§1 Quantum Dynamics Basics

In this chapter, we will simulate the dynamics of a particle, such as an electron, which follows the
law of quantum mechanics [1]. Basics of the quantum-dynamics (QD) method [2-5] are described,
along with corresponding data structures in program, qd.c.

§1.1 Schrodinger Wave Equation
WAVE FUNCTION
The state of an electron at time ¢ is specified by a complex-valued wave function,

Y(r,t) =Rey(r,t) + ilmy(r,t) € C (where i = \/—_1), which is spread in the 3-dimensional space,
7 =(x,y,z) € R’. Given the wave function, we can calculate various physical properties such as:
%: The probability to find the electron at

? =[Rew(7, 1) +[Imy(7,0)

o P10 =y (Fonp(F,t) = (7,1

position 7 at time ¢.
© (F(n)=[dx[dy[dey(F.0)

Here, ¢ (7,1) = Rey(F,1) — ilmy(F, 1) is the complex conjugate of the wave function.

*7: The expected position of the electron at time ¢.

Normalization: The electron wave function must be normalized such that the electron must be found
somewhere in the entire space with probability 1, i.e.,

[ dx[ dyf defyp.nf* =1. (1)

WAVE EQUATION

The time evolution of the electron state, subjected to a time-independent, real-valued potential,
V(r), is described by the following partial differential equation:
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where i = 1.05457x10%" gecm?/s is the Planck constant, m = 9.10938x10™* g is the electron mass, and
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J J a° . .
V2= St 5t 518 the Laplacian operator.
ox”  dy 0z
Dimensionless equation: In the following, we measure length (x, y, z) in unit of n? Ime* =

0.529177x10"® cm, time (#) in unit of 7> /me* = 2.41889x10"7 s, and energy (V) in unit of me* /i* =
4.35974x10"" gecm?®/s’, where e = 4.80321x10"° esu is the electron charge in the CGS unit. Substituting
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in Eq. (2), we obtain
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or the dimensionless equation,
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In the following, we will use the dimensionless variables discussed above but omit the ~ symbol for
brevity.

TWO-DIMENSIONAL ELECTRON

As a specific example, the program qd.c simulates the time evolution of an electron confined in the
2-dimensional plane (z = 0). Such electrons are common at the interface between two heterogeneous
materials in semiconductor devices. The electron state is now specified by the 2-dimensional wave
function, y(x,y,t), where 0 < x <L, and 0 <y <L (L, and L, are the system sizes in the x and y
directions, respectively), and its time evolution is governed by the 2-dimensional Schrédinger equation,

.0
IEW(X»)’J)=H'L/J(%)’J)~ (5)

In Eq. (5), the Hamiltonian operator, H, is defined as

2 2
H = —la—z—la—z+ Vi(x,y)
20x° 20y .

=T, +T,+V

(6)

Boundary condition: We impose the periodic boundary condition on the wave function such that

{lli(x +L,,y) =y(x,y)

. 7
Yoy + L) =p(x.y) @

DISCRETIZATION

The wave function is discretized on a regular mesh of size Ax and Ay in the x and y directions,
respectively. Here Ax = L/N, and Ay = L /N,, where N, and N, are the numbers of mesh points in the x
and y directions, respectively. We denote the discretized wave function as 1, = Y(jAx, kAy), see the
figure below.
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Figure: 2-dimensional mesh, on which the wave function is discretized.
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In the discretized form, the Hamiltonian operator in Eq. (6) acts as

(HY) ;= (Tap), + (Tyw)j,k +(V) 4 (8)
where
1Yisie =290+ Wik
Tap),, =——tik : :
( Xw)J,k 2 (Ax)2
LW =2 Y

(V) ik =Vid¥k

and the potential-energy function is discretized as V;, = V(jAx, kAy).

Note that the discretized H is a mapping from an N,xN, array 1 (;, is its element at the j-th column
and k-th row) to another N, xN, array Hy. The (j, k)-th element, (Hy);,, of the output array, H, is a
linear combination of the input array with different indices, as specified in Egs. (8) and (9).

§1.2 Numerical Integration of Schrodinger Equation
The time evolution of the wave function is formally written down as

Y(t + Ar) = exp(-iHA (1), (10)

where we omit the indices for simplicity. Here the exponential function of an operator is defined as a
series expansion,

OE(—iHAt)n : (11)

M8

exp(—iHAt) =

n

In the split-operator method [2-5], the wave function is propagated for a small time interval, A¢, as

(1 + Ar) = exp(=iVAt /2)exp(~iT,At)exp(~iT, At Jexp(~iVAt /2)y(1)

+O([At]3) (12
In Eq. (12), the application of the potential propagator, exp(-iVA#/2), is straightforward.
5]
(exp(-iVAL2)) == V) 4o (V)
5]
=Yk —ZATIVj,k%,k + 22! (Vj,k)zwj‘,k +oo (13)

= exp(=iV; (A2

Note that, for real number a,



NPT IR N IPRPSS: N UPSP/IN U
exp(za)—1+za+2!(—a )+ 3!(—za )+4!(a )+4!(za )+
=(1—la2+la4+~--)+i(a-la3+la5+--~) . (14)
2! 4! 3! 5!

