
1

Scalability Metrics for Parallel Molecular Dynamics

Parallel Efficiency

We define the efficiency of a parallel program running on P processors to solve a problem of
size W. Let T(W, P) be the execution time of this parallel program. Speed of the program is then
S(W, P) = W/T(W, P). Speedup, SP, on P processors is the speed of P processors divided by that
of 1 processor, i.e., SP = S(WP, P)/S(W1, 1). To unambiguously define the speedup, we need to
specify how the problem size, WP, scales as a function of the number of processors, P (which
will be discussed in the next few paragraphs). The ideal speedup on P processors is expected to
be P, and therefore we define the parallel efficiency, EP = SP/P.
CONSTANT PROBLEM-SIZE SCALING

In the constant problem-size scaling, the problem size WP = W is fixed constant. Therefore,
the constant problem-size speedup is

!

SP =
S(W ,P)

S(W ,1)
=
W /T(W ,P)

W /T(W ,1)
=
T(W ,1)

T(W ,P)
,

and the parallel efficiency is

!

EP =
SP

P
=

T(W ,1)

P •T(W ,P)
.

Amdahl’s law: Consider a case, in which a fraction, f (∈ [0, 1]), of the work W is inherently
sequential and cannot be parallelized, but the rest, 1 − f, can be divided and executed in parallel
on P processors. Then, T(W, P) = f•T(W, 1) + (1 − f)T(W, 1)/P. Therefore, the speedup is

!

SP =
T(W ,1)

T(W ,P)
=

1

f + (1" f) /P
.

In the limit of large number of processors, P → ∞, the asymptotic speedup is SP → 1/f. The
constant problem-size speedup is thus limited by the fraction of the sequential bottleneck of the
parallel program. For example, if 1% of the work is sequential, the maximum achievable
speedup is 0.01/1 = 100, and it does not make sense to use more than ~100 processors to run this
program.
ISOGRANULAR SCALING

In the isogranular scaling, the problem size WP scales linearly with the number of processors:
WP = P•w, where the granularity (or the work per processor), w, is constant. Therefore, the
isogranular speedup is

!

SP =
S(P •w,P)

S(w,1)
=
P •w /T(P •w,P)

w /T(w,1)
=
P •T(w,1)

T(P •w,P)
,

and the corresponding isogranular parallel efficiency is

!

EP =
SP

P
=

T(w,1)

T(P •w,P)
.

2

Analysis of Parallel Molecular Dynamics Algorithm

Using the spatial decomposition and the O(N) linked-list cell method, the parallel MD
simulation of N atoms executes independently on P processors, and the computation time
Tcomp(N, P) = aN/P, where a is a constant. Here, we have assumed that atoms are on average
distributed uniformly, so that the average number of atoms per processor is N/P. The dominant
overhead of the parallel MD is atom caching, in which atoms near the subsystem boundary
within a cutoff distance, rc, are copied from the nearest neighbor processors and are processed.
Since this nearest-neighbor communication scales as the surface area of each spatial subsystem,
its time is Tcomm(N, P) = b(N/P)2/3, where b is a constant. Another major communication cost is
for global summations, MPI_Allreduce(), which incurs Tglobal(P) = c logP, where c is another
constant.

The total execution time of the parallel MD program can thus be modeled as

!

T(N,P) = Tcomp(N,P) + Tcomm(N,P) + Tglobal(P)

= aN /P + b(N /P)2/3 + c logP
.

CONSTANT PROBLEM-SIZE SCALING
For constant problem-size scaling, the global number of atoms, N, is fixed, and the speedup

is given by

!

SP =
T(N,1)

T(N,P)
=

aN

aN /P + b(N /P)2/3 + c logP

=
P

1+
b

a

P

N

"

$

%

&
'
1/3

+
c

a

P logP

N

,

and the parallel efficiency is

!

EP =
SP

P
=

1

1+
b

a

P

N

"

$

%

&
'
1/3

+
c

a

P logP

N

.

From this model, we can see that the efficiency is a decreasing function of P through both the
P1/3 and PlogP dependences.
ISOGRANULAR SCALING

For isogranular scaling, the number of atoms per processor, N/P = n, is constant, and the
isogranular parallel efficiency is

!

EP =
T(n,1)

T(nP,P)
=

an

an + bn
2/3

+ c logP
=

1

1+
b

a
n
"1/3

+
c

an
logP

.

For a given number of processors, the efficiency EP is larger for larger granularity n. For a given
granularity, EP is a weakly decreasing function of P, due to only the logP dependence.

3

Analysis of a Parallel Fast Multipole Method Algorithm

Step 1: Compute multipoles ΦL,c for all the cells c at the leaf level L of the octree. This
computation is performed locally in each processor, and its time complexity is τ1

comp = c1N/P,
where c1 is a constant, N is the number of charged particles, and P is the number of processors.

Step 2 (upward pass): For octree levels l = L−1, L−2, ..., 0, compute Φl,c for all the cells c
by summing the multipoles of their 8 children cells (see Fig. 1),

!

"l,c = TM#M "l+1, $ c ()
$ c %children(c)

& (1)

where the multipole-to-multipole (M2M) translation operator TM←M shifts the origin of the
multipole representation, and children(c) is the set of 8 children cells of parent c.

For l ≥ log8P, each processor computes the multipoles for 8l/P cells. For l < log8P, each
processor is assigned only one cell to compute. Therefore,

!

