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Embedded Divide-&-Conquer Algorithms

Global Embedding Field Local Adaptive Multigrids

Divide-&-Conquer Cells
D-&-C for: (1) O(N) algorithms; & (2) scalability > P=10°

e N-body problem: O(/N?) — O(N)
> Space-time multiresolution molecular dynamics (MRMD):
Fast multipole method & symplectic multiple time stepping

* Variable N-charge problem: O(/N?) — O(N)
> Fast reactive force-field (F-ReaxFF) MD: Multilevel preconditioning

* Quantum N-body problem: O(C") — O(N)
> EDC density functional theory (EDC-DFT): Adaptive multigrids




Scalable Parallelization Framework

HCD: tunable hierarchical PGP PG
cellular decomposition

* Topology-preserving
computational-space
decomposition

e Computational cell C
thread C processor C
processor group

e Al-based computation/
data layout tuning

 Wavelet-based adaptive
load balancing

e Spacefilling-curve data
compression for 1I/0

Regular mesh topology Curved partition
in computational space, { in physical space, x



The Landscape of Parallel Computing
Research: A View from Berkele

7 dwarfs (dwarf = algorithmic method that captures a pattern
of computation & communication) + 6 combinatorial dwarfs

Dwarf Description Communication Pattern NAS Dwarf Description Communication Pattern NAS
/4
(Figure axes show Benchmark / (Figure axes show Benchmark /
processors 1 to 256, with | Example HW processors 1 to 256, with | Example HW
black meaning no black meaning no
communication) | c ication)
1. Dense Lincar | Data are dense matrices or vectors. Block 4. N-Body Depends on 'ml::r:acliun.s between — r (no benchmark) /
Algebra (BLAS Level 1 = vector-vector; Triadiagonal Methods many discrete points. Variations GRAPE
. Level 2 = matrix-ve nd Level 3 Matrix, Lower ARt include particle-particle methods, [Tokyo 2006].
(c.g., B}‘Ab = matrix-matrix.) Generally, such Upper (¢.g., Barnes-Hut where every point depends on all MD-GRAPE
[Blackford etal | ypplications use unit-stride memory Symmetric [Barnes and Hut | gihers, leading o an OONY) [IBM 2006]
2002], accesses 10 read data from rows, and Gauss-Seidel / 1986], Fast calculation, and hierarchical particle
ScalLAPACK strided accesses to read data from Vector Multipole methods, which combine rl{“'“«* or
[Blackford et al columns. compulers, Array Method potentials from multiple points o
computers [Greengard and reduce the computational complexity
1996], or The communication pattern of Lore _g o O(N log N) or O(N).
MATLAB MudBench, which makes Rokhlin 1987]) PMEMD's communication
[MathWorks heavy use of S\{uLAP.:\CK fu'r pattern is that of a particle
2006]) parallel dense linear algebra, is mesh Ewald calculation.
l).'p:\:alrul' a :nl{c})lbrloudx.'rh 5. Structured Represented by a regular grid: points - Mult-Grid,
class of numerical algorithms Grids on grid are conceptually updated Scalar Penta-
3 . : = rids 4 . : 3 :
. Sparse Linear | Data sets include many zero values. Conjugate ~ together. It has high spatial locality. diagonal /
p i, J ac e
Algebra Data is usually stored in compressed Gradient / Vector ("_'g - Cactus Updates may be in place or between QCDOC
(c.g., SPMV matrices Lo reduce the storage and computers with [Goodale et d] 2 versions of the grid. The grid may [Edinburg 2006],
L'_g'-' P! el banéwidth requirements to access all gather/scatter 2003] or Lattice- | be subdivided into finer grids in areas BlueGenel.
OSKI [OSKI of the nonzero values. One example Boltzmann of interest (“Adaptive Mesh
2006], or 1s block cumpn:.s:cd. Sparse row Magneto- Refinement”); unfl‘lhc transition
SuperLU (BCSR). Because of the compressed hydrodynamics between granularities may happen
[Demmel et al formats, data is generally accessed Y / 2 dynamically.
with indexed loads and stores. [LBMHD 2005]) scati
1999]) s A i Communication pattern for
SupcrLL- (cum‘;m:mcul.wn Cactus, a PDE solver using 7-
pattern pictured above) uses int stencil on 3D block-
the BCSR method for ﬁuclurcd\crid\
",r_".';]"'mf":l_l"’g sparse LU 6. Unstructured An irregular grid where data Unstructured
- - - raetonzation. 1 - Grids locations are :ted, usually by Adaptive /
3. Spectral Data are in the frequency domain, as Fourier | ya underlying characteristics of the Vector
Methods opposed to tme or spatial domains. Transform / gc‘g" ABfA‘QLs upplic;niun. Data point location and computers with
(c.g..FFT T."P’}-'"‘“.‘"~ spectral methods use DSPs. Zalink IAQAQLS 2006] connectivity of neighboring points gather/scatter,
[Cooley and l'““h“l_’l'-' .)uuc.rl'.y stages, “h‘_‘-'h . _]:DSP [Zarlink or FIDAP must be explicit. The points on the Tera Multi
L J combine multiply-add operations and 2006) [FLUENT arid are conceptually updated Threaded
Tukey 1965]) u ~‘P°’~'lﬁi: pattern of data . 2006]) together. Updates typically involve Architecture
permutation, w:l!x all-to-all multiple levels of memory reference [Berry etal
cur.mnulmcuh(.m for some stages and indirection, as an update 1o any point 2006]
strictly local for others. requires first determining a list of
PARATEC: The 3D FFT neighboring points, and then loading
requires an all-to-all values from those neighboring
communication to implement points.
aldD transpose, which requires 7. Monte Carlo Calculations depend on statistical Communication is typically Embarrassingly
communication belween every (e Quantum results of repeated random trials. not dominant in Monte Carlo Parallel / NSF
link. The dic P ipe -8 sdered embarrassi ¢ narallel Aot
link. The diagonal stripe ~ Considered embarrassingly parallel. | methods. Teragrid
describes BLAS-3 dominated Ivlomc (.H(;]u K
linear-algebra step required for Aspuru-Guzik et
orthogonalization. al 2005])

