Multiresolution Analysis Using Wavelets

HAAR BASIS

Consider a one dimensional "image" on 2 pixels: $\mathrm{I}[2]=(6,2)$. We decompose this information into a "smooth" and a "detailed" components. The smooth component is an "average" of the two intensities:

$$
s=(6+2) / 2=4
$$

The detailed component is a "difference" between the two intensities:

$$
d=(6-2) / 2=2
$$

We can think of this decomposition as a linear combination of two one-dimensional vectors:

$$
\vec{I}=(6,2)=4 \times(1,1)+2 \times(1,-1)
$$

The function

$$
\phi(x)=1(0 \leq x<2) ; 0 \text { (otherwise), }
$$

is called the Haar scaling function. The detailed component is represented by another function called the Haar wavelet:

$$
\psi(x)=1(0 \leq x<1) ;-1(1 \leq x<2) ; 0 \text { (otherwise). }
$$

WAVELET DECOMPOSITION

Consider a one dimensional "image" I[16] on 16 pixels:

I [16]	1	2	5	9	1	9	2	2	2	3	5	7	4	2	1	1

We define "smooth" components whose number is half the number of the original image:

```
s[i] = (I[2*i] + I[2*i+1])/2 (i = 0,...,7)
```

Half of the information contained in the original image can be represented by the "detailed" components, which are defined as,

```
d[i] = (I[2*i] - I[2*i+1])/2 (i = 0,...,7)
```

Combination of the "smoothed" and "detailed" images contains the same amount of information as the original image.

WAVELET DECOMPOSITION OF A ONE-DIMENSIONAL IMAGE

We can think of this decomposition as a linear combination of "shifted" scaling functions and wavelets: The vector space v^{0} is now decomposed into the "smooth" subspace v^{1} and the "detailed" subspace w^{1}.

$$
v^{0}=v^{1}+w^{1}
$$

MULTIRESOLUTION ANALYSIS

The above decomposition can be applied recursively. The "smoothed" representation $\mathrm{s}[8] \in \mathrm{v}^{1}$ still contains 8 values which can be decomposed into "further smoothed" components ss[4] $\in \mathrm{v}^{2}$ and "detailed" components sd[4] $\in \mathrm{w}^{2}$. This is continued as:

```
I[16] -> s[8], d[8]
    s[8] -> ss[4], sd[4]
    ss[4] -> sss[2], ssd[2]
                sss[2] -> ssss[1]. sssd[1]
```

or

$$
\begin{aligned}
v^{0} & =v^{1}+w^{1} \\
& =v^{2}+w^{2}+w^{1} \\
& =v^{3}+w^{3}+w^{2}+w^{1} \\
& =v^{4}+w^{4}+w^{3}+w^{2}+w^{1}
\end{aligned}
$$

The multiresolution representation of the image thus consists of the hierarchy of "detailed" representations and the coarsest "smooth" representation.

```
I[16] -> d[8], sd[4], ssd[2], sssd[1], ssss[1]
```


PARALLEL MULTIRESOLUTION ANALYSIS

We use a tournament communication pattern (see the figure below). Communication stride is doubled at each level. Even nodes calculate a smoothed component; odd nodes calculate a detailed component. Only even nodes go to the next level.

TWO-DIMENSIONAL IMAGE COMPRESSION

Consider a 2 -dimensional image on $2^{L \max }$ by $2^{L \max }$ pixels. We compress this image into an image on $2^{L \min }$ by $2^{L \text { min }}$ pixels. The program has an outermost for loop over $l=L \max$ down to $L m i n+1$. At each level, we perform one row and one column decomposition.

MULTIRESOLUTION IMAGE COMPRESSION

Reference

1. "Wavelets for computer graphics: a primer," E. J. Stollnitz, T. D. DeRose, and D. H. Salesin, IEEE Computer Graphics Appl. 15(3), 76 (1995).
