Optimizing Molecular Dynamics

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations Department of Computer Science Department of Physics & Astronomy Department of Quantitative & Computational Biology University of Southern California Email: anakano@usc.edu

- Intranode optimization: CPU & memory access
- Internode optimization: Communication

Data/computation locality!

Key Hardware Features

- *Pipelining*: Multiple stages of computation are executed concurrently for multiple data elements
- *Cache*: Fast memory that holds a subset of main memory
- *Vectorization*: Single-instruction multiple-data (SIMD) parallelism on vector registers each holding multiple data elements simultaneously hold

Grama'03, Chap. 2; Berkeley CS267, Lec. 2

Roofline Model of Performance

- Off-chip memory bandwidth (from DRAM) is critical for performance (to feed enough data to be operated)
- Operational intensity: Operations per byte of DRAM traffic
- *Roofline model*: Predicts the floating-point (fp) performance from operation intensity, theoretical peak fp performance & peak memory bandwidth

$$\begin{aligned} Attainable fp \ performance \ \left[\frac{\text{Gflop}}{\text{sec}}\right] = \\ Peak \ fp \ performance \ \left[\frac{\text{Gflop}}{\text{sec}}\right], \\ min \left(Peak \ memory \ bandwidth \ \left[\frac{\text{GByte}}{\text{sec}}\right] \times Operational \ intensity \ \left[\frac{\text{flop}}{\text{Byte}}\right] \right) \end{aligned}$$
$$Peak \ fp \ \left[\frac{\text{Gflop}}{\text{sec}}\right] = \frac{\text{clock} \ [\text{GHz}]}{f} \times \frac{\# \ of \ cores}{n_{\text{core}}} \times \frac{\# \ of \ operands/vector}{n_{\text{vector}}} \times 2 \frac{\# \ of \ FMA}{n_{\text{FMA}}} \\ FMA: \ fused \ multiply-add \ unit \\ S. \ Williams \ et \ al., \ Commun. \ ACM \ 52(4), \ 65 \ ('09) \end{aligned}$$

V. Elango et al., ACM. T. Arch. Code Opt. 11, 67 ('15)

Roofline Model of Performance

Key: Data/computation locality:

see Berkeley CS267 lecture on "memory hierarchies & matrix multiplication"

Intranode: Memory Access

Data re-ordering

• Linked-list cells—irregular memory access pattern

• Data locality: Regular data layout

for i = cell_end[c]+1 to cell_end[c+1] access r1[i] endfor r r1 cell end -1

BLAS3-Performance Molecular Dynamics?

• BLAS3: $q = flop/memory access = (block size)^{1/2}$

 Molecular dynamics: q = O(n²)/O(n) = O(n: block size)
 > Use of SIMD (single instruction multiple data) instructions on Cell, multicore (AVX)?

Floating Point Performance

- **BLAS-ification:** Transform from band-by-band to all-band computations to utilize a matrix-matrix subroutine (DGEMM) in the BLAS3 library for the quantum molecular dynamics application
- Algebraic transformation of computations

Example: Nonlocal pseudopotential operation D. Vanderbilt, *Phys. Rev. B* **41**, 7892 ('90) $\hat{v}_{nl}|\psi_n^{\alpha}\rangle = \sum_{I}^{N_{atom}} \sum_{ij}^{L_{max}} |\beta_{i,I}\rangle D_{ij,I} \langle \beta_{j,I}|\psi_n^{\alpha}\rangle \quad (n = 1, ..., N_{band})$ $\Psi = [|\psi_1^{\alpha}\rangle, ..., |\psi_{N_{band}}^{\alpha}\rangle] \tilde{B}(i) = [|\beta_{i,1}\rangle, ..., |\beta_{i,N_{atom}}\rangle] [\tilde{D}(i,j)]_{I,J} = D_{ij,I}\delta_{IJ}$ $\hat{v}_{nl}\Psi = \sum_{i,j}^{L} \tilde{B}(i)\tilde{D}(i,j)\tilde{B}(j)^{T}$

- 50.5% of the theoretical peak FLOP/s performance on 786,432 Blue Gene/Q cores (entire Mira at the Argonne Leadership Computing Facility)
- 55% of the theoretical peak FLOP/s on Intel Xeon E5-2665

K. Nomura et al., <u>IEEE/ACM Supercomputing</u>, SC14 ('14)

More BLASification

- DCMESH (divide-&-conquer Maxwell+ Ehrenfest + surface-hopping) code
- Converted the most compute-intensive nonlocal-correction (NLC) computations into a matrix form (BLAS-GEMM)

Linker et al., Science Adv. 8, eabk2625 ('22)

Code	Wall time (s)	Speed-up
Baseline	660.17	1
BLAS-GEMM	24.52	26.92

Speed-up due to Algorithm Improvement for 2×2×2 PbTiO₃ on AMD 7513P

Computation Locality

Data-to-computaion locality: How to traverse the linked-list cells?