http://view.eecs.berkeley.edu/wiki/Main_Page



A Metascalable Dwarf

A metascalable (or “design once, scale on new architectures”) parallel
computing framework for broad applications (e.g., equation solvers,
constrained optimization, search, visualization & graphs)

Global Embedding Field Local Adaptive Multigrids
L = 0 l: 1
<
// /Y\ < L=1 [=2
X

. ivd--oure Cells
e Embedded divide-&-conquer (EDC)

algorithmic framework to design
linear-scaling algorithms

e Tunable hierarchical cellular
decomposition (HCD) parallelization
framework to map the scalable
algorithms onto hardware

K. Nomura et al., IPDPS 2009; F. Shimojo et al.,
J. Phys.: Condens. Matter 20, 294204 ('08)




Global Communications
All-to-all (hypercube): O(/NVogN)

/
=2 > > * Quicksort
>< >< e Fast Fourier transform

=3

=1

o000 001 010 O11 100 101 110 111

All-to-one (tournament): O(N)

=3
e Global reduction

=2 e Fast multipole method
e Multigrid method

=1 e Wavelets

oo 001 010 011 100 101 110 111



Multigrid Method

. . (l) » CIror 9)
* Residual equation: A’ (v+e)=-4me™n
residual

A(l)v = —4me’n+r

ADe = _r
* Smoothing (fixed-point iteration)
e [1 + Z(Z)A(l)]e +Z Oy

e Coarsening (restriction) of residual & interpolation of error Sl i iyl
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Smoothing Example

(D+L+U)e=-r
De=—(L+U)e—r
e=-D1L+Ue—-D1r
!

