
Parallel Molecular Dynamics

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Computer Science

Department of Physics & Astronomy
Department of Quantitative & Computational Biology

University of Southern California

Email: anakano@usc.edu

Parallel-computing basics using MD as an example

Parallel Computing

• Parallel algorithm design = decomposition (who does what?)
- Task: Units of computation into which the main computation is subdivided
- Decomposition: Dividing a computation into subsets of tasks that may be
executed in parallel

• Goal of parallel algorithm design = maximize concurrency & minimize task
dependency/interaction
- Concurrency: The maximum number of tasks that can be executed
simultaneously in parallel (limited by task dependency/interaction)
- Task dependency: A task depends on another task, if the former uses data
produced by the latter; represented by a directed acyclic graph called task-
dependency graph
- Task interaction: Tasks share inputs, outputs or intermediate data

• Granularity: Size of decomposed tasks: fine-grained = a large number of
small tasks; coarse-grained = a small number of large tasks

• Mapping: Assign tasks (or processes = running programs to perform the
tasks) to processors

A. Grama, A. Gupta, G. Karypis, & V. Kumar,
Introduction to Parallel Computing, 2nd Ed. (Addison-Wesley, ’03) Chap. 3

Glossary

http://srmcse.weebly.com/uploads/8/9/0/9/8909020/introduction_to_parallel_computing_second_edition-ananth_grama..pdf

Parallel Algorithm Design
• Decomposition (example: molecular dynamics)
- Spatial decomposition (» domain decomposition)—coarse-grained
- Particle decomposition—single-instruction multiple-data (SIMD) computers
- Force decomposition—fine-grained

• Maximal-concurrency algorithm: Expose data locality in the problem (e.g.,
divide-&-conquer)

• Scalability: Achieve a large fraction of perfect speed-up (= number of
processors) on a large number of processors

• Load balancing: Keep all processors equally busy
• Optimization: Optimal mapping to minimize task interaction (or

communication between processes)
- Owner-computes rule
- Minimize the volume & frequency of data exchanges
- Computation-communication overlapping
- Data & computation replication

• Issues: Regular vs. irregular & static vs. dynamic task interactions

Parallel Supercomputers

http://www.top500.org (June ’22)

Measured performance
(in Pflop/s)

flops =
floating-point
operations/second

M (mega) = 106
G (giga) = 109
T (Tera) = 1012
P (Peta) = 1015
E (Exa) = 1018
Z (Zetta) = 1021
Y (Yotta) = 1024

1.1 exaflop/s Frontier

Theoretical
performance

Performance Development

Sum (top 500)

#1

#500

Message Passing Interface

#include "mpi.h"
#include <stdio.h>
main(int argc, char *argv[]) {

MPI_Status status;
int myid;
int n;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
if (myid == 0) {

n = 777;
MPI_Send(&n, 1, MPI_INT, 1, 10, MPI_COMM_WORLD);

}
else {

MPI_Recv(&n, 1, MPI_INT, 0, 10, MPI_COMM_WORLD, &status);
printf("n = %d\n", n);

}
MPI_Finalize();

}

MPI (Message Passing Interface): A standard message passing
system that enables us to write & run applications on parallel
computers (http://www.mcs.anl.gov/mpi).

MPI rank

Matching message labels

Data triplet To/from whom

Single Program Multiple Data (SPMD)

Process 1

if (myid == 0) {
n = 777;
MPI_Send(&n,...);

}
else {

MPI_Recv(&n,...);
printf(...);

}

Process 0

if (myid == 0) {
n = 777;
MPI_Send(&n,...);

}
else {

MPI_Recv(&n,...);
printf(...);

}

CSCI653_to_do()

{

if (I == student)
{

do_assignment();
MPI_Send(...);

}
else if (I == teacher)
{

MPI_Recv(...);
grade();

}
}

Parallel programming = choreography of “who does what”?

