CUDA Programming

Alichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Department of Quantitative & Computational Biology
University of Southern California

Email: anakano@usc.edu

Goal: Multithreading on graphics processing units (GPUs);

C% heterogenous device concept

Graphics Processing Unit (GPU)

 GPU: A specialized processor that offloads 3D graphics
rendering from the central processing unit (CPU).

e GPGPU: General-purpose computing on GPU, by using a GPU
to perform computation traditionally handled by the CPU;

GPU is considered as a multithreaded, massively data parallel
co-processor (accelerator).

 NVIDIA Quadro, Tesla & newer GPUs are capable of general-
purpose computing with the use of Compute Unified Device
Architecture (CUDA).

i
@@ |
pind

W NaWaNaNaNaNaNaWeWalal

:::::::::::::

L g T
= . jl== . - i
g= . » d = g | 1| e oro oro L {
. 8 v o » A B EF
(0.6 > X R == [==————_———0———— L n |
[A i (] W ' | s s e o R s e W W o r. o

Tesla A100 (6,912 CUDA cores)

CUDA

How to program GPGPU?

e Compute Unified Device Architecture

* Integrated host (CPU) + device (GPU) application
programming interface based on C language,
developed at NVIDIA

e CUDA homepage

http://www.nvidia.com/object/cuda home.html

* Widely used in the deep-learning community

https://www.deeplearningbook.org/contents/applications.html

http://www.nvidia.com/object/cuda_home.html
https://www.deeplearningbook.org/contents/applications.html

Using CUDA on Discovery

Add the following commands in .bashrc in your home directory
module purge

module load usc

module load cuda/10.1.243

Compilation
nvcc -o pi pi.cu

Submit a Slurm script
#!/bin/bash

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1
#SBATCH --gres=gpu:l
#SBATCH --time=00:00:59
#SBATCH --output=pi.out
#SBATCH -A anakano 429

./pi

https://aiichironakano.qgithub.io/cs596/src/cuda/pi.cu

https://aiichironakano.github.io/cs596/src/cuda/pi.cu

Example of NVIDIA GPU at CARC

* Host (CPU)
> Dual octacore (2 x 8 =16) Intel Xeon
> Clock rate: 2.4 GHz
> Memory: 64 GB

e Device (GPU): Dual NVIDIA Tesla K20m

> Number of streaming
multiprocessors (SMs) per GPU: 13

> Number of cores (or streaming
processors, SPs) per SM: 192

> Total number of cores: 13 x 192 = 2496
> Clock rate: 706 MHz

> Global memory: 5 GB

> Shared memory per SM: 48 KB

Grid, Blocks & Threads

(blockldx.x, blockldx.y)

Computatlonal Grid \

y gr|dD|m.x = 3 8

+7 gridDim.y = 2 %

blockDim.x =4
blockDim.y = 4

cf. vproc|3], vthrd|3], vid|3], vtd|3] in hmd.c

Computational grid = a 1 or 2D grid of thread
blocks (c¢f. SMs); each block =a 1,2 or 3D array
of < 512 threads (cf. SPs); the application
specifies the grid & block dimensions
—gridDim provides dimension of grid;

1 or 2 element struct: “.x” & “.y”

—blockDim provides dimensmn of block;
1, 2 or 3 element struct: “.x ”,“.y ” & “z

All threads within a block execute the same
kernel (SPMD) & cooperate via shared memory,
atomic operations & barrier synchronization

Each block has a unique block ID
—blockIdx is 1 or 2 element struct

Each thread has a unique ID within the block

—threadIdx is a struct with up to 3 elements:
“x7,“y”(@n2o0r3D) & “.z” (in 3D) for the
innermost, intermediated & outermost index

Each thread uses the block & thread IDs to
decide what data to work on (i.e., SPMD)

Hierarchical Device Memory

Each thread can:
* Read/write per-thread registers
e Read/write per-thread local memory

* Read/write per-block shared memory

* Read/write per-grid global memory

* Read only per-grid constant memory

Host code can:

Grid

Block (0, 0)

==

Block (1, 0)

ks

Thread (0, 0)

Thread (1, 0)

Thread (0, 0) | Thread (1, 0)

4

4

4 4

Host

“—>

* Read/write per-grid global memory

I

* Read/write per-grid constant memory

We will only use global device memory in assignment

Device Memory Allocation

cudaMalloc()

* Allocates object in the device global
memory

* Requires two parameters:

—Address of a pointer to the
allocated object

—Size of of allocated object

cudaMalloc((void **)&sumDev, size);

cudaFree()

* Frees object from device global

memory Host

Grid

Block (0, 0)

|

Block (1, 0)

|

Thread (0, 0)

Thread (1, 0)

Thread (0, 0)

Thread (1, 0)

* Parameter: Pointer to freed object

cudaFree (sumDevV) ;