Fixed-point iteration: 50 itratons
Chnew _D_I(L + U)eold —D7'r

D L v
n E = o
A = [ + N + n 100 iterations
[ | [
Diagonal Lower-triangular Upper-triangular

200 iterations

e High-frequency errors die out
quickly




Adaptive Multigrids

Available online at www.sciencedirect.com
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Abstract

A lincar-scaling algorithm has been developed to perform large-scale molecular-dynamics (MD) simulations, in which in-
teratomic forees are computed quantum mechanically in the framework of the density functional theory. A divide-and-conquer

algorithm is used to compute the electronic structure, where non-additive contribution to the kinetic energy is included with A|SO, Sh|mOJO et al .
an embedded cluster scheme. Electronic wave functions are represented on a real-space grid, which is augmented with coarse Ph R B77
multigrids to accelerate the convergence of iterative solutions and adaptive fine grids around atoms to accurately calculate ionic Y, S. Kev. ’
pscudopotentials. Spatial decomposition is employed to implement the hierarchical-grid algorithm on massively parallel com- 085103 (’08)

puters. A converged solution to the electronic-structure problem is obtained for a 32,768-atom amorphous CdSe system on
512 IBM POWERA4 processors. The total energy is well conserved during MD simulations of liquid Rb, showing the applica-
bility of this algorithm to first principles MD simulations. The parallel efficiency is 0.985 on 128 Intel Xeon processors for a
65.536-atom CdSe system.
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E. J. Stollnitz, T. D. DeRose, and D. H. Salesin,
IEEE Computer Graphics Appl. 15(3), 76 ('95)



Wavelets for Model Reduction

Available online at www.sciencedirect.com
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Wavelet-based multi-scale coarse graining approach for DNA molecules

Jiun-Shyan Chen®*, Hailong Teng®, Aiichiro Nakano®

rsity of California, Los Angeles, CA 90095-1593,
?Department of Computer Science, University of Southern California, Los Angeles, CA 90089-0242, USA

ACivil and Environmental Engineering Department, Uni:

Abstract

In this work, a coarse graining technique based on a multi-scale wavelet projection is proposed for modeling of DNA molecules. Based on
the fine scale atomistic response and the Henderson’s theorem, the distribution functions between centers of mass of two groups of atoms are
employed to obtain the fine scale potential functions. These fine scale potential functions are then homogenized using the multi-scale wavelet
projection to yield the coarse-scale effective potential functions between superatoms. Molecular dynarnics simulation of DNA molecules under
stretching process demonstrates that the results of fine scale model and the proposed coarse grained DNA model are in good agreement. The
coarse grained simulation with a significant saving of computation time is shown to be in good agreement with the fine scale simulation.

Due to the reduced spatial degrees of freedom and temporal discretization, a computational efficiency of three to four orders of magnitude is
achieved in the proposed coarse grained model. CONCURRENCY: PRACTICE AND EXPERIENCE

Concurrency: Pract. Exper., Vol. 11(7), 343-353 (1999)

Multiresolution load balancing in curved space:
the wavelet representation

AlLICHIRO NAKANO™®

Department of Computer Science, Concurrent Computing Laboratory for Materials Simulations, Louisiana
wversity, Baton Rouge, LA 70803-4020, USA

SUMMARY

A new load-balancing scheme based on a multiresolution analysis is developed for parallel
particle simulations. Workloads are partitioned with a uniform 3-dimensional mesh in an
adaptive curvilinear co-ordinate system which is represented by a wavelet basis, Simulated
annealing is used to determine the optimal wavelet coefficients which minimize load imbalance
and communication costs. Performance tests on a parallel computer involving up to 1.04 billion
particles demonstrate the scalability of the new load balancer. Copyright © 1999 John Wiley &
Sons, Ltd.




