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Divide-and-Conquer Parallelization Paradigm 
 
Divide-and-Conquer Simulation Algorithms 
 
• Divide-and-conquer (DC) algorithms:  Recursively partition a problem into subprogram of 

roughly equal size.  If subprogram can be solved independently, there is a possibility of significant 
speed up by parallel computing. 
The DC paradigm has been used widely to design a number of efficient algorithms for broad 

scientific and engineering applications.  Examples include a hierarchy of particle simulation methods, in 
which spatially localized subproblems are solved in a global embedding field, which is efficiently 
computed with tree-based algorithms (see Figure).  Examples of the embedding field are the electrostatic 
field in molecular dynamics (MD) simulations1 and the self-consistent Kohn-Sham potential in quantum 
mechanical (QM) simulations in the framework of the density functional theory (DFT).2 

 
Figure.  Schematic of a divide-and-conquer (DC) particle simulation algorithm.  (Left) The physical space is subdivided into 
spatially localized cells, with local particles constituting subproblems (bottom), which are embedded in a global field 
(shaded) solved with a tree-based algorithm.  (Right) To solve the subproblem in domain Ωα in the DC-DFT algorithm, 
coarse multigrids (gray) are used to accelerate iterative solutions on the original real-space grid (corresponding to the grid 
refinement level, l = 3).  The bottom panel shows fine grids adaptively generated near the atoms (spheres) to accurately 
operate the ionic pseudopotentials on the electronic wave functions. 

In the following, we use the sorting problem as an example to practice the programming of parallel 
divide-and-conquer algorithms and examine their communication patterns. 
 
Divide-and-Conquer Paradigm I: Parallel Bitonic Mergesort 
 
MERGE SORT 
• Merge:  Given two ascending sorted sublists, L[0:N-1] and L[N:2N-1], obtain a combined ascending 

sorted list, L[0:2N]. 
• Recursive merge sort:  Given a list, divide it in half, sort the two halves (recursively), and then 

merge the two halves together. 
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void mergesort(int list[],int left,int right) 
{ 
  int i,j,k,t,middle,temp[N]; 
 
  if (left < right) { 
    middle = (left + right)/2; 
    mergesort(list,left,middle); 
    mergesort(list,middle+1,right); 
 
    k = i = left; j = middle+1; 
    while (i<=middle && j<=right) 
      temp[k++] = list[i]<list[j] ? list[i++] : list[j++]; 
    t = i>middle ? j : i; 
    while (k <= right) temp[k++] = list[t++]; 
    for (k=left; k<=right; k++) list[k] = temp[k]; 
  } 
} 

Note that this algorithm would incur too much communication on parallel computers.  In the 
following, we introduce another sorting algorithm that is better suited for parallel implementation. 
BITONIC SPLIT 
• Bitonic list:  A list with no more than one local maxima and no more than one local minima.  One 

important type of bitonic list has the first half sorted in ascending (descending) order and the second 
half in descending (ascending) order. 

• Bitonic split is defined as follows: 
1. Each element in the first half of the list is assigned a partner, which is the same relative position 

from the second half of the list. 
2. Each pair of partner compares themselves.  If the first half of the list has a larger (smaller) item, 

then exchange them. 
When applied to a bitonic list of length N, the bitonic split results in a new list with the following 
properties: 
1. Each item in the first half of the list is less than every item in the second half. 
2. The first half and the second half of the list are each a bitonic list of length N/2. 
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Example: bitonic split 
Original     0   1   2   3   4   5   6   7    
bitonic list                    45 
                    40 
                            35 
                30 
                                25 
            20 
                                    15 
        10 
 

Crossover     0   1   2   3   4   5   6   7   
        45 
                    40 
            35 
                30 
                25 
            20 
                    15 
        10 
 

Split      0   1   2   3   4   5   6   7    
bitonic list                    45 
(ascending)                                40 
                            35 
                                30 
                25 
            20 
                    15 
        10 
 

Split      0   1   2   3   4   5   6   7    
bitonic list    45 
(descending)                40 
            35 
                30 
                                25 
                            20 
                                    15 
                        10 
 
BITONIC MERGE = RECURSIVE BITONIC SPLIT 

The list is fully sorted after logN levels of recursive application of bitonic split. 
 