Host-Device Data Transfer

cudaMemcpy(dest, src, size, cmd)

e Arguments 7

— dest = pointer to array to receive data
— src¢ = pointer to array to source data

— size = # of bytes to transfer Grid

— cmd = transfer direction Block (0, 0)
> cudaMemcpyHostToDevice

> cudaMemcpyDeviceToHost

Block (1, 0)

|

* Transfer specified # of bytes ’ *
from one memory to the other

in direction specified Ve

Thread (1, 0)

Thread (0, 0)

Thread (1, 0)

Y

P

an‘

=

N/

cudaMemcpy (sumHost, sumDev, size, cudaMemcpyDeviceToHost);

Kernel Program for Device

e Set of threads triggered by invocation of a single kernel

o Definition Two underscores

___global 7 void kernel fun(argument list)

\ Kernel that can be called from a host function

e Invocation
kernel fun <<<execution configuration>>> (operands)

— Range specifies set of values for thread grid

host fun() { 4x2 grid (3v4 dimension not used)
dim3 dimGrid(4,2,1) ’/,2x2x21ﬂock

dim3 dimBlock(2,2,2)
kernel fun <<<dimGrid, dimBlock>>> (operands)

}

3-element struct accessed by dimGrid.x,dimGrid.y,dimGrid.z

Built-in Variables

® dim3 gridDim;
Dimensions of the grid in blocks (gridpim.z unused)

® dim3 blockDim;
Dimensions of the block in threads

cf. vproc|3] & vthrd|3] in hmd.c

® dim3 blockIdx;
Block index within the grid

® dim3 threadIdx;
Thread index within the block

cf. vid[3] & vtd|3] in hmd.c

Calculate Pi1 with CUDA: pi.cu (1)

// Using CUDA device to calculate pi
#include <stdio.h>
#include <cuda.h>

#define NBIN 10000000 // Number of bins
#define NUM_BLOCK 13 // Number of thread blocks
#define NUM THREAD 192 // Number of threads per block
int tid;
float pi = 0;
NBIN NUM_THREAD NUM_BLOCK
// Kernel that executes on the CUDA device
__global__ void cal pi(float *sum, int nbin, float step, int nthreads, int nblocks) {

-Laie dLp Offset: how many threads before this block
float x; | A \
int idx = blockIdx.x*blockDim.x+threadIdx.x; // Sequential thread index across blocks
for (i=idx; i< nbin; i+=nthreads*nblocks) { // Interleaved bin assignment to threads
X = (i+0.5)*step; .
sum[idx] += 4.0/(1.0+x*x); // Data privatization idx =0

) 7 idx = 1
) e

blockIdx.x: O 1 2
threadIdx.x: 0 1 2 ... 191 0 ... 191 0 ...
idx: 0)]1 2 ... 191 (192 ... 383 (384 ...
. gridDim.x|y = 13|1 step
1D grid & block)0k pim.xy|z = 192[1]1
010,10
Total number of threads = 13x192 = 2,496

012 34=NBIN-1

Calculate Pi1 with CUDA: pi.cu (2)

// Main routine that executes on the host
int main(void) { 13 192
dim3 dimGrid(NUM BLOCK,1,ly; // Grid dimensions
dim3 dimBlock(NUM THREADY1,1); // Block dimensions
float *sumHost, *sumDev; // Pointer to host & device arrays

float step = 1.0/NBIN; // Step size
size t size = NUM BLOCK*NUM THREAD*sizeof(float); //Array memory size
sumHost = (float *)malloc(size); // Allocate array on host
cudaMalloc((void **) &sumDev, size); // Allocate array on device

// Initialize array in device to 0

cudaMemset (sumDev, 0, size);

// Do calculation on device by calling CUDA kernel

cal _pi <<<dimGrid, dimBlock>>> (sumDev, NBIN, step, NUM_THREAD, NUM_BLOCK);
// Retrieve result from device and store it in host array

. . Computational Grid

cudaMemcpy (sumHost, sumDev, size, cudaMemcpyDeviceToHost);

for(tid=0; tid<NUM_THREAD*NUM BLOCK; tid++) // Thread reduction ---
pi += sumHost[tid];

pi *= step;

Grid

Block (0, 0) Block (1, 0)

// Print results

printf("PI = %f\n",pi);
// Cleanup
free(sumHost);

cudaFree (sumDev) ;

Thread (0, 0) Thread (1,0) Thread (0,0) Thread (1, 0)

return 0;

! ! ! !
) g sumbev]

sumHost[]
+“—>

Summary: CUDA Computing

copy: host nput > device

Multithreading
(SPMD*):
big loop

copy: host < device
output

* Single program multiple data we have learned is called single instruction
multiple threads (SIMT) in GPU terminology

