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Data/computation locality!



Key Hardware Features
• Pipelining: Multiple stages of computation are executed 

concurrently for multiple data elements
• Cache: Fast memory that holds a subset of main memory
• Vectorization: Single-instruction multiple-data (SIMD) 

parallelism on vector registers each holding multiple data 
elements simultaneously hold 

Grama’03, Chap. 2; Berkeley CS267, Lec. 2
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Roofline Model of Performance
• Off-chip memory bandwidth (from DRAM) is critical for 

performance (to feed enough data to be operated)
• Operational intensity: Operations per byte of DRAM traffic
• Roofline model: Predicts the floating-point (fp) performance 

from operation intensity, theoretical peak fp performance & 
peak memory bandwidth 
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Roofline Model of Performance
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Key: Data/computation locality:
see Berkeley CS267 lecture on “memory hierarchies & matrix multiplication”

https://sites.google.com/lbl.gov/cs267-spr2022/


Intranode: Memory Access

• Linked-list cells—irregular memory access pattern

• Data locality: Regular data layout
for i = cell_end[c]+1 to cell_end[c+1]
access r1[i]
endfor
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Data re-ordering



BLAS3-Performance Molecular Dynamics?
• BLAS3: q = flop/memory access = (block size)1/2

• Molecular dynamics: q = O(n2)/O(n) = O(n: block size)
> Use of SIMD (single instruction multiple data)

instructions on Cell, multicore (AVX)?

BLAS 3

BLAS 2
BLAS 1

Peak



Floating Point Performance
• BLAS-ification: Transform from band-by-band to all-band computations to 

utilize a matrix-matrix subroutine (DGEMM) in the BLAS3 library for the 
quantum molecular dynamics application

• Algebraic transformation of computations 

Example: Nonlocal pseudopotential operation
D. Vanderbilt, Phys. Rev. B 41, 7892 (’90)

• 50.5% of the theoretical peak FLOP/s performance on 786,432 Blue Gene/Q 
cores (entire Mira at the Argonne Leadership Computing Facility)

• 55% of the theoretical peak FLOP/s on Intel Xeon E5-2665
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K. Nomura et al., IEEE/ACM Supercomputing, SC14 (’14)

https://aiichironakano.github.io/cs596/Nomura-MetascalableQMD-SC14.pdf


More BLASification
• DCMESH (divide-&-conquer Maxwell+ Ehrenfest + surface-hopping) code
• Converted  the most compute-intensive nonlocal-correction (NLC) 

computations into a matrix form (BLAS-GEMM)

Code Wall time (s) Speed-up
Baseline 660.17 1
BLAS-GEMM 24.52 26.92

Speed-up due to Algorithm Improvement for 2×2×2 PbTiO3 on AMD 7513P

Linker et al., Science Adv. 8, eabk2625 (’22)
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Computation Locality

• Pair-interaction computation: Preserve nearest-neighbor cells’ 
proximity in memory

• Spacefilling curve: Mapping from the d-dimensional space to 
one-dimensional list to preserve spatial proximity of 
consecutive list elements 

Data-to-computaion locality: How to traverse the linked-list cells?



Hilbert-Peano Curve
• Gray code: a sequence of numbers such that successive 

numbers have Hamming distance 1 
Algorithm: Recursive generation of k-bit Gray code G(k)
(1)G(1) is a sequence: 0 1.
(2)G(k+1) is constructed from G(k) as follows:

a. Construct a new sequence by appending a 0 to the left of all members
of G(k).

b. Construct a new sequence by reversing G(k) & then appending a 1 to
the left of all members of the sequence.

c. G(k+1) is the concatenation of the sequences defined in steps a & b.

• G(3): 000 001 011 010 110 111 101 100

Giuseppe Peano (1858–1932)David Hilbert (1862–1943)

# of bits where two 
binary numbers differ



Hilbert-Peano Curve
• Hilbert curve: recursive application of the d-dimensional Gray 

codes  
• 2-dimensional Hilbert curve

• 3-dimensional Hilbert curve



Morton (Z) Curve
• Spacefilling curve based on octree index

x =   1   1   0
y =  0   0   0
z = 1   0   0  
R = 101 001 000

x

yz

• 3D ® list map preserves spatial proximity
• Multiresolution analysis made easy

A. Omeltchenko et al., Comput. Phys. Commun. 131, 78 (’00)

https://aiichironakano.github.io/cs596/Omelchenko-DataCmp-CPC00.pdf


Analysis of Data Locaility

2 clusters 1 cluster

Morton Hilbert

Hilbert curve is better than Morton curve for spatial range query

Cluster ~ cache line ~ latency cost

Morton (Z)