    Ascending      Descending 
 

m = 2      *o          ** 
      *  *        *  * 
     *    *       *    * 
    o      *      *      * 
 

m = 1       *  *      *  * 
         **       ** 
     *o            ** 
    o  *           *  * 
 

m = 0         **      ** 
        **        ** 
      **           ** 
    oo              ** 
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BITONIC MERGE IN PARALLEL 
for m := dim-1 downto 0 do 
begin 
  partner := me XOR 2m; 
  if me AND 2m = 0 then 
    retain smaller (larger) of the two items 
  else 
    retain larger (smaller) of the two items 
end; 
 

Here, me = 0:N-1, and XOR and AND are bitwise exclusive OR and AND operators.  Note that 
taking XOR with 1 flips a bit (i.e., 0 XOR 1 = 1 and 1 XOR 1 = 0). 
BITONIC MERGE SORT 

Consider an unsorted list with N = 2dim items.  Any list with only two items is a bitonic list.  
Therefore, this unsorted list consists of N/2 bitonic lists of length 2.  By applying the bitonic merge to 
pairs of adjacent lists, the result is N/4 bitonic lists of length 4.  After logN repetitions of the bitonic 
merge, the list is completely sorted. 

 

Bitonic Merge Sort in Parallel 
for L := 1 to dim do 
  for m := L-1 downto 0 do 
  begin 
    partner := myid XOR 2m; 
    if me AND 2L = 0 then 
      ascending merge sort for me ∪ partner 
    else 
      ascending merge sort for me ∪ partner; 

    if me AND 2m = 0 then 
      retain the first half of the merged list 
    else 
      retain the second half of the two items 
  end; 
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COMPARE-EXCHANGE OPERATION FOR BLOCK PARALLEL SORT 

 

Example: parallel block bitonic merge sort 
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• Program pbmerge.c using MPI 
 
#include <stdio.h> 
#include <math.h> 
#include "mpi.h" 
 
#define N 1024 
#define MAX 99 
 
int nprocs,dim,myid; /* Cube size, dimension, & my node ID */ 
 
/* Sequential mergesort (either ascending or descending) */ 
void mergesort(int list[],int left,int right,int descending) 
{ 
  int i,j,k,t,middle,temp[N]; 
 
  if (left < right) { 
    middle = (left + right)/2; 
    mergesort(list,left,middle,descending); 
    mergesort(list,middle+1,right,descending); 
 
    k = i = left; j = middle+1; 
    if (descending) 
      while (i<=middle && j<=right) 
        temp[k++] = list[i]>list[j] ? list[i++] : list[j++]; 
    else 
      while (i<=middle && j<=right) 
        temp[k++] = list[i]<list[j] ? list[i++] : list[j++]; 
    t = i>middle ? j : i; 
    while (k <= right) temp[k++] = list[t++]; 
    for (k=left; k<=right; k++) list[k] = temp[k]; 
  }  
} 
 
/* Parallel mergesort */ 
void parallel_mergesort(int myid,int list[],int n) 
{ 
  int listsize, l, m, bitl = 1, bitm, partner, i; 
  MPI_Status status; 
 
  listsize = n/nprocs; 
  mergesort(list,0,listsize-1,myid & bitl); 
 
  for (l=1; l<=dim; l++) { 
    bitl = bitl << 1; 
    for (bitm=1, m=0; m<l-1; m++) bitm *= 2; 
    for (m=l-1; m>=0; m--) { 
      partner = myid ^ bitm; 
      MPI_Send(list,listsize,MPI_INT,partner,l*dim+m,MPI_COMM_WORLD); 
      MPI_Recv(&list[listsize],listsize,MPI_INT,partner,l*dim+m, 
               MPI_COMM_WORLD,&status); 
      mergesort(list,0,2*listsize-1,myid & bitl); 
      if (myid & bitm) 
        for (i=0; i<listsize; i++) list[i] = list[i+listsize]; 
      bitm = bitm >> 1; 
    } 
  }  
} 
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int main(int argc,char *argv[]) 
{ 
  int list[N],n=16,i; 
 