"2
comp

= 8c2
8l

Pl=log8 P

L#1

$ + 1
l=0

log8 P#1

$
%

&
'
'

(

)
*
* ~ 8c2

1

7+ 3
N

P
+ log8 P

%

&
'

(

)
* (2)

where c2 = cMM is the computation time associated with each M2M shift operation. The
approximation in Eq. (2) holds for the number of leaf cells Nc = 8L >> P >> 1, assuming uniform
atomic density. The leaf-cell length in unit of (Ω/N)1/3 is denoted by ξ (Ω is the total volume of
the simulated system).

For l ≥ log8P, the M2M operations are performed locally in each processor. For l < log8P, the
multipoles of only one child cell are locally available out of 8. The rest must be copied from
other processors with the communication cost, τ2

comm = 7dmlog8P (dm is the time required for
copying the multipoles of one cell).

Step 3: If periodic boundary conditions are used, summation over infinitely repeated image
boxes is carried after step 2. The multipoles Φ0,0 of the total simulation box is used to compute
the local Taylor expansion Ψ0,0 of the potential due to the ∞−27 well-separated images. This step
involves a constant cost, τ3

comp = c3 (the computation is duplicated in all the processors).

 Step 4 (downward pass): For l = 1, 2, ..., L, compute the local Taylor expansion Ψl,c for all
the cells c (see Fig. 1),

!

"l,c = TL#L "l$1,parent(c)() + TL#M %l, & c ()
& c 'int eractive(c)

((3)

The first term in Eq. (3) is the contributions from the parent’s well-separated cells. This is
inherited from the parent, parent(c), of the c-th cell by shifting the origin of the Taylor expansion
using the local-to-local (L2L) translation operator TL←L. The second term is due to the atoms in
the interactive cells, which are the children of the parent’s nearest-neighbors but are well-
separated from the c-th cell. The set of all the interactive cells of the c-th cell is denoted by
interactive(c). The multipole-to-local (M2L) translation operator TL←M converts the multipoles of
an interactive cell to local Taylor expansion coefficients centered at the c-th cell.

4

Since each cell has 63−33 = 189 interactive cells, the computation time per cell is c4 = cLL +
189cML, where cLL and cML denote the computation costs associated with the L2L and M2L
operators, respectively. For l ≤ log8P, each processor computes the local expansions for one cell.
For l > log8P, each processor is assigned the 8l/P local cells.

!

"4
comp

= c4
8l

Pl=log8 P+1

L

+ 1
l=1

log8 P

#
$

%
&
&

'

(
)
) ~ c4

1

7* 3
N

P
+ log8 P

$

%
&

'

(
) , (4)

For l ≤ log8P, the multipoles of up to 189 interactive cells must be copied from other
processors. For l > log8P, each subsystem must be augmented by copying two boundary layers of
cells from other processors. The associated communication cost is

!

"4
comm

= dm
2l

P
1/3

+ 4

$
%

&

'
(

3

)
8l

P

*

+
,

- ,

.

/
,

0 , l=log8 P+1

L

1 + 189
l=1

log8 P

1
2

3

4
4

5

6

7
7
~ dm

16

8 2
N

P

$
%

&

'
(
2/3

+189log8 P
*
+
,

- ,

.
/
,

0 ,
. (5)

Step 5: The far-field contribution is evaluated at each atom’s position using the local Taylor
expansion ΨL,c(i) at the leaf level, where c(i) denotes the leaf cell to which the i-th atom belongs.
This computation is performed locally with the cost τ5

comp = c5N/P.

Step 6 (near field): Contributions to the electrostatic potential from all the atomic pairs
within the 27 nearest-neighbor cells are evaluated directly without using multipoles. Using the
Newton’s third law, τ6

comp = (27Ninnerc6ξ
3/2)(N/P).

At step 6, each subsystem is augmented with the atoms in one boundary layer of cells with
the cost,

!

"6
comm

=
daN

Nc

2
L

P
1/3

+ 2

$
%

&

'
(

3

)
8
L

P

*

+
,

- ,

.

/
,

0 ,
~ 6da1

N

P

$
%

&

'
(
2/3

, (6)

where da is the communication cost per copied atom.

The total execution time is the sum of the above contributions, τ (N, P) = τcomp (N, P) + τcomm
(N, P), where τcomp (N, P) = τ1

comp + τ2
comp + ... + τ6

comp and τcomm (N, P) = τ2
comm + τ4

comm. Using
the isogranular scaling, the parallel efficiency of the program is defined as E = τcomp(N/P, 1)/τ(N,
P). According to the above analysis, the parallel efficiency of the fast multipole method program
is estimated to be

!

E
"1 =1+

(8c2 + c4 +196dm)P log8 P /N + 16dm /#
2 + 6da#{ }(P /N)1/3

c1 + c5 + 8(c2 + c4) /7#
3 + 27c6#

3 /2
. (7)

In deriving Eq. (7), we have omitted the term proportional to c3, which was found small for the
systems we have tested. For a large number of processors P, the term proportional to Plog8P/N in
Eq. (7) degrades the parallel efficiency significantly. The efficiency can be increased by
increasing the granularity N/P.

5

Fig. 1: Schematic of the far-field computation in a two dimensional system. In the left column, the multipoles of a
parent cell (shown in gray) at level 2 is obtained by shifting the multipoles of its 8 children cells at level 3 by the
M2M translation operator TM←M and summing them. In the right column, the local Taylor expansion coefficients of
a child cell (gray) at level 3 are computed from two contributions. First the local expansions of its parent at level 2
are inherited; the L2L translation operator TL←L is used to shift the origin of the local expansion. The M2L
translation operator TL←M is then used to compute the contributions due to the interactive cells (shaded) at the same
level.

Reference
1. “Parallel multilevel preconditioned conjugate-gradient approach to variable-charge molecular

dynamics,” A. Nakano, Computer Physics Communications 104, 59-69 (1997).

