
1

Quantum Dynamics Basics—Spectral Method
 In this chapter, we will solve the time-dependent Schrödinger equation using another numerical
technique, i.e., the spectral method, which is based on Fourier transformation.

§1. Discrete Fourier Transform
 Consider a complex-valued function, ψ(x) ∈ C, in the range, x ∈ [0, L]. We assume the periodic
boundary condition: ψ(x + L) = ψ(x). Let us discretize ψ(x) on N mesh points, xj = jΔx (j = 0, ..., N−1),
with equal mesh spacing, Δx = L/N (see the left figure below). We denote the discrete function values as
ψj = ψ(xj).

 Discrete Fourier transformation represents ψ(x) as a linear combination of trigonometric functions,
exp(ikx) = cos(kx) + i sin(kx), with different wave numbers, k:

!

" j = ˜ " m exp ikmx j()
m=0

N#1

$, (1)

where the discrete wave numbers, km, are defined as

!

km =
2"m /L m = 0,1,K,N /2 #1()
2" m # N() /L m = N /2,N /2 +1,K,N #1()

$
%
&

, (2)

and the expansion coefficients are given by

!

˜ " m =
1

N
" j exp #ikmx j()

j=0

N#1

$. (3)

 Note that the choice of wave numbers in Eq. (2) guarantees that ψ(x) has the periodicity of L. Also,
because of the discrete sampling in the real space, wave numbers separated by 2πnN/L = 2πn/Δx (n = ±1,
±2, ...) are all equivalent. (Higher wave numbers oscillate more, but come back to the same value as
their lower wave number counterparts at xj.) Among these equivalent wave numbers, we use the
smallest-magnitude wave number, since physically it represents the lowest-energy state and,
mathematically, the discrete mesh points in the real space cannot represent higher wave numbers.
Accordingly, in Eq. (2), the wave numbers for the higher indices, m = N/2, N/2+1, ..., N−1, are folded
back by 2πN/L, so that all the wave numbers are in the range, [−π/Δx, π/Δx], see the right figure above.
(For simplicity, we assume that N is an even number.)
 To prove the correctness of the above Fourier expansion, it is convenient to think the discrete
function, ψj, as a vector in the N-dimensional vector space:

!

" = "0,"1,K,"N#1(). In this vector space,
we define the plane-wave basis set,

!

m = bm x j() =
1

N
exp(ikmx j)m = 0,1,K,N "1

$
%

&
'
(

, (4)

2

which is orthonormal, i.e., the inner products of the basis functions are

!

m n " bm
*
x j()bn x j()

j=0

N#1

$ = %m,n =
1 m = n

0 m & n

'
(
)

. (5)

!

QFor m ≠ n, carry out the sum of geometric series; otherwise (m = n), all N summands are 1/N.

!

m n =
1

N
exp i kn " km()x j()

j=0

N"1

=
1

N
exp i

2$

N
n "m() j

%

&
'

(

)
*

j=0

N"1

#

=

1

N

exp i2$ n "m()() "1

exp i
2$

N
n "m()

%

&
'

(

)
* "1

= 0 m + n

1

N
•N =1 m = n

,

-

.

.

/

.

.

.//

 The above basis set is also complete, i.e., any discrete function, ψj, in this N-dimensional vector
space can be represented as a linear combination of N basis set functions, bm(xj). Specifically,

!

" = m m "
m=0

N#1

$, (6)

or

!

1= m m

m=0

N"1

. (7)

!

QSuppose the function is expanded as

!

" = cn n

n=0

N#1

$.

Multiplying both sides by

!

m and using the orthonormality, Eq. (5), we get

!

m " = c
m

.//

 The Fourier coefficients,

!

˜ "
m

, in Eq. (3) are readily obtained from Eq. (6). Substituting the
definitions of the basis functions and the inner product in Eq. (6), we obtain

!

" j = exp ikmx j()
1

N
exp #ikmxl()"l

l=0

N#1

$
m=0

N#1

$.

