2019).
20.	 Lagorce, X. & Benosman, R. Stick: spike time interval computational kernel, a framework 

for general purpose computation using neurons, precise timing, delays, and synchrony. 
Neural Comput. 27, 2261–2317 (2015).

21.	 Aimone, J. B. et al. Non-neural network applications for spiking neuromorphic hardware. 
Proc. 3rd Int. Worksh. Post Moores Era Supercomputing 24–26 (IEEE–TCHPC, 2018).

22.	 Sawada, J. et al. Truenorth ecosystem for brain-inspired computing: scalable systems, 
software, and applications. In Proc. Int. Conf. High Performance Computing, Networking, 
Storage and Analysis 130–141 (IEEE, 2016).

23.	 Rowley, A. G. D. et al. SpiNNTools: the execution engine for the SpiNNaker platform. Front. 
Neurosci. 13, 231 (2019).

24.	 Rhodes, O. et al. sPyNNaker: a software package for running PyNN simulations on 
SpiNNaker. Front. Neurosci. 12, 816 (2018).

25.	 Lin, C. K. et al. Programming spiking neural networks on Intel’s Loihi. Computer 51, 52–61 
(2018).

26.	 Davison, A. P. et al. PyNN: a common interface for neuronal network simulators. Front. 
Neuroinform. 2, 11 (2009).

27.	 Bekolay, T. et al. Nengo: a Python tool for building large-scale functional brain models. 
Front. Neuroinform. 7, 48 (2014).

28.	 Hashmi, A., Nere, A., Thomas, J. J. and Lipasti, M. A case for neuromorphic ISAs. In ACM 
SIGARCH Computer Architecture News Vol. 39, 145–158 (ACM, 2011).

29.	 Schuman, C. D. et al. A survey of neuromorphic computing and neural networks in 
hardware. Preprint at https://arxiv.org/abs/1705.06963 (2017).

30.	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
31.	 Poggio, T. & Girosi, F. Networks for approximation and learning. Proc. IEEE 78, 1481–1497 

(1990).
32.	 Esmaeilzadeh, H., Sampson, A., Ceze, L. & Burger, D. Neural acceleration for 

general-purpose approximate programs. IEEE Micro 33, 16–27 (2013).
33.	 Mead, C. & Ismail, M. Analog VLSI Implementation of Neural Systems Ch. 5–6 (Springer, 

1989).
34.	 Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. 

Nature 453, 80–83 (2008).
35.	 Prezioso, M. et al. Training and operation of an integrated neuromorphic network based 

on metal-oxide memristors. Nature 521, 61–64 (2015).
36.	 Ji, Y. et al. FPSA: a full system stack solution for reconfigurable ReRAM-based NN 

accelerator architecture. In Proc. 24th Int. Conf. Architectural Support for Programming 
Languages and Operating Systems 733–747 (ACM, 2019).

37.	 Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A. & Eleftheriou, E. Stochastic phase-change 
neurons. Nat. Nanotechnol. 11, 693–699 (2016).

38.	 Negrov, D. et al. An approximate backpropagation learning rule for memristor based 
neural networks using synaptic plasticity. Neurocomputing 237, 193–199 (2016).

39.	 Maass, W. Networks of spiking neurons: the third generation of neural network models. 
Neural Netw. 10, 1659–1671 (1997).

40.	 Leshno, M. et al. Multilayer feedforward networks with a nonpolynomial activation 
function can approximate any function. Neural Netw. 6, 861–867 (1993).

41.	 Dennis, J. B., Fosseen, J. B. & Linderman, J. P. Data flow schemas. In Int. Symp. Theoretical 
Programming 187–216 (Springer, 1974).

42.	 Jagannathan, R. Coarse-grain dataflow programming of conventional parallel computers. 
In Advanced Topics in Dataflow Computing and Multithreading 113–129 (IEEE, 1995).

43.	 Zhang, W. & Yang, Y. A survey of mathematical modeling based on flocking system. 
Vibroengineering PROCEDIA 13, 243–248 (2017).

44.	 Hennessy, J. & Patterson, D. A new golden age for computer architecture. Commun. ACM 
62, 48–60 (2019).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020

https://doi.org/10.1038/s41586-020-2782-y
https://arxiv.org/abs/1705.06963


Methods

We carry out three experiments to show the decoupling feature and the 
new optimization space introduced by neuromorphic completeness. 
The first two experiments, bicycle driving and tracking and the boids 
model for bird flock simulation, are deployed on three target hardware 
by the toolchain: general-purpose GPU, Tianjic chip14 and FPSA36. The 
last one, QR decomposition by Givens rotations is a theoretical analysis 
experiment.