  MPI_Init(&argc,&argv); 
  MPI_Comm_size(MPI_COMM_WORLD, &nprocs); 
  dim = log(nprocs+1e-10)/log(2.0); 
  MPI_Comm_rank(MPI_COMM_WORLD,&myid); 
 
  srand((unsigned) myid+1); 
  for (i=0; i<n/nprocs; i++) list[i] = rand()%MAX; 
 
  printf("Before: Node %2d :",myid); 
  for (i=0; i<n/nprocs; i++) printf("%3d ",list[i]); 
  printf("\n"); 
 
  parallel_mergesort(myid,list,n); 
 
  printf("After:  Node %2d :",myid); 
  for (i=0; i<n/nprocs; i++) printf("%3d ",list[i]); 
  printf("\n"); 
 
  MPI_Finalize(); 
  return 0; 
} 
 

Divide-and-Conquer Paradigm II: Hypercube Quicksort 
 
QUICKSORT 

Quicksort is a “divide-and-conquer” method for sorting.  It works by partitioning a file into two 
parts, then sorting the parts independently. 
 
quicksort(int list[],int left,int right) 
{ 
  int j; 
 
  if (left < right) { 
    j = partition(list,left,right); 
    quicksort(list,left,j-1); 
    quicksort(list,j+1,right); 
  } 
} 
 

The partition procedure works as follows:  Given a sublist list[left:right], it first chooses the 
left-most element as a pivot.  When returned, the pivot element is placed at the j-th position, and: i) 
a[left],...,a[j-1] are less than or equal to a[j]; ii) a[j+1],...,a[right] are greater than or 
equal to a[j]. 
 

  0    1    2    3    4    5    6    7    8    9 
 

 [5    7    2    9    6    8    3    4    1    0] 
 

 [3    0    2    1    4]   5   [8    6    9    7] 
 

 [1    0    2]   3   [4]   5   [7    6]   8   [9] 
 

 [0]   1   [2]   3   [4]   5   [6]   7 [] 8   [9] 
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void quicksort(int list[],int left,int right) 
{ 
  int pivot,i,j; 
  int temp; 
 
  if (left < right) { 
    i = left; j = right + 1; 
    pivot = list[left]; 
    do { 
      while (list[++i] < pivot && i <= right); 
      while (list[--j] > pivot); 
      if (i < j) { 
        temp = list[i]; list[i] = list[j]; list[j] = temp; 
      } 
    } while (i < j); 
    temp = list[left]; list[left] = list[j]; list[j] = temp; 
    quicksort(list,left,j-1); 
    quicksort(list,j+1,right); 
  } 
} 
 
HYPERCUBE QUICKSORT 

Let n be the number of elements to be sorted and p = 2d be the number of processors in a d-
dimensional hypercube (see the Appendix for the definition of a hypercube).  Each processor is assigned 
a block of n/p elements. 

The algorithm starts by selecting a common pivot value, which is broadcast to all processors.  Each 
processor partitions its local elements into two blocks, one with elements smaller than the pivot, and the 
other with elements larger than the pivot.  Then the processors connected along the d-th communication 
link exchange blocks:  Each processor with a 0 in the d-th bit retains the smaller elements, and each 
processor with a 1 in the d-th bit retains the larger elements.  After this step, each processor in the (d-1)-
dimensional hypercube whose d-th bit is 0 has elements smaller than the pivot, and each processor in the 
other (d-1)-dimensional hypercube has elements larger than the pivot. 

At the next level, a pivot is chosen in each (d-1)-dimensional hypercube separately, and it is 
broadcast to all the processors in each hypercube.  Each processor partitions its local elements into two 
blocks, one smaller and the other larger than the pivot.  Appropriate blocks are exchanged through the 
(d-1)-th communication link so that each processor with a 0 in the (d-1)-th bit retains the smaller 
elements than the pivot, and each processor with a 1 in the (d-1)-th bit retains the larger. 

This procedure is performed recursively.  After d such splits, the sequence is sorted with respect to 
the global ordering imposed on the processors.  Then each processor sorts its local elements by using 
sequential quicksort. 
 