Hypercube Sort

Oxx < 1xx
Input: Each rank has a list of 001 011 Need a global pivot to split
numbers, where the lists from all
ranks collectively form a total list

01x 11x

Output: Redistributed list, where
the list elements of rank p are less
than those of rank p+1

00x 10x

014d<|011 114d<[111

004d<|001 10d<[101




Basis: Quicksort

n putting together this issue of Comsputing in
Science & Engineering, we knew three things:
it would be difficult to list just 10 algorithms;
it would be fun to assemble the authors and
read their papers; and, whatever we came up
with in the end, it would be controversial. We
tried to assemble the 10 algorithms with the greatest
influence on the development and practice of science
and engineering in the 20th century. Following is our
list (here, the list is in chronological order; however,
the articles appear in no particular order):

. Metropolis Algorithm for Monte Carlo

PHYS 51 6/? Simplt:x Mcthgod for Lincar Programming

@ Krylov Subspace Iteration Methods

@ The Decompositional Approach to Matrix

Computations

* The Fortran Optimizing Compiler

® QR Algorithm for Computing Eigenvalues
CSCI 653 @® Quicksort Algorithm for Sorting

@ Fast Fourier Transform

* Integer Relation Detection [EEE Comput. Sci. Eng. 2(1), 22 (°00)
Fast Multipole Method




Quicksort: Divide-&-Conquer

quicksort(int list[],int left,int right) {
int j;
if (left < right) {
j = partition(list,left,right);
quicksort(list,left,j-1);
quicksort(list, j+1,right);
}
}

e partition: Given list[left:right],it first chooses the left-most
element as a pivot; on return the pivot element is placed at the j-th
position, &: i) a[left],...,a[j-1] areless than or equal to a[j]; ii)
a[j+1],...,a[right] are greater than or equalto a[j].

0 1 2 3 4 5 6 7 8 9
[5 7 2 9 6 8 3 4 1 0]
[3 0 2 1 41 5 [8 6 9 7]
[1 0 2] 3 [41 5 [7 6] 8 [9]
[0] 1 [2] 3 [4] 5 [6] 7 [] 8 [9]



Sequential Quicksort

void quicksort(int list[],int left,int right) {
int pivot,i, J;
int temp;

if (left < right) {
i = left; j = right + 1;
pivot = list[left];
do {
while (list[++i] < pivot && i <= right);
while (list[--j] > pivot);
if (i < j) {

temp = list[i]; list[i] = list[3j]; list[]] =

}
} while (i < j);
temp = list[left]; list[left] = list[]J]; list[]]
quicksort(list,left,j-1);
quicksort(list,j+1,right);




Parallel Quicksort

bitvalue := 2dimension-1, 00 —» 0 D0 —»> 00

EI # of processes = 2dimension

mask := 2dimension _ 1., 11 - 0 — 00

for L := dimension downto 1

begin average master’s local list
if myid AND mask = 0 then /

choose a pivot value for the L-dimensional subcube; pivot = avg(list elements)
broadcast the pivot from the master to the other members of the subcube;
partition 1list[0:n. jepent—1] into two sublists such that
list[0:j] = pivot < list[Jj+1l:nNeiepment—11;

partner := myid XOR bitvalue; o Subcube master:
if myid AND bitvalue = 0 then //junior partner 000
begin
send the right sublist list[j+l:n.jenenc—1] to partner; o | < | 1
receive the left sublist of partner;
append the received list to my left list
end 001 011
else // senior partner x00

begin
send (& erase) the left sublist list[0:j] to partner;

01x 11x

receive the right sublist of partner;
append the received list to my right list

00x 10x

end
nelement = nelement - nsend + nreceive; xxo
mask = mask XOR bitvalue; E< <
bitvalue = bitvalue/2; v <

end
sequential quicksort to list[0:n.jement—1]

Vv




Subcube Broadcast

MPI Comm size(MPI COMM WORLD, &nprocs)

bitvalue = nprocs >> 1;
mask = nprocs - 1; N right-shift or divide by 2

dimension = log2(nprocs)
for (L=dimension; L>=1; L--) {
e _— bitwise AND
1f ((myid & mask) == 0)
Calculate the pivot as the average of the local list
element values rank within the subcube
MPI Bcast(&pivot,1,MPI INT,O0,cube[L][myid/nprocs cube]);

- bitwise XOR ™\ # of ranks per subcube
mask = mask ~ bitvalue; /* Flip the current bit to 0 */
bitvalue = bitvalue >> 1; /* Next significant bit * /

