OpenMP Programming

Alichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Department of Chemical Engineering & Materials Science
Department of Biological Sciences
University of Southern California

Email: anakano@usc.edu

Goal: Use multiple cores in a computing node via multithreading

G255

OpenMP

* Portable application program interface (API) for shared-memory
parallel programming based on multi-threading by compiler directives

 OpenMP = Open specifications for Multi Processing

* OpenMP homepage
https://www.openmp.org

* OpenMP tutorial
https://hpc.1llnl.gov/tuts/openMP

* Process: an instance of program running

e Thread: a sequence of instructions being executed, possibly sharing
resources with other threads within a process

send P
—
P NIC NIC P write read
4_
M receive M share M

MPI (distributed memory) OpenMP (shared memory)

OpenMP Programming Model

Fork-join parallelism
* Fork: master thread spawns a team of threads as needed

e Join: when the team of threads complete the statements in the
parallel section, they terminate synchronously, leaving only the

master thread { {
parallel parallel
section section
} }
- R
F J F J
o) o) o) 0
> . i > ' i »
master k n k n
thread . -
multi- multi-
threads threads

 OpenMP threads communicate by sharing variables

OpenMP Example: omp example.c

#include <stdio.h> https://aiichironakano.github.io/cs596/src/omp/omp_example.c
#include <omp.h>
void main () {
int nthreads,tid;
nthreads = omp get num threads(); «—— Get the number of threads
printf("Sequential section: # of threads = %d\n",nthreads);
/* Fork multi-threads with own copies of variable */
#pragma omp parallel private(tid)

E { e Gbkedn & e Sl Sl :/\Each threads gets a private variable
k> tid = omp get thread num(); <—— Get my thread ID: 0,1, ...
3 printf("Parallel section: Hello world from thread %d\n",tid);
> /* Only master thread does this */
— if (tid == 0) {
g nthreads = omp get num threads();
S printf("Parallel section: # of threads = %d\n",nthreads);}
= +} /* All created threads terminate */

}

e Obtain the number of threads & my thread ID (¢ MPI_Comm_size &
MPI_Comm_rank)

* By default, all variables are shared unless selectively changing
storage attributes using private clauses

https://aiichironakano.github.io/cs596/src/omp/omp_example.c

OpenMP Example: omp example.c

 Compilation on carc.usc.edu
gcc -o omp example omp example.c -fopenmp

e Slurm script
#!/bin/bash
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1 1 process per computing node
#SBATCH --cpus-per-task=2 2 cores (threads) per process
#SBATCH --time=00:00:59
#SBATCH --output=omp example.out

#SBATCH -A anakano 429 Se?the##qfthreads
export OMP NUM THREADS=2 ¢ using environment
./omp example parameter

e Output
Sequential section: # of threads = 1

Parallel section: Hello world from thread 1

Parallel section: Hello world from thread 0
Parallel section: # of threads = 2

Setting the Number of Threads

#include <stdio.h> https://aiichironakano.qgithub.io/cs596/src/omp/omp example set.c
#include <omp.h>

void main () {
int nthreads,tid;
omp set num_threads(2);

nthreads = omp get num threads();
printf("Sequential section: # of threads = %d\n",nthreads);

/* Fork multi-threads with own copies of variable */
#pragma omp parallel private(tid)

{
/* Obtain & print thread id */

tid = omp get thread num();
printf("Parallel section: Hello world from thread %d\n",tid);
/* Only master thread does this */
if (tid == 0) {
nthreads = omp get num threads();
printf("Parallel section: # of threads = %d\n",nthreads);

}

} /* All created threads terminate */

}

e Setting the number of threads to be used in parallel sections within the
program (no need to set OMP _NUM_THREADS); see omp example set.c

https://aiichironakano.github.io/cs596/src/omp/omp_example_set.c

OpenMP Programming Model

 OpenMP is typically used to parallelize (big) loops

e Use synchronization mechanisms to avoid race conditions
(i.e., the result changes for different thread schedules)

e Critical section: only one thread at a time can enter

#pragma omp parallel

{ Threads wait
"o their turn—
only one at a

#pragma omp critical <

{ time executes
) C the critical
section

Example: Calculating 7t

* Numerical integration

i 14 dx =1
01+ x2 \\
e Discretization:

A=1/N: step = 1/NBIN
x;=({+05A (i=0,....N-1)

N-1 4

4/(1+4x°)

A=

2.5

i=01+ X

f(x)

#include <stdio.h>
#define NBIN 100000
void main() {
long long i; double step,x,sum=0.0,pi;

step = 1.0/NBIN;
for (i=0; i<NBIN; i++) { O 1 2
X = (i+0.5)*step; -
sum += 4.0/(1.0+x*x);}
pi = sum*step;) Step
printf(“PI = %f\n",pi);

}

OpenMP Program: omp pi critical.c

#include <stdio.h> https://aiichironakano.github.io/cs596/src/omp/omp_pi_critical.c
#include <omp.h>
#define NBIN 100000

void main() { .
double step,sum=0.0,pi; © Shared variables

step = 1.0/NBIN;
pragma omp parallel

{
int nthreads,tid; long long i Private (local) Val‘iables

double x; 4
nthreads = omp get num threads();