New Generations of GPUs

 Running time per molecular dynamics (MD) step on Kepler
(K20), Pascal (P100) & Volta (V100) GPUs

2

3 million-atom SiO, system

1.5

0.5

Wall time per MD step (s)

K20 P100 V100

GPU architecture

New Generations of GPUs (2)

e A100 has arrived at CARC
UNIFIED Al ACCELERATION

BERT-LARGE TRAINING BERT-LARGE INFERENCE
2,400 (FP32) (FP16) 7,000
2,100 3X 6,000 7x
1,800
5,000
@ 1,500 <
g & 4,000
g 1200 6X
0 g 3,000
wv 900 v
600 1X 2,000
300 1,000
o :
V100 A100 V100 A100 T4 V100 1/7th A100 A100
Al results are measured (7 MlG)

BERT Large Training (FP32 & FP16) measures Pre-Training phase, uses PyTorch including (2/3) Phase1 with Seq Len 128 and (1/3) Phase 2 with Seq Len 512,
V100 is DGX1 Server with 8xV100, A100is DGX A100 Server with 8xA100, A100 uses TF32 Tensor Core for FP32 training

BERT Large Inference uses TRT 7.1 for T4/V100, with INT8/FP16 at batch size 256. Pre-production TRT for A100, uses batch size 94 and INT8 with sparsity AC C E L E RATI N G H P C
L L3 L3
BERT: Bidirectional Encoder

Representations from Transformers used ,
in natural language processing (NLP) STy

. .
. 1.5

ULM-FiT

THE
L TRANSFORMER .
1.0 V100
C— BERT

: 0.5

0.0x

Molecular Dynamics Physrcs Engmeermg Geo Science

x

x

Speedup

x

AMBER GROMACS LAMMPS NAMD Chroma BerkeleyGW FUN3D SPECFEM3D

All results are measured
Except BerkeleyGW, V100 used is single V100 SXM2. A100 used is single A100 SXM4

.
More apps detail: AMBER based on PME-Cellulose, GROMACS with STMV (h-bond), LAMMPS with Atomic Fluid LJ-2.5, NAMD with v3.0a1 STMV_NVE
C - v 0 rC e n q I n e Chroma with szsc121_24_l128, FUN3D with dpw, RTMwith Isotropic R?dius 4 1024”3, SPECFEM3D with Cartesian four material model

BerkeleyGW based on Chi Sum and uses 8xV100in DGX-1, vs 8xA100in DGX A100

https://github.com/pytorch/pytorch/tree/fbf274f5a7c55f58ee1f7eb9b515f23f29bff443/aten/src/ATen/native/cuda

Warp & Control Divergence

* Threads in a block are subdivided into warps (e.g.
consisting of 32 threads)

 Warps are executed in SIMD (single-instruction multiple-
data) fashion, i.e., multiple threads concurrently perform
the same operation

e CUDA provides warp-level primitives for efficient warp-
level programming

e Single instruction multiple thread (SIMT) execution model
penalizes control divergence, where different threads
execute different instructions

 Warp voting: All threads (e.g. particles) within a warp vote
on which computation to perform, with an overhead of
unnecessary computations, for example:

if (any thread in a warp wants to compute) all threads do

Massive SIMD Data-Parallel Accelerator

SIMD: single-instruction multiple data N
Quantum dynamics on 8,192-processor . | ACU \A%U'PE irhplied
(128 X 64) MasPar 1208B A « Bl+C
Nakano, i ||
Comput. Phys. Commun. Global router
83, 181 ('94) Fmgt i System bus |

en i

See lecture on pre-Beowulf parallel computing

https://aiichironakano.github.io/cs596/PreBeowulf.pdf

Final Projects on GPU

* L. Peng et al., “Parallel lattice Boltzmann flow simulation
on emerging multi-core platforms,” Proc. Euro-Par, 763

(C08)
e P. E. Small et al., ““Acceleration of dynamic n-tuple

computations in many-body molecular dynamics,” Proc.
IEEE HPC Asia (C18)

e Sasan Tavakkol’s final project became a poster in GPU
Technology Conference (see nice videos 1 & 2)

e C. Rizzo et al., “PAR2: parallel random walk particle
tracking method for solute transport in porous media,”
Comput. Phys. Commun. 239, 265 (°19)

https://aiichironakano.github.io/cs596/Peng-pLBM-LNCS08.pdf
https://aiichironakano.github.io/cs596/Small-TupleDecompGPU-HPCAsia18.pdf
https://aiichironakano.github.io/cs596/Sasan-WaterWave-GTC16.pdf
https://www.nvidia.com/en-us/gtc
https://www.youtube.com/watch?v=1ncB_Euuu_k&feature=youtu.be
https://www.youtube.com/watch?v=tJeGviPzwEs&feature=youtu.be
https://aiichironakano.github.io/cs596/Rizzo-PAR2-CPC19.pdf