}abcdefg XOR 0000100 = abcdefg

Exclusive OR cube[3][0] nprocs_cube = 8
a b a XOR b @1234567 N
0|0 0
ol1 P 1 cubel2]0] cube[2][1] nprocs_cube = 4
1o ¢ 1 23 4567
1|1 b 0

cube[1][0] cutﬁg][ﬂ cube[1][2] cut@[;]m] nprocs_cube =2



MPI Communicators

e Recursive bisection of processor groups
e Communicator = process group + context cube[L] [c]

e Rank =0, 1, ... within each communicator /\

Max. hypercube dimension (e.g., 5) Max. # of processes (e.g., 32) cube[L-1][2c] cube[L-1][2c+1]

~— —
MPI Comm cube[MAXD] [MAXP];
MPI_Group cube_group[MAXD] [MAXP]; [%ﬁgga?’slg;] nprocs_cube = 8
Bt |
MPI_Comm_size(MPI_COMM_WORLD, &nprocs_cube) ; <RP?2HW cﬂbfgnﬂ nprocs_cube = 4
o o N P - 0123 (4567

cube[dimension] [0] = MPI_COMM_WORLD; \\\\ \\\\
e cubeﬁ cube[1][1] cube@ cube[1][3] nprocs_cube =2
// Create daughter cubes at each level, L > 1 Lofi 128 |45 | 67

MPI Comm_ group(cube[L][c],&(cube_group[L][c]));

nprocs_cube = nprocs_cube/2;

for (p=0; p<nprocs_cube; p++) procs_cube[p] = p;

MPI Group_ incl(cube group[L][c],nprocs_cube,procs_cube, &(cube_group[L-1][2*c ]));
MPI Group excl(cube_group[L][c],nprocs_cube,procs_cube, & (cube_group[L-1][2*c+l]));
MPI Comm create(cube[L][c],cube_group[L-1][2*c ],&(cube[L-1][2*c 1]));

MPI_ Comm create(cube[L][c],cube_group[L-1][2*c+1l],&(cube[L-1][2*c+1]));

MPI Group free(&(cube_group[L ]|[c 1))

MPI_ Group_ free(&(cube_group[L-1][2*c ]));

MPI_ Group_ free(&(cube_group[L-1][2*c+1]));

nprocs_cube = 2F
c = myid/nprocs_cube



Hypercube Template (from MPI Lecture)

procedure hypercube(myid, input, log,P, output)

begln 000 001 010 011 100 101 110 111

mydone := input; bitvalue level N—] %%2/'

for 1 := 0 to log,P-1 do vl N s

begin 2 1 § >§§€
partner := myid XOR 2I; > ¥ > ™
send mydone to partner; -0 x % X

000 001 o010 011 100 101 110 111

recelive hisdone from partner; tode 1D

mydone = mydone OP hisdone

end level 4 1 bitvalue
output := mydone 0 001
end 1 010
Exclusive OR Associative operator 2 100
ab a XOR b (e.g., sum, max)
00 b 0
0f1 1 abcdefg XOR 0000100 = abcdéfg
110 -1
111 b 0 In C, A (caret operator) is bitwise XOR applied to int




Numerical Result: Random Input

71 72 72 73
79 79 81
86 88 93 94 96 97

After: Rank
After: Rank
After: Rank

more or less balanced

Before: Rank 0 28 43 72 79 1%
Before: Rank 1 96 19 17 171
Before: Rank 2 66 67 18 42
Before: Rank 3 : 79 86 73 35 | Inputs:
Before: Rank 4 88 32 12 72 .
Before: Rank 5 45 61 97 41 random list
Before: Rank 6 81 51 41 4
Before: Rank 7 94 27 93 44 |}
After: Rank O 4 12 A
After: Rank 1 17 18 19 27 28
After: Rank 2 32 35 41 41 touts:
After: Rank 3 : 42 43 44 45 51 outputs:
After: Rank 4 : 61 66 67 sorted list
5
6
7




Bad Input: Already Sorted

Before: Rank O
Before: Rank 1
Before: Rank 2
Before: Rank 3
Before: Rank 4
Before: Rank 5
¢ Before: Rank 6
Before: Rank 7
0
1
2
3
4
5
6
7

After: Rank
After: Rank
After: Rank
After: Rank
After: Rank
After: Rank
10 After: Rank
After: Rank

coul N
O o6 W




Hypercube Topology

e Hamming distance: The total number of bit positions at which two
binary numbers differ.

e In a hypercube network topology, two nodes are connected if their
Hamming distance is 1. The connectivity of a d-dimensional (or n-node)
hypercube is thus d. Since each link can change only one digit, the
diameter is d or log,n.