This has to be atomic

tid = omp get thread num();

for (i=tid; i<NBIN; i+=nthreads) { tid=0
X = (i+0.5)*step; // tid = 1
#pragma omp critical N
sum += 4.0/ (1l.0+x*x);

}

}

pi = sum*step;
printf("PI = %f\n",pi);
}

Thread-private variables: Either declare 0ol1/0/1/0
private or define within a parallel section 01234 =NBIN-1

Race Condition

* Race condition: Output is dependent on the sequence or timing of how
multiple threads are executed

* Race condition arises if the read & write operations below are not
atomic (a set of operations is atomic if they are executed without being
interrupted by other operations)

sum = sum + 1;

/ \

write read
tid 0 tid 1
sum += 2 Possible scenarios
Oori t0 r O t0 r O
y 2or3 tl r 0 t0 w 1
[sum=0_| €0 w1l tlrl
tl w 2 tl w 3

sum=1or2o0r3

Critical Section

e Critical section degrades scalability, ¢f. Amdahl’s law

TP=fT1+(1—f)%

T, 1 1

T, .. 1-f
[+ 5

SP=

for (i=tid; i<NBIN; i+=nthreads) {
X = (i+0.5)*step;
#pragma omp critical f~0.5
sum += 4.0/ (1l.0+x*x);

}

 How to get rid of the critical section?

Avoid Critical Section: omp pi.c

Data privatization: Give each thread a dedicated accumulator

#include <stdio.h> https://aiichironakano.github.io/cs596/src/omp/omp_pi.c
#include <omp.h>
#define NBIN 100000
#define MAX THREADS 8
void main() {
int nthreads,tid;
double step,sum[MAX THREADS]={0.0},pi=0.0;

step = 1.0/NBIN;

llel private(tid .

{Pragma omp parallel private(1\ Array of partial sums
long long i; for multi-threads
double x;

nthreads = omp get num threads();
tid = omp get thread num();
for (i=tid; i<NBIN; i+=nthreads) {
X = (i+0.5)*step;
sum[tid] += 4.0/(1.0+x*X); 4——— Private accumulator
}

}
for(tid=0; tid<nthreads; tid++) pi += sum[tid]*step;

printf("PI = %f\n",pi); —

Inter-thread reduction

Avoid Critical Section: “Wrong” Way

#include <stdio.h> . .
#include <omp.h> omp_pi_noncritical.c
#define NBIN 100000
void main() {

double step,sum=0.0,pi;

step = 1.0/NBIN;

pragma omp parallel

{

Everything You Learned About Parallel Computing

Wrong for Machine Learning

int nthreads, tid

long long 1i;

double x;

nthreads = omp get num threads();
tid = omp get thread num();

for (i=tid; i<NBIN; i+=nthreads) ({ Prof. Kunle Olukotun (Stanford)
X = (i+0.5)*step; (Sep. 28, 2017 at USC)

// #pragma omp critical

) sum += 4.0/(1.0+x*x); HOGWILD!: A Lock-Free Approach to Parallelizing

Stochastic Gradient Descent
}

pi = sum*step; F. Niu et al., NeurlPS11
printf("PI = %f\n",pi);

}
[anakano@discovery src]$./omp pi critical
PI = 3.141593

[anakano@discovery src]$./omp pi noncritical
PI = 0.558481 4¢—— 16-thread run

https://aiichironakano.github.io/cs596/Niu-Hogwild-NIPS11.pdf

Load Balancing

* Interleaved assignment of loop-index values to threads balances the loads
among the threads

for (i=tid; i<NBIN; i+=nthreads) {

}

A bad example

Most Widely Used Construct

 OpenMP for: Distribute the loop iterations across the threads; can be
combined with OpenMP parallel to achieve multithreading in just one line.

#include <omp.h>
#include <stdio.h>
#define NBIN 100000
void main() {

long long i;

double step,x,sum=0.0,pi; Reduction clause performs
step = 1.0/NBIN; automatic thread reduction
omp set num threads(2); \\\

pragma omp parallel for private (i,x) reduction(+:sum)
for (i=0; i<NBIN; i++) {
X = (1i+0.5)*step;
sum += 4.0/ (1.0+x*X);
}
pi = sum*step;
printf("PI = %f\n",pi);
}

* OpenMP parallelization is very easy!

Where to Go from Here

e OpenMP tutorial introducing most constructs
https://hpc.linl.gov/tuts/openMP

e OpenMP 4.5 has added many constructs to support modern hardware
architectures

#pragma omp target: Offload computation to accelerators like graphics
processing units (GPUs)
#pragma omp simd: Explicit control over single instruction multiple data

(or vector) operations
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

~ USING.OPENMP -
. THE NEXT STEP

" Affinity, Accelerators, Tasking, and SIMD;.
\\

AR

\ Ruud van der Pas, Eric Stotzer,

. and Christian Terboven
BARBARA CHAPMAN, word N
GABRIELE JOST, DAVID J. KUCK
AND RUUD VAN DER PAS

https://hpc.llnl.gov/tuts/openMP
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