Hardware platforms
General-purpose GPU. It is Turing-complete and provides rich appli-
cation development interfaces (such as CUDA and cuBLAS). The GPU 
server we used has an Intel Xeon E5-2680 v4 CPU, NVIDIA Tesla P100 
with 3,584 CUDA cores and 512 GB memory.

Tianjic. Tianjic14 is a many-core neuromorphic chip that supports the 
massive parallel execution of ANNs, SNNs and ANN–SNN hybrids. Its 
scheduling components support the general control-flow logic of the 
ANN/SNN. Moreover, Tianjic adopts the near-memory computing 
mode, and the memory in a Tianjic core can be shared by many primi-
tives in the same core or used as a buffer for intermediate data (Sup-
plementary Fig. 5).

FPSA. The architecture of FPSA36 includes massive compact and effi-
cient memristor-based processing elements (Supplementary Fig. 6), 
which support only the ReLU and in situ weighted-sum operations. 
Its communication subsystem is an FPGA-like reconfigurable route-
ing architecture with massive wiring resources. Moreover, it provides 
spiking memory blocks as on-chip buffers for caching intermediate 
data and configurable logic blocks to support arbitrary control logic.

Toolchain
The toolchain includes compilation and mapping. For compilation, 
one key technique is template matching (Supplementary Fig. 7). It is 
an equivalent conversion that uses one or more execution primitives 
to match specific operator graph(s) in the POG.

The other technique is to construct the universal approximator for 
any given function (Supplementary Fig. 7). It is based on the afore-
mentioned constructive proof and requires the points to be sorted to 
satisfy the induction condition and determine the hypersurface for 
each point. Directly picking the points according to the definition of 
the induction condition is time-consuming. By contrast, we pick them 
in a reverse order, from X(m) to X(1). We first construct a convex hull with 
all m points, and then randomly pick one vertex of the convex hull as 
X(m) and remove it from the points. The rest of the points form a new 
convex hull. The facets facing X(m) can be used as a hypersurface to 
separate X(m) from other points. We pick the one with the largest distance 
from X(m). Then, we pick a vertex from the new convex hull as X(m − 1), and 
repeat the process until only n + 1 points remain. The last points satisfy 
the induction condition in any order. We randomly pick them, and get 
the best separation hypersurface for each of them. The best one is the 
one with the largest distance. Thus, if we move the origin to the picked 
points, the normal vector of the hypersurface should fall in the linear 
subspace spanned by the rest of the points and the hypersurface should 
pass through all the rest of the points. Suppose the chosen point is 
X0, the rest of the points are X = (X1, …, Xk) and the normal vector is N. 
Then, N = α(X − expand(X0)), and N(X − expand(X0)) + b = 0. Here, α is 
a coefficient vector, expand(X0) = (X0, X0, …, X0) which has k elements 
and b = (b, b, …, b); because we care only about the normal vector N, 
we can set b to any non-zero value. Thus, we solve (X − expand(X0))
(X − expand(X0))Tα + b = 0 to get α and then N.

With the sorted points and the corresponding hypersurface, we 
use the aforementioned constructive proof to construct universal 
approximators. The cost depends on the number of points. To reduce 

the cost, we decrease the number of points and fine-tune the universal 
approximator using backpropagation with Adam optimization. Usu-
ally, we set a condition to stop the fine-tune iteration, such as the error 
being smaller than a certain threshold.

The mapping is hardware dependent. For the GPU, the primitives 
in the EPG are the same as those in the POG, and the control flow is 
expressed as the control flow of CUDA.

For the FPSA, the primitives are supported by the processing ele-
ment directly. The control flow is synthesized to configurable logic 
blocks and the buffers required are synthesized to spiking memory 
blocks. The processing elements, configurable logic blocks and spiking 
memory blocks form a netlist to achieve the functionality of the EPG. 
Then, the placement and routeing tools of the FPSA generate the chip 
configuration from the netlist. Details are provided in Supplementary 
Information sections 8.2.5 and 8.2.6.