OpenMP
• OpenMP (Open specifications for Multi Processing): Portable application

program interface (API) for shared-memory parallel programming based
on multi-threading by compiler directives (http://www.openmp.org)

• Fork-join parallelism:
> Fork: Master thread spawns a team of threads as needed
> Join: When the team of threads complete the statements in the parallel

section, they terminate synchronously, leaving only the master thread

• OpenMP is typically used
to parallelize loops

• OpenMP threads communicate
by sharing variables

On HPC, compile as
> cc ... -fopenmp
> mpicc ... -fopenmp

processes (= running programs) sharing resources

OpenMP Programming
#include <stdio.h>
#include <omp.h>
#define NBIN 100000
#define MAX_THREADS 8
void main() {
int nthreads,tid;
double step,sum[MAX_THREADS]={0.0},pi=0.0;
step = 1.0/NBIN;

#pragma omp parallel private(tid)
{
int i;
double x;
nthreads = omp_get_num_threads();
tid = omp_get_thread_num();
for (i=tid; i<NBIN; i+=nthreads) {
x = (i+0.5)*step;
sum[tid] += 4.0/(1.0+x*x);}

}
for(tid=0; tid<nthreads; tid++) pi += sum[tid]*step;
printf("PI = %f\n",pi);

}

pa
ra

lle
l s

ec
tio

n

• Obtain the number of threads & my thread ID
• By default, all variables are shared unless selectively changing storage attributes

using private clauses

Array of partial sums
for multi-threads

data privatization to avoid race condition

thread reduction

Molecular Dynamics Algorithm
Time discretization

Time stepping: Velocity Verlet algorithm

𝑟! 𝑡 + ∆ = 𝑟! 𝑡 +𝑣⃑! 𝑡 ∆ +
1
2
𝑎⃑! 𝑡 ∆"

𝑣⃑! 𝑡 + ∆ = 𝑣⃑! 𝑡 +
𝑎⃑! 𝑡 + 𝑎⃑! 𝑡 + ∆

2
∆
𝑎⃑! = −

1
𝑚
𝜕𝑉
𝜕𝑟!

Given ,

1. (Compute as a function of)

2.

3.

4. Compute as a function of

5.

𝑟! 𝑡 , 𝑣⃑! 𝑡

𝑎⃑! 𝑡 𝑟! 𝑡

𝑣⃑! 𝑡 +
∆
2

← 𝑣⃑! 𝑡 +
∆
2
𝑎⃑! 𝑡

𝑟! 𝑡 + ∆ ← 𝑟! 𝑡 + 𝑣⃑! 𝑡 +
∆
2
∆

𝑎⃑! 𝑡 + ∆ 𝑟! 𝑡 + ∆

𝑣⃑! 𝑡 + ∆ ← 𝑣⃑! 𝑡 +
∆
2
+
∆
2
𝑎⃑! 𝑡 + ∆

Parallel Molecular Dynamics
Spatial decomposition (short ranged):
1. Divide the physical space into subspaces of equal volume
2. Assign each subspace to a compute node (more generally, to a

process) in a parallel computer
3. Each node computes forces on the atoms in its subspace &

updates their positions & velocities Who does what

or MPI rank

MapSpatial
subsystem

Computing
node

Parallel MD Algorithm
1. 𝑣⃑! 𝑡 + ∆

#
← 𝑣⃑! 𝑡 + ∆

#
𝑎⃑! 𝑡

2. 𝑟! 𝑡 + ∆ ← 𝑟! 𝑡 + 𝑣⃑! 𝑡 + ∆
#
∆

3. atom_move() // migrate moved-out atoms
4. atom_copy() // cache surface atoms
5. Compute as a function of

6. 𝑣⃑! 𝑡 + ∆ ← 𝑣⃑! 𝑡 + ∆
#
+ ∆

#
𝑎⃑! 𝑡 + ∆

atom_copy() atom_move()

rc

𝑎⃑! 𝑡 + ∆ 𝑟! 𝑡 + ∆

https://aiichironakano.github.io/cs653/src/parMD/

Spatial Decomposition

• Process ID
Vector
px = p/(PyPz)
py = (p/Pz) mod Py
pz = p mod Pz
Scalar
p = px´PyPz + py´Pz + pz

In pmd.h
int vproc[3] = {1,1,2}, nproc = 2;

In pmd.c
MPI_Comm_rank(MPI_COMM_WORLD, &sid);
vid[0] = sid/(vproc[1]*vproc[2]);
vid[1] = (sid/vproc[2])%vproc[1];
vid[2] = sid%vproc[2];

nproc = vproc[0]´vproc[1] ´vproc[2]

Which 3D
subspace?

Rank

Px Py Pz

Map a spatial
subsystem to

a process!