1. Dimension   Master of Subcube 
  3      000 
  2      x00 
  1      xx0 

2. Partner is obtained by flipping the d-th bit. 
 

PIVOT SELECTION 
Master of each subcube determines the pivot value and broadcasts it to all the processors in the 

subcube.  Bad choice of pivot at early stages degrades the performance significantly (no recovery from 
it).  Let us use the average value elements in the master processor as a pivot. 
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 pivot = (Σ elements) / (number of elements) 
 
EXAMPLE: 3D HYPERCUBE QUICKSORT 

 

{Hypercube Quicksort} 
bitvalue := 2dimension-1; 
mask := 2dimension - 1; 
for L := dimension downto 1 
begin 
  if myid AND mask = 0 then 
    choose a pivot value for the L-dimensional subcube; 
  broadcast the pivot from the master to the other members of the subcube; 
 
  partition list[0:nelement-1] into two sublists such that 
  list[0:j] ≤ pivot < list[j+1:nelement-1]; 
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  partner := myid XOR bitvalue; 
  if myid AND bitvalue = 0 then 
    begin 
      send the right sublist list[j+1:nelement-1] to partner; 
      receive the left sublist of partner; 
      append the received list to my left list 
    end 
  else 
    begin 
      send the left sublist list[0:j] to partner; 
      receive the right sublist of partner; 
      append the received list to my right list 
    end 
  nelement := nelement - nsend + nreceive; 
  mask = mask XOR bitvalue; 
  bitvalue = bitvalue/2; 
end 
 
sequential quicksort to list[0:nelement-1] 

 
BROADCASTING TO A SUBCUBE 
 
  bitvalue = nprocs >> 1; 
  mask = nprocs - 1; 
 
  for (L=dimension; L>=1; L--) { 
    ... 
    if ((myid & mask) == 0) 
      Calculate the pivot as the average of the local list element values 
    MPI_Bcast(&pivot,1,MPI_INT,0,cube[L][myid/nprocs_cube]); 
    ... 
    mask = mask ^ bitvalue;   /* Flip the current bit to 0 */ 
    bitvalue = bitvalue >> 1; /* Next significant bit      */ 
  } 
 

For L dimension, we define 2dimension-L subcubes, each containing nprocs_cube = 2L processes.  A 
hierarchy of subcubes can be implemented as MPI communicators, cube[L][c], by nested calls to 
MPI_Comm_create().  Specifically cube[dimension][0] = MPI_COMM_WORLD, and cube[L][c] is 
decomposed into two communicators of the same size, cube[L-1][2*c]and cube[L-1][2*c+1], which 
contain the lower- and upper-half processes (in terms of the rank) of cube[L][c], respectively.  At level 
L, the p-th process (p is the rank in MPI_COMM_WORLD) belongs to the c-th subcube, cube[L][c], where c 
= p/nprocs_cube. 
 
References 
1. L. Greengard and V. Rokhlin, “a fast algorithm for particle simulations,” J. Comput. Phys. 73, 325 

(1987). 
2. F. Shimojo, R. K. Kalia, A. Nakano, and P. Vashishta, “embedded divide-and-conquer algorithm on 

hierarchical real-space grids: parallel molecular dynamics simulation based on linear-scaling density 
functional theory,” Comput. Phys. Commun. 167, 151 (2005). 
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Appendix: Hypercube Topology 
 

As we have seen, divide-and-conquer algorithms are often implemented conveniently with the 
hypercube topology.  This section formally defines the hypercube topology. 
NETWORK TOPOLOGY 
• Topology:  Which processors are directly connected to which other processors. 
• Distance:  The number of communication links a message must traverse between two processors in 

the most direct path. 
• Diameter:  The maximum distance between any two processors in the network.  The diameter 

measures the maximum delay for transmitting a message from one processor to another. 
• Connectivity:  The number of incident links on each interface.  High connectivity is desirable, 

because it lowers contention for communication resources, but it also increases the cost. 
• Bisection width:  The minimum number of communication links that have to be removed to 

partition the network into two equal halves.  The bisection width measures the largest number of 
messages, which can be sent simultaneously. 

HYPERCUBE TOPOLOGY 

A d-dimensional hypercube consists of n = 2d processors.  Each processor has a number whose 
binary representation has d digits. 
• Hamming distance:  The total number of bit positions at which two binary numbers differ. 

In a hypercube, two processors are connected if their Hamming distance is 1.  The connectivity of a 
d-dimensional hypercube is thus d.  Since each link can change only one digit, the diameter is d, or 
log2n. 