For Tianjic, the EPG should be divided onto many cores and the task 
of each core should be satisfied with the resource restriction (that is, 
storage restriction and computation restriction). The corresponding 
control, memory and routeing information will also be configured45.

Bicycle driving and tracking
The bicycle driving and tracking experiment is a hybrid ANN–SNN 
system14, constructed from five different neural networks: a CNN, an 
SNN, a CANN, an MLP and a NSM.

CNN. It is for image processing and object detection, which has three 
convolutional layers, two max-pooling layers and two fully connected 
layers. It takes 70 × 70 greyscale images as the input and outputs the 
coordinates of the human and obstacles.

SNN. It processes voice signal from the microphone and outputs the 
corresponding control commands. It is a 510-256-7 fully connected 
network. Each neuron is an LIF model. A detailed definition is provided 
in Supplementary Information section 9.2.

CANN. It is designed for object tracking. It is a one-layer fully connected 
recurrent neural network, which contains 20 × 24 neurons. It receives 
the images clipped by the initial human coordinates from the CNN and 
outputs the coordinates of the tracked target.

MLP. It takes in the motion information from the sensors and some 
related state signals from NSM, and outputs information about the 
balance state of the bike. It is a three-layered (30-256-32-1) network.

NSM. It controls all the above networks. It performs as a finite state 
machine with six states and nine transition conditions. The inputs 
are the signals from the CNN and the SNN, and the signals of internal 
states. The state transition and decision-making are achieved by a series 
of linear operations and LIF neurons, which are the same as the SNN.

The POGs of these cases and their connection relationship are shown 
in Extended Data Fig. 2.

We deploy these networks on three target hardware: general-purpose 
GPU, Tianjic chip14 and FPSA36. For Tianjic, vector–matrix accumula-
tion (y = Ws, where W is the input matrix, s is the input vector and y 
is the resultant vector) replaces the weighted-sum operations in the 
convolution and fully connected layers, and the vector–matrix mul-
tiplications in the CANN and NSM. The element-wise operations are 
replaced with vector–vector accumulation and vector–vector mul-
tiplication. The pooling primitives are used as the pooling layer. The 
LIF neuron is replaced by the vector–matrix accumulation primitive 
and the LIF primitive.

The compiler also approximates other operators, for example, 
using the look-up table to support the division operation in the CANN. 
Because the look-up table supports the mapping of only 8-bit input–
output, we scale the operands beforehand. The Tianjic computation 
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primitives used in this case are listed in Extended Data Table 3. During 
mapping, all the primitives of the EPG are distributed to each core, as 
load-balanced as possible, and meet the hardware constraints.

For FPSA, because the complexity of the universal approximator 
depends on the number of possible valid inputs, approximating the 
entire model is not practical. Therefore, we partition each network 
into parts, divided by continuous weighted-sum operations. Each 
weighted-sum operation is supported directly. Most of the remaining 
operations (between the weighted-sum operations) are element-wise 
operations (such as multiplication, addition and computation in an LIF 
model) and the inputs are either 1-bit spikes or 8-bit numbers. Accord-
ingly, we generate approximators for these unary and binary opera-
tions with zero error; that is, the transformation is exactly equivalent. 
Besides, some operations have a large number of inputs, such as nor-
malization, which would lead to an impractical cost if we approximate 
them directly. We therefore split them into many addition and division 
operations according to the mathematic definition, and then approxi-
mate these operations instead. With this partition strategy, the cost for 
all models is acceptable. Moreover, adjacent operations can be fused 
and approximated as a whole to further reduce the cost.

The compilation results are evaluated on the FPSA simulator. It 
is a cycle-accurate simulator based on the circuit-level parameters 
extracted from either a memristor circuit-level simulator (Nvsim46) 
or register transfer language synthesis. These parameters are listed 
in Extended Data Table 4. The communication subsystem in the 
FPSA is a memristor-based FPGA-like routeing architecture47. We 
developed a mapping tool to turn the EPG into a netlist composed 
of memristor-based processing elements, buffers and configurable 
logic blocks. We use the corresponding placement and routeing tool 
(mrVPR47), which is extended from a widely used FPGA placement and 
routeing tool48, to map the generated netlist onto the FPSA and get the 
critical communication latency of the routeing.

The resources used to approximate different types of operation are 
presented in Extended Data Fig. 3. Our toolchain enables the flexible 
approximation of these models with an acceptable cost.