Recursive hypercube construction algorithm

(1) A one-dim. hypercube has two connected nodes 0 & 1.

(2) A (d+1)-dim. hypercube is defined from a d-dim. hypercube:
a. Duplicate the d-dim. hypercube including node numbers.

b. Create links between nodes with the same number in the original &
duplicate.

c. Append a binary 1 to the left of each node number in the duplicate, & a
binary 0 to left of each node number in the original.

See Grama’03, Chap. 2



http://srmcse.weebly.com/uploads/8/9/0/9/8909020/introduction_to_parallel_computing_second_edition-ananth_grama..pdf

Hypercube

100 (110

* log,n network interfaces required per node for an n-node parallel computer
e Hypercube algorithms only use direct network links on a hypercube



Analysis of Parallel Quicksort

for L := dimension downto 1 logp
begin
if master then
choose a pivot value for the L-dimensional subcube; /P
broadcast the pivot from the master to the subcube members; [1,l0gp]
partition list[0:Ngjegent—1] into two sublists such that n/p
list[0:]J] = pivot < list[J+l:Nciement—11;
if lower partner then

begin
send the right sublist list[j+1l:n.jement—1] to partner;
receive the left sublist of partner; n/p
end
else if higher partner then
begin
send the left sublist 1list[0:]J] to partner;
receive the right sublist of partner; n/p
end
Neiement = DNelement — MNgsend b Nreceiver
end
sequential quicksort to list[0:n.jcpenc—11] (n/p)log(n/p)

n n n logP
T average = O(p log p) + O(p log p) + 0(10g2 p) 2: [ = logP(loZgP D _ 0(log?P)



Divide-Conquer-(Re)combine

e “The first was to never accept anything as true
which I could not accept as obviously true. The
second was to divide each of the problems in as
many parts as I should to solve them. The third,
beginning with the simplest and easiest to
understand matters, little by little, to the most
complex knowledge. And the last resolution was
to make my enumerations so complete and my
reviews so general that I could be assured that I
had not omitted anything.”

(René Descartes, Discourse on Method, 1637)

o [ ETNOHEI-—FBHEEDOFEOENTRIL,
/\i'l L7eEBEROES%Y, T VOBEMBITHEILD
IZHHERK (recombine) T 52 &N T,
%:@Cﬁ'ﬁﬁ (creativity) DAV AT H D
WO RITHD, |
(fAH#—. FROAIE, 1987)




Divide-Conquer-Recombine Algorithms

Divide-and-conquer

XS
7~ 7 = — i
(@) | 4 ).r
2 @) Q 'ﬁange-l{n tgﬁ n-tu
8 compul'tatlons

M. Kunaseth et al., ACM/IEEE SC13 ('13)

Globally informed local DC-DFT solutions are used in the recombine phase as
compact bases to synthesize global properties in broad applications:

e High-order inter-molecular-fragment correlation [S. Tanaka et al., ’13]
e Global frontier orbitals (HOMO & LUMO) [S. Tsuneyuki et al., '09, ’13]
* Global charge migration [H. Kitoh-Nishioka et al., '12; C. Gollub et al., '12]

* Global exciton dynamics [W. Mou et al., "13]

F. Shimojo et al., J. Chem. Phys. 140, 18A529 ('14)



Simulating SF in Amorphous DPT

e Move up from molecules to microstructures
e Challenge: Unprecedented 104-atom NAQMD simulation
e Computational approach: Divide-conquer-recombine (DCR) NAQMD