Neighbor Process ID
p¢a(k) = [pa + da(k) + Pa] mod Pa (k = 0,...,5; a = x, y, z)
p¢ (k) = p¢x (k)´PyPz + p¢y(k)´Pz + p¢z(k)

In pmd.c
int iv[6][3]={{-1,0,0}, {1,0,0}, {0,-1,0}, {0,1,0}, {0,0,-1}, {0,0,1}};
...
for (ku=0; ku<6; ku++) {

for (a=0; a<3; a++)
k1[a] = (vid[a]+iv[ku][a]+vproc[a])%vproc[a];

nn[ku] = k1[0]*vproc[1]*vproc[2]+k1[1]*vproc[2]+k1[2];
for (a=0; a<3; a++) sv[ku][a] = al[a]*iv[ku][a];

}

Neighbor ID, κ

!

!

" = (δx, δy, δz)

!

!
" = (Δx, Δy, Δz)

0 (east)

1 (west)
2 (north)

3 (south)

4 (up)

5 (down)

(-1, 0, 0)

(1, 0, 0)
(0, -1, 0)

(0, 1, 0)

(0, 0, -1)

(0, 0, 1)

(-Lx, 0, 0)

(Lx, 0, 0)
(0, -Ly, 0)

(0, Ly, 0)

(0, 0, -Lz)

(0, 0, Lz)

destination rank
coordinate shift for
self-centric parallelization

• Lx, Ly & Lz are the box lengths per process in the x, y & z directions
• Atom coordinates are in the range [0, La] (a = x, y, z) in each process

Wrap around

Parallel MD Concepts
Atom caching Atom migration

1. First half kick to obtain vi(t+Dt/2)
2. Update atomic coordinates to obtain ri(t+Dt)
3. atom_move(): Migrate the moved-out atoms to the neighbor processes
4. atom_copy(): Copy the surface atoms within distance rc from the neighbors
5. compute_accel(): Compute new accelerations, ai(t+Dt), including

the contributions from the cached atoms
6. Second half kick to obtain vi(t+Dt)

rc

Data structure

Parallel Interaction Computation

for resident cells, c {
for neighbor (resident or cached) cells, c1 {

scan atom i in cell c using c’s linked list {
scan atom j in cell c1 using c1’s linked list {

...
if (i<j && rij<rc2) {

compute pair force aij & potential u(rij)
bintra = j < n; /* j is resident? */
ai += aij; if (bintra) aj -= aij;
if (bintra) lpe += u(rij); else lpe += u(rij)/2;

}
}

}
}

}
MPI_Allreduce(&lpe, &potEnergy,...,MPI_SUM,...);

SPMD: Who does what?
Each process computes:
1. The forces on its resident atoms
2. The potential energy between resident pairs &

1/2 of that between resident-cached pairs

cx

cy

j bintra = (j < n)

global reduction over MPI ranks

Owner-computes rule

Atom Caching: atom_copy()

Reset the number of received cache atoms, nbnew = 0
for x, y, and z directions
Make boundary-atom lists, lsb, for lower and higher directions
including both resident, n, and cache, nbnew, atoms
for lower and higher directions
Send/receive boundary-atom coordinates to/from the neighbor
Increment nbnew

endfor
endfor
nb = nbnew

26-step → 6-step communication by message forwarding

Implementing Atom Caching

Copying condition
bbd(ri[],ku) {
kd = ku / 2 (= 0|1|2)
kdd = ku % 2 (= 0|1)
if (kdd == 0)
return ri[kd] < RCUT

else
return al[kd] – RCUT < ri[kd]

}

3 phases of message passing
1. Message buffering: dbuf← r-sv (shift), gather
2. Message passing: dbufr← dbuf

Send dbuf
Receive dbufr

3. Message storing: r← dbufr, append after the residents

shift

x|y|z
lower|higher

I210

Self-centric coordinate systems

Deadlock Avoidance

1. Message buffering: dbuf ← r, gather
2. Message passing: dbufr ← dbuf

/* Even node: send & recv, if not empty */
if (myparity[kd] == 0) {
MPI_Send(dbuf,3*nsd,MPI_DOUBLE,inode,120,MPI_COMM_WORLD);
MPI_Recv(dbufr,3*nrc,MPI_DOUBLE,MPI_ANY_SOURCE,120,

MPI_COMM_WORLD,&status);
}
/* Odd node: recv & send, if not empty */
else if (myparity[kd] == 1) {
MPI_Recv(dbufr,3*nrc,MPI_DOUBLE,MPI_ANY_SOURCE,120,

MPI_COMM_WORLD,&status);
MPI_Send(dbuf,3*nsd,MPI_DOUBLE,inode,120,MPI_COMM_WORLD);

}
/* Single layer: Exchange information with myself */
else
for (i=0; i<3*nrc; i++) dbufr[i] = dbuf[i];

3. Message storing: r ← dbufr, append

3-phase (deadlock-free) message passing

Cyclic dependence vproc[0|1|2] must be 1
or even

Break cyclic dependence!