Boids model for bird flock simulation
The boids model (Supplementary Figs. 8, 9) is used to study the behav-
iour of biological flock, such as bird flock49. In this model, each bird is 
called a boid, and follows three rules to achieve natural reality: (1) the 
separation rule, whereby a bird tries to keep a certain distance from 
nearby birds (that is, not too close); (2) the cohesion rule, whereby 
a bird tries to fly towards the centre of all the other birds; and (3) the 
alignment rule, whereby a bird tries to maintain the same speed as the 
surrounding birds.

A formal definition of Boids model is as follows50. There are N boids 
in a Euclidean vector space (N is the population size) V = ℝd (in general, 
d = 2, 3). Each boid has an internal state q ∈ Q:

p vQ q q r m v f= { | = ( , , , FOV, , , )}m m

where p, v ∈ V are position and velocity of the boid, respectively; 
r = (rs, ra, rc) represents the separation, alignment and cohesion percep-
tion distances; FOV = (FOVs, FOVa, FOVc) represents the fields of view of 
the three rules; m is the mass of the boid, which is often 1 and so ignored 
by the model; vm is the maximal speed; and fm is the maximal available 
change in the speed. Here, we refer to an open-source implementation 
named XBoids51. We adopt the two-dimensional simulation. In our 
implementation, we choose r = (25, 50, ∞), and the field of view is the 
whole circle. Detailed configurations are provided in Supplementary 
Information section 9.2.

We implement the boids model with the POG and deploy it on the 
three hardware platforms. All the platforms evaluate the boids model 
for population sizes of N = 20, N = 50 and N = 100 (Supplementary 
Tables 1–3).

The boids model contains several linear tensor operations, which 
can be converted to the EPG through template-matching; the nonlin-
ear operations (for example, square, square-root and reciprocal) are 
supported through approximation. For Tianjic, we use the look-up 
table to approximate (Supplementary Fig. 10). For the FPSA, we use 
universal approximators instead. For the GPU, we can flexibly support 
these operations in its EPG.

We measure the performance and resource utilization for the boids 
model (throughput for all hardware; area for Tianjic and FPSA). We also 
study the effect of the degree of approximation. We first construct three 
square-root approximators, with relative errors of 0.1%, 1% and 10%. Then, 
all the square-root operations in the EPG are replaced by these approxi-
mators. The running results of the 500th frame are shown in Fig. 4c.

QR decomposition by Givens rotations
QR decomposition is a mathematical procedure that decomposes a 
matrix A into an orthogonal matrix Q and an upper-triangular matrix 
R. Here, we adopt the Givens rotation method52, the pseudocode of 
which is shown in Extended Data Fig. 4a. We focus on the steps (1–5) 
in Extended Data Fig. 4a, which are also the steps shown in Fig. 4d.

In this experiment, we test the design-space exploration of the 
approximation granularity: from the most finely grained to coarser 
granularities. In the most finely grained case, each basic operation is 
approximated by one universal approximator. In other cases, several 
successive operations are approximated by an approximator as a com-
positive operator. We further propose a dedicated representation—a 
fusion space network—to illustrate different approximators (Fig. 4e, 
Supplementary Fig. 11). In the fusion space network, the red triangle 
(cover triangle) represents the cover scope of one approximator. A valid 
approximation strategy should ensure that the triangles can cover all 
basic operations and that there is no overlap. The approximators are 
then fine-tuned by backpropagation.

An approximator can be viewed as a three-layer MLP with an ReLU acti-
vation function. Assuming the number of nodes in the input, hidden and 
output layers are m, n and 1, respectively, the cost of this approximator is 
measured as C(A) = (mn + n)t. Here t is the number of times this approxi-
mator is used during the computation, which also means that t copies of 
it should be mapped on the hardware if there is no time-division multi-
plexing. The approximation granularity G(⋅) is defined as the number of 
nodes covered by the triangule; for example, G(A123) = 6 and G(A)45 = 3. 
Accordingly, the granularity (cost) of a given strategy is defined as the 
sum of the granularity (cost) of its approximators.