A hypercube topology is constructed recursively as follows. 
(1) First a one-dimensional hypercube has two connected processors 0 and 1. 
(2) A (d+1)-dimensional hypercube is defined from a d-dimensional hypercube as follows: 

a. Duplicate the d-dimensional hypercube including processor numbers. 
b. Create links between processors with the same number in the original and duplicate. 
c. Append a binary 1 to the left of each processor number in the duplicate, and a binary 0 to left 

of each processor number in the original. 
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HYPERCUBE EMBEDDINGS 

Each parallel algorithm has its own natural communication structure when executed on a 
multicomputer (or a distributed-memory computer).  If this logical topology of the algorithm matches 
the physical topology of the multicomputer, then performance is enhanced. 
• Topological embedding:  A topology X can be embedded in a topology Y, such that every 

communication link in X has a corresponding communication link in Y. 
• Gray code:  A sequence of numbers such that each successive numbers have Hamming distance 1. 
 The k-bit Gray code G(k) is defined recursively. 
 (1) G(1) is a sequence: 0 1. 
 (2) G(k+1) is constructed from G(k) as follows. 

a. Construct a new sequence by appending a 0 to the left of all members of G(k). 
b. Construct a new sequence by reversing G(k) and then appending a 1 to the left of all 

members of the sequence. 
c. G(k+1) is the concatenation of the sequences defined in steps a and b. 

• Examples: 
 > Two-bit Gray code 
  00 01 11 10 
 > Three-bit Gray code 
  000 001 011 010 110 111 101 100 
 
EMBEDDING A LINE TOPOLOGY INTO A HYPERCUBE 

Map the processor i of the line topology (size 2d) onto the i-th entry of the d-dimensional hypercube. 

 

• long gray(long j) returns the binary reflected Gray code for the input.   
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 For example, gray(4) = 6. 
j    000 001 010 011 100 101 110 111 or  0 1 2 3 4 5 6 7 
gray(j)  000 001 011 010 110 111 110 100 or  0 1 3 2 6 7 5 4 

long ginv(long j) returns the position of an element in the binary-reflected Gray code sequence.  
For example, ginv(6) = 4. 

• Ring can be embedded using the Gray code, too.  Note that the Hamming distance between the first 
and the last elements is 1.   

EMBEDDING A LINE TOPOLOGY INTO A HYPERCUBE 
Let us fold a 3-bit Gray code into two as follows: 

  000 → 001 → 011 → 010 
                       ↓ 
  100 ← 110 ← 111 ← 110 
 

Note that there are also vertical links in the hypercube topology.  All the pairs that are directly above 
and below each other have Hamming distance 1, and are connected in the underlying hypercube 
topology.  This is because the Gray code is constructed by reversing the smaller Gray-code sequence 
and appending it to the original sequence.  This property is used to embed a two-dimensional mesh onto 
a hypercube. 

 

• 2D torus can be embedded in a hypercube using the same Gray code. 
EXAMPLE: EMBEDDING 4×4×4 IN 6-DIMENSIONAL HYPERCUBE 
• In the example below, G(2) guarantees vertical connectivity; G(4) guarantees in-plane connectivity. 
    G(2)|G(4) 
  a    00|xxxx 
  b    01|xxxx 
  ¬b    11|xxxx 
  ¬a    10|xxxx 
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WRITE OUR OWN GRAY-CODE FUNCTION 
• Program: gray.c 
 int gray(int i) { 
   return (i ^ (i/2)); 
 } 
 

Due to the recursive construction, a bit in a Gray code depends on whether it is in the first half or the 
second half of the sequence at the next level.  Note that the order is inverted in the second half. 
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If the left bit is 0, then it is in the first half and that the bit must be conserved.  Otherwise (the left bit 
is 1), the bit must be complemented).  This is achieved by using the bitwise XOR operation.  
Comparison with the left bit is achieved by the right shift.   

 

WRITE OUR OWN INVERSE-GRAY-CODE FUNCTION 
• Program: gray_inverse.c 
 int gray_inverse(int i) { 
   int answer,mask; 
   answer = i; 
   mask = answer / 2; 
   while (mask > 0) { 
     answer = answer ^ mask; 
     mask = mask / 2; 
   } 
   return answer; 
 } 
 

First note that if  a XOR x = α then  x = a XOR α.   
 
  a x α = a XOR x 
  0 0 0 
  0 1 1 
  1 0 1 
  1 1 0 
 

Let’s invert the mapping abcd → αβγδ 

 First  α = 0 XOR a  and therefore  a = 0 XOR α = α.   
 Next  β = a XOR b  and therefore  b = a XOR β = α XOR β. 
 Similarly,  c = α XOR β XOR γ, etc.  This is achieved by repeated right shift and bitwise XOR. 