ANL IBM SP1 User’s Guide (’94)

Baseline
pmd.c

CSCI 596
assignment

MPI_Irecv();
MPI_Send();
MPI_Wait();

Atom Migration: atom_move()

Reset the number of received new immigrants, newim = 0
for x, y, and z directions
Make moving-atom lists, mvque, for lower and higher directions including both
resident, n, and immigrant, newim, atoms but excluding those already moved out
for lower and higher directions
Send/receive moving-atom coordinates to/from the neighbor
(When moving, r[][0] ← MOVED_OUT = -1010)
Increment newim

endfor
endfor
Compress the r array to eliminate the moved-out atoms

Moved out
Moved in

Implementing Atom Migration

Moving condition
bmv(ri[],ku) {
kd = ku / 2 (= 0|1|2)
kdd = ku % 2 (= 0|1)
if (kdd == 0)
return ri[kd] < 0.0

else
return al[kd] < ri[kd]

}

3 phases of message passing
1. Message buffering: dbuf ← r-sv (shift) & rv, gather

Mark MOVED_OUT in r
2. Message passing: dbufr ← dbuf

Send dbuf
Receive dbufr

3. Message storing: r & rv ← dbufr, append after the residents

Spatial Decomposition Benchmark

• 4.9 trillion-atom space-time multiresolution MD (MRMD) of SiO2
• 8.5 billion-atom fast reactive force-field (F-ReaxFF) RMD of RDX
• 1.9 trillion grid points (21.2 million-atom) DC-DFT QMD of SiC

parallel efficiency 0.98 on 786,432 BlueGene/Q cores

QMD (quantum molecular
dynamics): DC-DFT

RMD (reactive molecular
dynamics): F-ReaxFF

MD (molecular dynamics):
MRMD

×10

×10O(N)!

Cost of Spatial Decomposition MD
Spatial decomposition (short ranged): O(N/P) computation

Atom caching: O((N/P)2/3) Atom migration

Map

Large overhead & lack of parallelism for small N/P

rc

Parallel Efficiency

• Execution time: T(W,P); W: Workload, P: Number of processors

• Speed:

• Speedup:

• Efficiency:

• How to scale WP with P?
> Isogranular (weak) scaling:

WP = Pw ;w = constant workload per processor (granularity)
> Constant problem-size (strong) scaling:

WP = W—constant

See Grama’03, Chap. 5

Parallel computing = solving a big problem (W) in a short time (T) using many
processors (P)

Analysis of Parallel MD
• Parallel execution time:

Workload µ Number of atoms, N (linked-list cell algorithm)

⏞6
!"#$%& 𝐿'

𝑃 ⁄') 𝑟#

#"#*$+ ,-./0$

⏞ρ
"%-0 +$1&2%3

= 6𝑟#
𝑁'/)/𝜌'/)

𝑃 ⁄') 𝜌

= 6𝑟#𝜌 ⁄5) 𝑁
𝑃

⁄')∵
𝑁
𝐿! = 𝜌 ⇒ 𝐿" =

𝑁"/!

𝜌"/!

MPI_Allreduce()

Eliminate L by expressing
it in terms of N

Fixed Problem-Size Scaling
• Speedup:

• Efficiency:

pmd.c: N = 16,384, on CARC

Can’t do this for P = 1–106

Isogranular Scaling of Parallel MD
• n = N/P = constant: doable for arbitrarily large P
• Efficiency:

pmd.c: N/P = 16,384, on CARC

Parallel Performance of Quantum MD
• Weak-scaling parallel efficiency is 0.984 on 786,432 Blue Gene/Q cores for a

50,331,648-atom SiC system
• Strong-scale parallel efficiency is 0.803 on 786,432 Blue Gene/Q cores

SiC
64 atoms/core

Li2136Al2136 in water
77,889 atoms

Weak scaling Strong scaling

K. Nomura et al., IEEE/ACM Supercomputing, SC14 (’14)

• 62-fold reduction of time-to-solution [441 s/SCF-step for 50.3M atoms] from the
previous state-of-the-art [55 s/SCF-step for 102K atoms, Osei-Kuffuor et al., PRL ’14]