! [+]
g
°U O-o
o A g Q
b ‘t‘;"’ @ U\,
UU OUU
© oo
V@
o ©
@
[*]

Quasi-electron

Quasi-hole

Amorphous DPT =

e Divide-conquer-recombine NAQMD (phonon-assisted exciton dynamics) +
time-dependent perturbation theory (singlet-fission rate) + Kinetic Monte Carlo
calculations of exciton population dynamics in 6,400-atom amorphous DPT



Exciton population

3

10° excitations/um

Singlet-Fission Hot Spot

Quantum molecular dynamics simulations not only reproduced

experimentally measured exciton population dynamics but also revealed
unknown molecular geometry of singlet fission hot spots

|||||l|1'| |||||l'l'll |l|l|||'l'| |||||l|'|'| |||||ﬂ'l|
[ Divide-Conquer-Recombine i
Mou etal., APL (13)
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2
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What We Have Learned Here

Divide-conquer(-recombine) will continue to scale on future
massively parallel computing platforms.

Divide-&-conquer (DC) algorithm recursively subdivides
the problem into sub-problems (e.g., recursive bisection in
quicksort; quadtree & octree, respectively, in 2D & 3D fast
multipole method).

DC algorithm often uses collective operations (e.g.,
broadcast & reduction) within sub-problem.

Collective sub-problem operations are best implemented
using MPI Communicator construct.
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Metascalable Divide-Conquer-Recombine

Divide-and-conquer
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M. Kunaseth et al., ACM/IEEE SC13 ('13)

Globally informed local DC-DFT solutions are used in the recombine
phase as compact bases to synthesize global properties in broad

applications

e Continue to scale on future computers (i.e., metascalable) with minimal
architectural assumptions (i.e., support for tree communication topology)

F. Shimojo et al., J. Chem. Phys. 140, 18A529 ('14)
K. Nomura et al., IEEE/ACM Supercomputing, SC14 ('14)




System Support for D-&-C

g- Thread
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MPI_COMM_WORLD ® Threedd  Thread.] THREADS-1
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UPC: Distributed Shared Memory Programming,
T. EI-Ghazawi et al. (Wiley, '03)

Recursive Communicator Nested private variables in partitioned
partition in MPI global address space (PGAS) languages?

shared a;
Tarek A. El-Ghazawi
The George Washington University
Hierarchical Locality and Parallel Programming

in the Extreme Scale Era parallel {
private c;

parallel {
private b;

Implementation mechanism:

recursive graph partition y

}
}

Domain-specific D-&-C language?
cf. MapReduce




Sample Application: O(/NV) Deep Learning

Maximally Informative Hierarchical Representations
of High-Dimensional Data

IR R N

unknown Telecommunications Services Information Technology Industrials Materials Energy  Utilities  Consumer Staples Financials  Health Care

Figure 4: A thresholded graph showing the overall structure of the representation learned from monthly returns
of S&P 500 companies. Stock tickers are colored (online) according to their GICS sector. Edge thickness is
proportional to mutual information and node size represents multivariate mutual information among children.

G. Ver Steeg & A. Galstyan, AISTATS 2015 ('15)



Graph Embedding in Semantic Space

Synthesized Classifiers for Zero-Shot Learning
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Figure 1: Illustration of our method for zero-shot learning. Object classes live in two spaces. They are characterized in the semantic
space with semantic embeddings (as) such as attributes and word vectors of their names. They are also represented as models for
visual recognition (ws) in the model space. In both spaces, those classes form weighted graphs. The main idea behind our approach
is that these two spaces should be aligned. In particular, the coordinates in the model space should be the projection of the graph
vertices from the semantic space to the model space — preserving class relatedness encoded in the graph. We introduce adaptable

phantom classes (b and v) to connect seen and unseen classes — classifiers for the phantom classes are bases for synthesizing
classifiers for real classes. In particular, the synthesis takes the form of convex combination.

e Zero-shot learning = recognize an object in an unseen class

e Recursive graph embedding?

S. Changpinyo et al., CVPR 2016 (IEEE, '16)