Hilbert



Alternative Locality Measure for MD

Scott Calaghan (CSCI 653 final project)
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• 4x4 Hilbert:
– 30 1s
– 10 3s
– 4 5s
– 2 11s
– 2 13s 

• Lower median, higher variance
• Better for kc=1

• 4x4 Z-curve:
– 16 1s
– 16 2s
– 8 3s
– 8 6s 

• Higher median, lower variance
• Better for 2<kc<13

• Doubly nested loops of cell access
• Evaluate curves based on along-curve distances to neighbors
• Compare number below and above threshold cutoff kc (like cache)



Tunable Hierarchical Cellular Decomposition

• Spatial decomposition with data “caching” & “migration”
• Computational cells (e.g. linked-list cells in MD) < cell blocks 

(threads) < processes (Pg
p, spatial decomposition subsystems) < 

process groups (Pg, Grid nodes) 
• Multilayer cellular

decomposition (MCD)
for n-tuples (n = 2-6) 

• Tunable cell data &
computation structures: 
Data/computation re-
ordering & granularity
parameterized at each 
decomposition level

• Tunable hybrid MPI +
OpenMP + SIMD 
implementation

Mapping O(N) divide-&-conquer algorithms onto memory hierarchies

Nomura et al., IPDPS 2009



SIMD/Vector Operation
• Single-instruction multiple-data (SIMD) parallelism: An 

arithmetic operation is operated on multiple operand-pairs 
stored in vector registers, each of which can hold multiple 
double-precision numbers. 

Example: Vector multiplier (VMUL) 
loads data from two vector registers, 
R1 and R2, each holding 4 double-
precision numbers, concurrently 
performs 4 multiplications, and stores 
the results on vector register R3. 

• Peak performance enhancement 
on top of fused multiply-add 
(FMA) unit. 

𝑎 ← 𝑎 + 𝑏×𝑐
with 1-cycle throughput



Vector Processing at CARC
Node information
https://www.carc.usc.edu/user-information/user-guides/hpc-basics/discovery-resources

Intel & AMD advanced vector extension (AVX):
• AVX2 operates on 4 double-precision floating-point numbers
• AVX512 8



SIMD Vectorization: MD

(Example) Zero padding to align complex data
Original solution SIMD solution

• Single-instruction multiple-data (SIMD) parallelism

for (i=0; i<N; i++)
for (a=0; a<3; a++)
r[i][a] = 
r[i][a] +
DeltaT*rv[i][a];

Peng et al., PDPTA 2009; UCHPC 2010; J. Supercomputing 57, 20 (’11) 

vector registers

cf. False-sharing avoidance



SIMD Vectorization: LBM

Original solution

for(i=0;i<3;i++){
u[i]=0.0; rho=0.0;    
for(l=0;l<18;l++){    

fi[l] = f[18*cnz+1];
u[i] += fi[l]*v[l][i];
rho += fi[l];

}  
}

SIMD solution

3´18´5 = 270 computation

18´4 = 72  computation

Ideal Speedup 3.5

• Translocated statement fusion in lattice-Boltzmann flow 
simulation 

SIMDizable mathematical formulations:
Special relativity, quaternion, etc.

𝐽$ = 𝑐𝜌, 𝑗., 𝑗1, 𝑗2
𝐴$ = ⁄𝜙 𝑐 , 𝐴., 𝐴1, 𝐴2

⊡𝐴$ =
1
𝑐1

𝜕1

𝜕𝑡1
− 𝛻1 𝐴$ =

4𝜋
𝑐
𝐽$



SIMDized Complex Multiplication

M. Püschel (CMU)

• SSE (streaming SIMD extension) instruction set

• For quantum dynamics?
Pre-AVX instruction set



Massive SIMD Data Parallelism

Quantum dynamics on 8,192-processor
(128 × 64) MasPar 1208B
Nakano, 
Comput. Phys. Commun. 
83, 181 (’94) 

𝑨 ← 𝑩+ 𝑪

𝑨𝒊𝒋 ← 𝑩𝒊𝒋 + 𝑪𝒊𝒋

See lecture on “pre-Beowulf parallel computing”

https://aiichironakano.github.io/cs699/PreBeowulf.pdf


Floating-point 
operation/L2 
cache miss 
trade-off:
331,776-atom 
silica MRMD 
on 1.4GHz 
Pentium III