- Pair-interaction computation: Preserve nearest-neighbor cells' proximity in memory
- **Spacefilling curve:** Mapping from the *d*-dimensional space to one-dimensional list to preserve spatial proximity of consecutive list elements

Hilbert-Peano Curve

• Gray code: a sequence of numbers such that successive numbers have Hamming <u>distance 1</u>

Algorithm: Recursive generation of k-bit Gray code G(k) # of bits where two (1)G(1) is a sequence: 0 1.

- (2)G(k+1) is constructed from G(k) as follows:
 - a. Construct a new sequence by appending a 0 to the left of all members of G(k).
 - b. Construct a new sequence by reversing G(k) & then appending a 1 to the left of all members of the sequence.
 - c. G(k+1) is the concatenation of the sequences defined in steps a & b.

• G(3): 000 001 011 010 110 111 101 100

David Hilbert (1862–1943)

Giuseppe Peano (1858–1932)

Hilbert-Peano Curve

- Hilbert curve: recursive application of the *d*-dimensional Gray codes
- 2-dimensional Hilbert curve

• 3-dimensional Hilbert curve

level 2

level 1

level 3

Morton (Z) Curve

• Spacefilling curve based on octree index

3D → list map preserves spatial proximity
Multiresolution analysis made easy

A. Omeltchenko et al., Comput. Phys. Commun. 131, 78 ('00)

Analysis of Data Locaility

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 1, JANUARY/FEBRUARY 2001

Analysis of the Clustering Properties of the Hilbert Space-Filling Curve

Bongki Moon, H.V. Jagadish, Christos Faloutsos, Member, IEEE, and Joel H. Saltz, Member, IEEE

Hilbert curve is better than Morton curve for spatial range query

124

Alternative Locality Measure for MD

- Doubly nested loops of cell access
- Evaluate curves based on along-curve distances to neighbors
- Compare number below and above threshold cutoff k_c (like cache)

- 4x4 Hilbert:
 - 301s
 - 10 3s
 - 45s
 - 211s
 - 213s
- Lower median, higher variance
- Better for k_c=1

- 4x4 Z-curve:
 - 161s
 - 16 2s
 - 83s
 - 86s
- Higher median, lower variance
- Better for 2<k_c<13

Scott Calaghan (CSCI 653 final project)

Tunable Hierarchical Cellular Decomposition

Mapping *O*(*N*) divide-&-conquer algorithms onto memory hierarchies

- Spatial decomposition with data "caching" & "migration"
- Computational cells (*e.g.* linked-list cells in MD) < cell blocks (threads) < processes (P_{π}^{γ} , spatial decomposition subsystems) < process groups (P^{γ} , Grid nodes) PG^{0} PG^{1}
- Multilayer cellular decomposition (MCD) for *n*-tuples (*n* = 2–6)
- Tunable cell data & computation structures: Data/computation reordering & granularity parameterized at each decomposition level
- Tunable hybrid MPI + OpenMP + SIMD implementation

Nomura et al., IPDPS 2009

SIMD/Vector Operation

• Single-instruction multiple-data (SIMD) parallelism: An arithmetic operation is operated on multiple operand-pairs stored in vector registers, each of which can hold multiple double-precision numbers.

Example: Vector multiplier (VMUL) loads data from two vector registers, R1 and R2, each holding 4 doubleprecision numbers, concurrently performs 4 multiplications, and stores the results on vector register R3.

• Peak performance enhancement on top of fused multiply-add (FMA) unit. $a \leftarrow a + b \times c$ with 1-cycle throughput a = 0a = b = 0a = b = 0for *i* from 1 to 4 $t = rn (a_i \times b_i + t)$ return *t* Fused multiply-add

Vector Processing at CARC

Node information

https://www.carc.usc.edu/user-information/user-guides/hpc-basics/discovery-resources

CPU model	Microarchitecture	Partitions	SSE	SSE2	SSE3	SSE4	AVX	AVX2	AVX- 512
xeon- 2650v2	ivybridge	oneweek, debug	\checkmark	√	√	√	√		
xeon- 2640v3	haswell	main, oneweek, debug	V	√	√	V	√	V	
xeon- 2640v4	broadwell	main, gpu, debug	V	V	V	V	V	1	
xeon- 4116	skylake_avx512	main	\checkmark	V	V	√	~	1	V
xeon- 6130	skylake_avx512	gpu	√	\checkmark	V	V	V	√	V
ерус- 7542	zen2	ерус-64	√	\checkmark	\checkmark	\checkmark	V	1	
ерус- 7513	zen3	epyc-64, gpu, largemem	V	√	√	√	√	~	
ерус- 7282	zen2	gpu	\checkmark	\checkmark	\checkmark	\checkmark	√	~	

Intel & AMD advanced vector extension (AVX):

- AVX2 operates on 4 double-precision floating-point numbers
- AVX512 8

SIMD Vectorization: MD

- Single-instruction multiple-data (SIMD) parallelism
 - (Example) Zero padding to align complex data

Original solution

SIMD solution

```
for (i=0; i<N; i++)
for (a=0; a<3; a++)
r[i][a] =
r[i][a] +
DeltaT*rv[i][a];</pre>
```


cf. False-sharing avoidance

Peng et al., PDPTA 2009; UCHPC 2010; J. Supercomputing 57, 20 ('11)