Comparing this equation with Eq. (1) identifies the expansion coefficients,

!

˜ "
m

, in Eq. (1) as Eq. (3).

§2. Spectral Method for Integrating Time-Dependent Schrödinger Equation
HAMILTONIAN OPERATOR
 Consider the time-dependent Schrödinger equation in one dimension in atomic unit,

!

i
"

"t
#(x, t) = H#(x,t) , (8)

where the Hamiltonian operator, H, is defined as

!

H = "
1

2

#2

#x2
+V (x)

= T +V

, (9)

3

with T and V being the kinetic- and potential-energy operators, respectively.
 The kinetic energy operator is diagonal in the Fourier (or momentum) space. To see this, we operate
T on the wave function in its Fourier representation, Eq. (1):

!

"
1

2

#2

#x2
˜ $ m

m=0

N"1

% exp ikmx() =
km

2

2
˜ $ m

m=0

N"1

% exp ikmx(), (10)

i.e., the kinetic energy operator multiplies the factor,

!

km
2
/2, to the Fourier coefficient of the wave

function:

!

˜ " m T
$ #

km
2

2

˜ " m .

 Recall, on the other hand, the potential energy operator is diagonal in the real space, i.e., it multiplies
the factor, Vj = V(xj) to the wave function:

!

" j V
$ # Vj" j .

SPLIT-OPERATOR TECHNIQUE AND SPECTRAL METHOD
 The above observation, that the kinetic- and potential-energy operators are diagonal in the real- and
momentum-spaces, respectively, suggests an efficient algorithm for the time evolution of the wave
function. Recall the Trotter expansion (also called the split-operator technique):

!

"(x, t + #t) = exp $iV#t /2()exp $iT#t()exp $iV#t /2()"(x,t) +O #t[]
3() . (11)

The time evolution operator,

!

exp "iV#t /2(), arising from the potential energy, is easily operated in the
real space,

!

exp "iV#t /2()$ j = exp "iV j#t /2()$ j , (12)
or

!

" j exp #iV$t /2()
% & % % % % exp #iV j$t /2()" j .

On the other hand, the time evolution operator,

!

exp "iT#t(), arising from the kinetic energy, is operated
in the Fourier space as

!

exp "iT#t() ˜ $ m = exp "ikm
2#t /2() ˜ $ m , (13)

or

!

˜ " m exp #iT$t()
% & % % % exp #ikm

2$t /2() ˜ " m .

 The spectral method is formally represented in terms of the forward and inverse Fourier
transformation operators, F and F−1,

!

" j F#1$ % $ F
#1" j = ˜ " m =

1

N
" j exp #ikmx j()

j=1

N

& , (14)

!

˜ " m F
$ # F ˜ " m =" j = ˜ " m exp ikmx j()

m=1

N

% , (15)

as follows

!

"(t + #t) = exp $iV#t /2()F exp $iT#t()F$1 exp $iV#t /2()"(t) . (16)

4

Equation (16) amounts to the following algorithm.

Spectral Split-Operator Algorithm

!

1. " j # exp $iV j%t /2()" j

2. ˜ " m F$1# & & " j

3. ˜ " m # exp $ikm
2%t /2() ˜ " m

4. " j F
& & ˜ " m

5. " j # exp $iV j%t /2()" j

COMPUTATION OF THE ENERGY
 The total energy is a conserved quantity for the time-dependent Schrödinger equation, Eq. (8), and is
useful for estimating the discretization error. The total energy can be calculated as follows:

!

H = T + V

= dx"* (x) #
1

2

$2

$x2

%

&
'

(

)
* + "(x) + dx"* (x)V (x)+ "(x)

, dx " j
* #

1

2

$2

$x2

%

&
'

(

)
* " j + dx V j" j

2

j=0

N#1

-
j=0

N#1

-

. (17)

To calculate the first term (i.e., the kinetic energy) in Eq. (17), let us expand the wave function in terms
of its Fourier components as in Eq. (1):

!