Execution time/MD time step (sec) Number of OpenMP 
threads, ntd 

Number of MPI 
processes, np MRMD P-ReaxFF 

1 
2 
4 
8 

8 
4 
2 
1 

4.19 
5.75 
8.60 
12.5 

62.5 
58.9 
54.9 
120 

 

MPI/OpenMP parallelism 
trade-off:
8,232,000-atom silica MRMD & 
290,304-atom RDX F-ReaxFF on 
8-way 1.5 GHz Power4

 

Performance Tunability

Sweet spot



Cache-Oblivious Linked-List Cell MD?

• Recursive blocking for cells?

In Proc. FOCS99



Intelligent Performance Optimization
• Knowledge representation to 

express concurrency/data 
locality & machine learning to 
optimally map them to 
hardware

“Intelligent optimization of parallel & distributed applications,” B. Bansal, U. Catalyurek, J. 
Chame, C. Chen, E. Deelman, Y. Gil, M. Hall, V. Kumar, T. Kurc, K. Lerman, A. Nakano, Y. L. 
Nelson, J. Saltz, A. Sharma, and P. Vashishta, in Proc. of Next Generation Software Workshop,
Int’l Parallel & Distributed Processing Symp. (IPDPS 07)

Pruned decision tree
C. Chen, Ph.D. 
Thesis (Computer 
Science, USC, ’07)

cf. Tunable hierarchical cellular decomposition
exposes maximal data locality



Key Internode Feature

Simple communication cost model
𝑡!"## = 𝑡$ +𝑚/𝑏
tcomm: Total communication time for m Bytes
tl: Latency = time delay for the head of a message to travel 

between the source & destination nodes
b: Bandwidth = number of Bytes per second that can be

transmitted through the communication link

Grama’03, Chap. 2



Internode Optimization
• Communication bottleneck in metacomputing on a Grid

• Overlap computation & communication to hide the latency

µs

100 ms



Grid-Enabled MD Algorithm
Renormalized Messages:
Latency can be reduced by 
composing a large cross-site 
message instead of sending 
all processor-to-processor 
messages

Grid MD algorithm:
1. asynchronous receive of cells to be 

cached
2. send atomic coordinates in the 

boundary cells
3. compute forces for atoms in the 

inner cells
4. wait for the completion of the 

asynchronous receive
5. compute forces for atoms in the 

boundary cells

Kikuchi et al., in Proc. SC02



Renormalized Message Passing
• Mapping a 3D-lattice problem onto 8 

computing nodes each with 4 Cell 
processors (or 32 cores)

• Renormalized message passing 
reduce the number of internode 
communications 

CACS PS3 cluster

Synergistic processing elements 

PowerPC

H. Dursun et al., Par. Proc. Lett. 19, 535 (’09) 



Global Collaborative Simulation

Japan: Yamaguchi—65 P4 2.0GHz
Hiroshima, Okayama, Niigata—3´24 P4 1.8GHz 

US: Louisiana—17 Athlon XP 1900+

Multiscale divide-&-conquer MD/QM simulation on 
a Grid of distributed PC clusters in the US & Japan

MD — 91,256 atoms
QM (DFT) — 76n atoms on n clusters

• Scaled speedup, P = 1 (for MD) + 8n (for QM)
• Efficiency = 94.0% on 25 processors over 3 PC clusters

• Task decomposition (MPI Communicator) + spatial decomposition
• MPICH-G2 (www.niu.edu/mpi)/Globus (www.globus.org)



Global Grid QM/MD
• Sustained (153,600 cpu-hrs) Grid 

supercomputing at 6 centers in the 
US (USC, NCSA, PSC) & Japan 
(AIST, U Tokyo, TITech)

• Dynamic allocation of computing 
resources on demand & automated 
migration due to reservation 
schedule & faults

• Hybrid GridRPC (ninf.apgrid.org) + 
MPI (www.mcs.anl.gov/mpi) Grid 
computing

H. Takemiya et al., Proc. IEEE/ACM SC06

USC

High-energy beam oxidation of Si



Fast TCP

Fast TCP: Achieved 8.6 Gb/s 
between Sunnyvale, CA & 
CERN, Switzerland
Steven Low (Caltech)
http://netlab.caltech.edu/FAST