SIMD Vectorization: LBM

SIMDized Complex Multiplication

- SSE (streaming SIMD extension) instruction set
- For quantum dynamics?

$$(a+ib)(c+id) = (ac-bd) + i(ad+bc)$$

M. Püschel (CMU)

Massive SIMD Data Parallelism

Quantum dynamics on 8,192-processor (128 × 64) MasPar 1208B

Nakano, Comput. Phys. Commun. 83, 181 ('94)

See lecture on "pre-Beowulf parallel computing"

Performance Tunability

Number of OpenMP	Number of MPI	Execution time/MD time step (sec)		
threads, $n_{\rm td}$	processes, $n_{\rm p}$	MRMD	P-ReaxFF	
1	8	4.19	62.5	
2	4	5.75	58.9	
4	2	8.60	54.9	
8	1	12.5	120	

Cache-Oblivious Linked-List Cell MD?

EXTENDED ABSTRACT SUBMITTED FOR PUBLICATION. In Proc. FOCS99

Matteo Frigo Charles E. Leiserson Harald Prokop Sridhar Ramachandran MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139 {athena,cel,prokop,sridhar}@supertech.lcs.mit.edu We introduce an "ideal-cache" model to analyze our algorithms, and we prove that an optimal cache-oblivious algorithm designed for two levels of memory is also optimal for multiple levels.

Intelligent Performance Optimization

"Intelligent optimization of parallel & distributed applications," B. Bansal, U. Catalyurek, J. Chame, C. Chen, E. Deelman, Y. Gil, M. Hall, V. Kumar, T. Kurc, K. Lerman, A. Nakano, Y. L. Nelson, J. Saltz, A. Sharma, and P. Vashishta, in *Proc. of Next Generation Software Workshop, Int'l Parallel & Distributed Processing Symp. (IPDPS 07)*

Key Internode Feature

Simple communication cost model

 $t_{\rm comm} = t_l + m/b$

- t_{comm} : Total communication time for *m* Bytes
- t_l : Latency = time delay for the head of a message to travel between the source & destination nodes
- *b*: Bandwidth = number of Bytes per second that can be transmitted through the communication link

Internode Optimization

Communication bottleneck in metacomputing on a Grid

• Overlap computation & communication to hide the latency

Grid-Enabled MD Algorithm

Grid MD algorithm:

- 1. asynchronous receive of cells to be cached
- 2. send atomic coordinates in the boundary cells
- 3. compute forces for atoms in the inner cells
- 4. wait for the completion of the asynchronous receive
- 5. compute forces for atoms in the boundary cells

Renormalized Messages:

Latency can be reduced by composing a large cross-site message instead of sending all processor-to-processor messages

Kikuchi et al., in Proc. SC02

Renormalized Message Passing

- Mapping a 3D-lattice problem onto 8 computing nodes each with 4 Cell processors (or 32 cores)
- Renormalized message passing reduce the number of internode communications

H. Dursun et al., Par. Proc. Lett. 19, 535 ('09)

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband, IBM DOE/NNSA/LANL United States	122,400	1,026.00	1,375.78	2,345

<complex-block>

Global Collaborative Simulation

Multiscale divide-&-conquer MD/QM simulation on a Grid of distributed PC clusters in the US & Japan

- Task decomposition (MPI Communicator) + spatial decomposition
- MPICH-G2 (www.niu.edu/mpi)/Globus (www.globus.org)

Japan: Yamaguchi—65 P4 2.0GHz Hiroshima, Okayama, Niigata—3×24 P4 1.8GHz US: Louisiana—17 Athlon XP 1900+

- MD 91,256 atoms QM (DFT) — 76*n* atoms on *n* clusters
- Scaled speedup, P = 1 (for MD) + 8n (for QM)
- Efficiency = 94.0% on 25 processors over 3 PC clusters

Global Grid QM/MD

High-energy beam oxidation of Si

H. Takemiya et al., Proc. IEEE/ACM SC06

- Sustained (153,600 cpu-hrs) Grid supercomputing at 6 centers in the US (USC, NCSA, PSC) & Japan (AIST, U Tokyo, TITech)
- Dynamic allocation of computing resources on demand & automated migration due to reservation schedule & faults
- Hybrid GridRPC (ninf.apgrid.org) + MPI (www.mcs.anl.gov/mpi) Grid computing

Fast TCP

By linking lots of the faster systems together the researchers have produced data transfer speeds many times higher than is possible today.

ast net tech could soon take off

Packet tracking promises ultrafast internet

10:54 05 June 03

Exclusive from New Scientist Print Edition. Subscribe and get 4 free issues.

Imagine an internet connection so fast it will let you download a whole movie in just five seconds, or access TV-quality video servers in real time. That is the promise from a team at the California Institute of Technology in Pasadena, who have developed a system called Fast TCP.

Fast TCP: Achieved 8.6 Gb/s between Sunnyvale, CA & CERN, Switzerland

Steven Low (Caltech) http://netlab.caltech.edu/FAST