Intuitively, the cost of an approximation is positively correlated with 
the approximation precision. To focus on the relation between granu-
larity and cost, we set a fixed upper limit of the error for each approxi-
mator, Emax = 3%. Then, we use a binary search to find an approximator 
with minimal cost. The error metric we adopt is the mean absolute 
percentage error:

∑n

y y

y
MAPE =

100% −

i

n

=1

precise

precise

where n is the number of points sampled for error calculation. All points 
should be within the input domain. The domain we set for step 1 is 
[−8, 8]; domains for other steps are deduced from this. To avoid having 
a zero in the denominator, [−0.01, 0.01] is excluded.

We present the cost distributions on approximators and strategies 
in Fig. 4f, g. Specific information about approximators and strategies 
is listed in Extended Data Tables 1 and 2, respectively.

We also propose a simple heuristic search algorithm to find an opti-
mized approximation strategy on fusion space network, which consists 
of three steps.

Step 1. The algorithm starts with the most finely grained strategy. The 
selected approximators in the strategy form trees. Two adjacent and 



selected approximators are the tree’s leaves, and the lowest approxima-
tor in the fusion space network that covers them is the tree’s root. For 
example, A1 and A2, with A12 as the root, forms tree {A12 : A1, A2}.

Step 2. We evaluate the cost of the root approximator in each tree and 
then determine the saved cost of each tree (the cost saved if we replace 
the leaf approximators with the corresponding root approximator). If 
the saved cost is positive, then we can reduce the total cost.

Step 3. We select the root approximator with the highest saved cost 
to replace the corresponding leaf approximators.

These steps are repeated until there is no positive saved cost. Extended 
Data Fig. 4b shows the heuristic search algorithm for QR decomposition. 
The search path is also marked by a green arrow in Fig. 4g.

We control the resulting error of the QR decomposition in a limited 
and acceptable range. We repeat the experiment 10 times. During the 
experiment, the mean square error of the Q matrix is less than 0.1, that 
of the R matrix is less than 0.5 and the input is a random 4 × 4 matrix 
with element values ranging from −8 to 8.

Data availability
The example applications that we used are publicly available, as 
described in the text and the relevant references. The experimental 
setups for demonstration and measurements are detailed in the text 
and the relevant references. Other data that support the findings of 
this study are available from the corresponding authors on reason-
able request.

Code availability
The codes used for the software toolchain and the demonstration neu-
ral networks are available from the corresponding authors on reason-
able request.
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Extended Data Fig. 1 | POG. a, Two sample operators: the left is a single 
mathematical operation and the right is a simple algorithm that consists of 
several computation operations. b, A sample operator graph for rectified 
linear units (ReLU). c, Parameter updater. More details are provided 
in Supplementary Information section 3.3.1. d, Main control-flow operators: 
conditional decider, conditional merger, true gate and false gate.  

e, Control-flow operator graphs of the branch and the loop. f, Synapse 
operator: it is enabled when any of the inputs arrive. i, input; o, output; T/F, 
true/false branch; P, parameter of the operator; P′, the new value of P; OGT/F, 
operator graph of the true/false branch; Body, operator graph of the loop body; 
Cond, operator graph of the loop condition.



Extended Data Fig. 2 | Bicycle driving and tracking task. a–e, POGs of the 
five neural network examples. Conv2d, two-dimensional convolution 
operator; MatMul, matrix multiplication operator; LIF, operator of the LIF 

model; Norm, normalization operator; W, b, weight and bias parameters for the 
corresponding operator. f, The overall relationships between these networks.
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Extended Data Fig. 3 | Resource consumption of the FPSA for different operators .



Extended Data Fig. 4 | The experiment using QR decomposition. a, Pseudocode  
for QR decomposition by Givens rotation. b, The heuristic search algorithm on 
QR decomposition. Each step of this figure includes approximators that have 
been evaluated and the current priority queue. The number on each node 
represents the cost of that approximator. The red triangle represents the 
current strategy. Each step, the first tree in the queue is selected (green 

rectangle) and the leaves are replaced by the root approximator. The dashed 
circles represent the approximators that do not need to be constructed and 
evaluated. The whole procedure explores only four (out of 16) strategies. In this 
case, the final strategy happens to be the best, but in general, this algorithm is 
not guaranteed to produce the optimal result.
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Extended Data Table 1 | Universal approximators in the QR decomposition



Extended Data Table 2 | Granularity and cost of different strategies
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Extended Data Table 3 | Part of the Tianjic primitives



Extended Data Table 4 | FPSA function blocks at 400 MHz, 45 nm
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