T = dx ˜ " m
*

exp #ikmx j()
m=0

N#1

$ #
1

2

%2

%x2

&

'
(

)

*
+ ˜ " n exp ikn x j()
n=0

N#1

$
j=0

N#1

$

= dx ˜ " m
*

exp #ikmx j()
m=0

N#1

$
kn

2

2
˜ " n exp ikn x j()

n=0

N#1

$
j=0

N#1

$

= dx ˜ " m
*

m=0

N#1

$
kn

2

2
˜ " n

n=0

N#1

$ exp i kn # km()x j()
j=0

N#1

$

= dx ˜ " m
*

m=0

N#1

$
kn

2

2
˜ " n

n=0

N#1

$ N,m,n

= dxN
km

2

2m=0

N#1

$ ˜ " m
2

. (18)

By substituting Eq. (18) in (17), we obtain

!

H = T + V

= dxN
km

2

2

˜ " m
2

+ dx V j" j

2

j=0

N#1

$
m=0

N#1

$
. (19)

5

§3. Fast Fourier Transform
 The bottleneck in implementing the above spectral method is the computational cost associated with
the discrete Fourier transform. Since the computation of each of the N Fourier coefficients,

!

˜ "
m

,
involves summation over N terms, the computational time grows as O(N2). The fast Fourier transform
(FFT) algorithm1 reduces this complexity to O(NlogN), and makes the quantum-dynamics simulation
less compute-intensive. The discussion in this lecture note follows Chapter 12 in the Numerical
Recipes.2 First, download and read sections 12.1 “Fourier Transform of Discretely Sampled Data” and
12.2 “Fast Fourier Transform” at http://www.library.cornell.edu/nr/bookcpdf.html.
DANIELSON-LANCZOS ALGORITHM
 The summation in the Fourier transform can be split into two partial sums as follows:

!

" j = ˜ " m exp ikmx j()
m=0

N#1

$ = ˜ " m exp i2%mj /N()
m=0

N#1

$

= ˜ " 2m exp i2% (2m) j /N()
m=0

N /2#1

$ + ˜ " 2m+1 exp i2% (2m +1) j /N()
m=0

N /2#1

$

= ˜ " 2m exp i2%mj /(N /2)()
m=0

N /2#1

$ + exp i2%j /N() ˜ " 2m+1 exp i2%mj /(N /2)()
m=0

N /2#1

$

.

Therefore,

!

" j =" j
0

+W
N
j" j
1 , (20)

where

!

" j
0 = ˜ " 2m exp i2#mj /(N /2)()

j=0

N /2$1

%

" j
1 = ˜ " 2m+1 exp i2#mj /(N /2)()

j=0

N /2$1

%

WN = exp i2# /N()

&

'

(
(
(

)

(
(
(

. (21)

Note that

!

" j
0 and

!

" j
1 represent N/2-element Fourier transforms consisting of even and odd sub-arrays,

respectively. Accordingly, in the sub-array Fourier components,

!

" j
0 and

!

" j
1 , j should be read as j mod

(N/2), i.e., an index in a N/2-long Fourier transform.
 The top part of the figure below illustrates this decomposition due to Danielson and Lanczos for an
8-element Fourier transform, specifically for

!

"5 ="5mod 4=1
0

+W8

5"5mod 4=1
1 ,

where circles and squares denote the even and odd sub-arrays, respectively.

1 J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19,
297 (1965).
2 W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C, 2nd Ed. (Cambridge U Press,
1993).

6

 In a similar manner, each N/2-element Fourier transform is further decomposed into two N/4-
element Fourier transforms, e.g.,

!

" j
0 = ˜ " 2(2m) exp i2# (2m) j /(N /2)()

m=0

N /4$1

% + ˜ " 2(2m+1) exp i2# (2m +1) j /(N /2)()
m=0

N /4$1

%

= ˜ " 2(2m) exp i2#mj /(N /4)()
m=0

N /4$1

% + exp i2#j /(N /2)() ˜ " 2(2m+1) exp i2#mj /(N /4)()
m=0

N /4$1

%

.