Final Project on GPU-MD?

e J. C. Phillips et al., “Quantum-based molecular dynamics simulations
using tensor cores,” J. Chem. Phys 153, 044130 (C20)

NAMD standard GPU-offloading scheme

CPU Activity .S —
GPU Activity ~force| force _force] force|
Memory Activity

NAMD single-node GPU-resident scheme
CPU Activity ;
GPU AﬁtR',!ty forcelint|forcelint|forcelint|forcelint|forcejint|forcejint|forcejint|

Memory Activity

Persistent
GPU kernel

FIG. 5. Standard GPU offload approach compared against new GPU-resident execution scheme for a single-node NAMD simulation of apolipoprotein 1 (ApoA1) in water,
consisting of 92 224 atoms. The light blue line tracks GPU activity, while the black strip tracks CPU activity. GPU force calculations are labeled “force,” and GPU integration
calculations are labeled “int.”

* Domain Pair
CPU -t {ime] s |

S. Pall et al., “Heterogeneous parallelization and acceleration of

molecular dynamics simulations in GROMACS,” J. Chem. Phys. 153,

134110 (C20)

--

fA oo
y: comm

ocal
m N

eeeee

nnnnnn

Pair-search & ‘
domain-decomposition
1 send non-
every 10-250 steps v local F

MPI comm:

H2D local x,q

H2D nonlocal x,q
g >
&
25
25
L
g
o o
e [- === ff-

Integration
Constraints

D2H local F

List
pruning|

§

 /

non-bonded F [

cluster only interacts with 1-3 i-cluster(s), €.g., jmm only with is.

s
4

s

search with inner list pruning cost 70-90% per step

Average CPU-GPU overlap:

FIG. 4. Cluster pair setups with four particles (N = 4 and M = 4). Left panel: CPU/SIMD-centric setup. All clusters with solid lines are included in the pair list of cluster is
(green). Clusters with filled circles have interactions within the buffered cutoff (green dashed line) of at least one particle in is, while particles in clusters intersected by the
| T buffered cutoff that fall outside of it represent an extra implicit buffer. Right panel: hierarchical super-clusters on GPUs. Clusters is—is (green, magenta, red, and blue) are

Bonded F |_| Non-local | o grouped into a super-cluster. Dashed lines represent buffered cutoffs of each i-cluster. Clusters with any particle in any region will be included in the common pair list. Particles

of j-clusters in the joint list are illustrated by discs filled in black to gray; black indicates clusters that interact with all four i-clusters, while lighter gray shading indicates that a

Thread blocking

https://aiichironakano.github.io/cs596/Phillips-NAMD-GPU-JCP20.pdf
https://aiichironakano.github.io/cs596/Pall-GROMACS-GPU-JCP20.pdf

Final Project on GPU-MD?

e J. Finkelstein et al., “Quantum-based molecular dynamics simulations
using tensor cores,” J. Chem. Theo. Comput. doi: 10.1021/acs.jctc.1¢00726

(C21); Python code for an associated paper is available at
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c00057/suppl_file/ct1c00057 si 001.zip

“computational structure naturally takes
advantage of the exceptional processing
CELVCIEN power of the tensor cores (utilizing
d2n/dt? FP16) and allows for high performance
in excess of 100 Tflops on a single Nvidia
A100 GPU.”

Tensor' Pr'ocessmg

Deep-NN Electronic Structure Solver

““““““““““““

848 "z
O

Input Layer Activation Function Deep Layers Output Layer

https://aiichironakano.github.io/cs596/Finkelstein-TensorCoreQMD-JCTC21.pdf
https://aiichironakano.github.io/cs596/Phillips-NAMD-GPU-JCP20.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c00057/suppl_file/ct1c00057_si_001.zip

Aurora: Heterogeneous Future

One of the first
exaflop/s

computers
in the U.S.

Aurora’s compute nodes will be equipped with two Intel Xeon Scalable processors and six general-purpose GPUs based on Intel’s X® architecture.
Image: Intel Corporation

GPU Architecture

X€ arch-based “Ponte Vecchio”
GPUTile-based, chiplets, HBM
stack, Foveros 3D integration, 7nm

On-Node Interconnect

CPU-GPU: PCle
GPU-GPU: X€ Link

Where to Go from Here

e CUDA is a proprietary language for NVIDIA GPUs

* Several open languages are available

> High-level, directive-based languages

OpenACC: https://www.openacc.org

OpenMP 4.5 and later: https://www.openmp.org/specifications

> Low-level, comprehensive languages
OpenCL: https://www.khronos.org/opencl

DPCH+: https://software.intel.com/content/www/us/en/develop/tools/oneapi.html

https://www.openacc.org/
https://www.openmp.org/specifications
https://www.khronos.org/opencl/
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html