Parallel Fast Multipole Method

Lower levels:
Spatial decomposition
Computation: O(N/P)

Upper levels:
Global to all processors
Overhead: O(log P)

0 1 2 3 4 5 6 7

l = 1

l = 2

l = 3

l = 4

Level

Coarse grain:
N/P ~ 106; P ≤ 103
↓

N/P >> log P, (N/P)2/3

S. Ogata et al.,
Comput. Phys. Commun.
153, 445 (’03)

Level-by-level
short-ranged (M-to-L)
interaction with cousins

A. Nakano et al., Comput. Phys.Commun.
83, 197 (1994)

https://aiichironakano.github.io/cs653/Nakano-MPCG-CPC97.pdf

Caching Interactive Cells

• TM←M & TL← L: local at lower octree levels
• TL←M: cache 2 boundary layers of cells at each level

See lecture note on “scalability analysis of parallel molecular-dynamics
& fast-multipole-method algorithms”

https://aiichironakano.github.io/cs653/02-2Scalability.pdf

https://aiichironakano.github.io/cs653/02-2Scalability.pdf

Billion-Atom Molecular Dynamics

• Water nanojet formation and its collision with silica surface

• Billion-atom MD simulation of shock-induced nanobubble collapse in water
near silica surface (67 million core-hours on 163,840 Blue Gene/P cores)

112 Million-Atom Reactive MD
• 112 million-atom reactive MD simulation to study nanocarbon synthesis by

high-temperature oxidation of SiC nanoparticle (410 million core-hours on
786,432 Blue Gene/Q cores)

Fine-Grained Parallel MD

Science 282, 740 (’98)

J.C. Phillips, G. Zheng, S. Kumar, & L.V. Kale,
in Proc. of IEEE/ACM SC2002

Force Decomposition for Parallel MD

S. Plimpton, J. Comput. Phys. 117, 1 (’95)

AD

FD

SD

Runtime on 1,024-processor Intel Paragon

Hybrid Spatial+Force Decomposition

L. Kale et al., J. Comput. Phys. 151, 283 (’99); J. C. Phillips et al., SC2002 (IEEE/ACM)

• Spatial decomposition of patches (localized spatial regions &
atoms within)

• Inter-patch force computation objects assigned to any processor
• Message-driven object execution

Quantum MD@Scale
Quantum dynamics at scale: ultrafast control of emergent

functional materials
S. C. Tiwari, P. Sakdhnagool, R. K. Kalia, A. Krishnamoorthy, M. Kunaseth,

A. Nakano, K. Nomura, P. Rajak, F. Shimojo, Y. Luo & P. Vashishta
Best Paper in ACM HPCAsia 2020

19 years since

Scalable atomistic simulation algorithms
for materials research, A. Nakano et al.,
Best Paper, IEEE/ACM Supercomputing 2001, SC01

Neighbor
environment

Neural network

Symmetry functions

Interatomic
forces

Neural MD@Scale
• Neural-network quantum molecular dynamics (NNQMD) could

revolutionize atomistic modeling of materials, providing quantum-
mechanical accuracy at a fraction of computational cost [Phys. Rev. Lett.
126, 216403 (’21); J. Phys. Chem. Lett. 12, 6020 (’21)]

Neural network molecular dynamics at scale & Ex-NNQMD: extreme-scale neural network
quantum molecular dynamics,

P. Rajak et al., IEEE IPDPS ScaDL 20 & 21

See also Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms
with machine learning

W. Jia et al., ACM/IEEE Supercomputing, SC20

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.216403
https://pubs.acs.org/doi/full/10.1021/acs.jpclett.1c01272
https://ieeexplore.ieee.org/document/9150357
https://ieeexplore.ieee.org/document/9460660
https://dl.acm.org/doi/abs/10.5555/3433701.3433707

What We Have Learned Here

• Single program multiple data (SPMD) parallel
programming for multicomputers based on message
passing interface (MPI), using molecular dynamics (MD)
as a prototypical example.

• Parallel computing = decomposition (who does what).

• Data locality-exposing data structure like linked-list cells
leads to straightforward parallelization.

• Spatial, particle, force & hybrid decompositions.

• Scalability analysis based on analytical models.