Therefore,

!

" j
0

=" j
00

+W
N /2
j " j

01, (22)

where

!

" j
00 = ˜ " 2(2m) exp i2#mj /(N /4)()

m=0

N /4$1

%

" j
01 = ˜ " 2(2m+1) exp i2#mj /(N /4)()

m=0

N /4$1

%

WN /2 = exp i2# /(N /2)()

&

'

(
(
(

)

(
(
(

. (23)

In

!

" j
00 and

!

" j
01 (see Eq. (23)), j should be read as j mod (N/4).

 The decomposition of Fourier transform into sums of two sub-array Fourier transforms, e.g., Eqs.
(20) and (22), continues recursively. The figure above illustrates how the even (circles) and odd
(squares) sub-array Fourier components are combined. Eventually, the sub-array contains only one
element, at which stage the recursion terminates, and the sub-array Fourier components is a function
value at some grid point. For example, in the figure above, the bottom circle and square represent

!

" j
010

and

!

" j
011, which turn out to be

!

˜ " 2 and

!

˜ " 6 , respectively. In general, we can obtain the wave function
index from the bit sequence to specify the recursive sub-array by reversing the bit sequence and
converting it to decimal. This works because successive subdivisions of the data into even and odd are
tests of successive low-order (least significant) bits of the wave function index.
 The figure below shows all the wave functions that participate in the construction of

!

"5 , and how
they are combined to construct

!

"5 .

7

 In the FFT algorithm, the input wave function values are first re-ordered by applying the bit-reversal
operation to each wave function index. The Danielson-Lanczos procedures, such as Eqs. (20) and (22),
are then applied recursively, starting from the smaller sub-arrays up. The figure below shows all the
combinations of sub-array Fourier coefficients to construct all the Fourier components in the bit-
reversed scheme, in which the combinations to construct

!

"5 are represented by bold lines.

 The figure above shows that, to compute all N Fourier transforms, the sub-array Fourier transforms
can be re-used. Consequently, there are N complex multiplications and N complex additions at each
recursive step. (Note that the Danielson-Lanczos procedure, e.g., in Eq. (20) and (22), involves one
multiplication and one addition, and is represented by two lines in the figure above.) To compute all the
Fourier components, every array element is connected to two (even and odd) sub-array elements at each
recursive step. Since there are log2N recursive steps, the number of complex floating-point operations in
the FFT algorithm is 2 log2N.
 The program, four1(double data[], unsigned long nn, int isign), in Numerical Recipes in C
implements the above algorithm. On input, the data[] array contains 2*nn elements that represent nn
complex function values, such that data[2*j−1] and data[2*j] (j = 1, ..., nn) are the real and imaginary
parts of the function value on the j-th grid point. If isign = 1, four1() performs the Fourier transform,

!

data j " datam exp i2#mj /N()
m=0

N$1

% ,

and, on output, data[] contains the transformed function values. Else if isign = −1, four1() performs a
part of inverse Fourier transform,

8

!

datam " data j exp #i2$mj /N()
j=0

N#1

% ,

without dividing the result by nn. To complete the inverse Fourier transform, the caller of the four1()
function needs to divide the resulting data[] array by nn.
 In your 1D quantum dynamics program, you may define

double psi[2*N],
where psi[2*j] and psi[2*j+1] (j = 0, ..., N−1) are the real and imaginary parts of the wave function on
the j-th grid point. Since four1() expects the index to start from 1, instead of 0 in the above psi[] array,
we need to call four1() with psi−1 as the first argument. (Note in C, the array name is a pointer to its
first element.) The following shows typical calls to four1() in your quantum dynamics program:

/* Fourier transform */
four1(psi-1, (unsigned long) N, 1)

/* Inverse Fourier transform */
four1(psi-1, (unsigned long) N, -1)
for (j=0; j< 2*N; j++)
 psi[j] /= N;