=cos(a) + isin(a)
Using Eq. (14) in Eq. (13),
(exp(-ivar/2p) = [cos(v;,ar/2) -isin(V; at/2) [Rey y + itmy ]
= [cos(Vj,kAt/Z)Rewj,k + sin(Vj’kAt/2)Im1pj7k] . (15)
J J

+i[cos(V LY /2) Imy;, - sin(V LY /2) Relpj’k]

Many algorithms have been proposed to apply the kinetic propagators such as exp(-i7,Af). Among
these algorithms, the space-splitting method (SSM) [4,5] is highly scalable on massively parallel
computers. To understand the SSM, we first note that the operation of T, on y,, is expressed as

Tjp=by; 1x+2ay;, +bY; (16)
where
2
{a=1/2(Ax) 2 o
b=-1/2(Ax)
For each index k, the operation of T, on );, thus amounts to the multiplication of a tridiagonal matrix,
[2a b ]
b 2a b
b 2a b
T, = . (18)
b 2a b
b 2a b
b 2a]

In the SSM, this tridiagonal matrix is expressed as a direct sum of 2x2 submatrices,
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where we have omitted the index k. The exponential of a 2x2 matrix on the right-hand side of Eq. (19)
is calculated analytically as follows:

exp(—iAlT, ) = UMDy @l half) 0((A;)3) _

& &
& &
&
23
where
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= l[exp(—m—t(a + b)) + exp(—y(a - b))l
2 n n

g, = l[exp(
2

—iA—t(a + b)) - exp(—ﬁ(a - b))l
n

n

The operation of exp(-iT,Ar) is executed in a similar manner.

§1.3 Data Structures of qd.c

NX, NY: Number of mesh points in the x and y directions.
pSi[NX+2][NY+2][2]: psi[i][j][0I1] is the reallimaginary part of the wave function on mesh point (i, j) in

the xy plane.

(20)

21

The wave function to be simulated is in the range, 1 <i < NX and 1 <j < NY. To simplify the
operation of the finite-difference operators considering the periodic boundary condition, the wave
function values at the edge are duplicated as follows:
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for (sy=1l; sy<=NY; sy++)
for (s=0; s<=1; s++) {
psi[0][syl[s] = psi[NX][sy]l[s];
psi[NX+1][sy]l[s] = psi[l][syl[s]:
}
for (sx=1; sx<=NX; sx++)
for (s=0; s<=1; s++) {
psi[sx][0][s] = psi[sx][NY][s];
psi[sx][NY+1][s] = psi[sx][1l][s];
}

VINX+2][NY+2]: v[i][j] is the potential energy at mesh point (i, j).
u[NX+2][NY+2][2]: u[i][j][OI1] is the reallimaginary part of the potential propagator at mesh point (i, j).

The potential propagator, exp(-iVA#/2), is operated in qd.c as follows, see Eq. (15).

for (sx=1; sx<=NX; sx++)
for (sy=1l; sy<=NY; sy++) {
wr=u[sx][sy][0]1*psi[sx][sy][0]-u[sx][sy][1]*psi[sx][sy][1l];
wi=u[sx][sy]l[0]1*psi[sx][sy][1l]+u[sx][sy][1]*psi[sx][sy][0];
psi[sx][sy][0]=wr;
psi[sx][sy][1]=wi;
}

The program qd.c simulates an electron incident on a potential barrier of height B, and width By, see
the figure below. In addition, an edge potential of height E, is applied ati =1 or NX or j=1 or NY in
v[i][j]. The potential v[i][j] = O at all the other mesh points.

y A v(xy)=B, (L/2-B,/2 = x = L,/2+B,,/2)

Ly _____

oL L L [ I [ [ 1 1 ; >
0 Ly /2 Ly X

Figure: The potential energy function.

In classical mechanics, a particle coming from one side of the potential barrier with a higher kinetic
energy than B, will pass through the barrier to the other side; otherwise, the particle will bounce back at
the barrier. In quantum mechanics, a part of the electron wave function is transmitted through the
barrier and the other part is reflected at the barrier.

ND: The number of spatial dimensions = 2.

al[ND][2][2]: al[OIT1][OI1][OI1] is the xly-direction, half (A#/2)lfull (Ar)-step, reallimaginary-part of the
diagonal element of the kinetic propagator, see Egs. (20) and (21).

buxly[2][NX+2[Y+2][2]: buxly[OI1][i][OI1] is the xly-direction, half (A#/2)Ifull (Af)-step, reallimaginary-
part of the upper off-diagonal kinetic propagator on mesh i, see Egs. (20) and (21).
blxly[2][NX+21Y+2][2]: blxly[OIT1][i][0I1] is the xly-direction, half (A#/2)Ifull (A¢)-step, reallimaginary-
part of the lower off-diagonal kinetic propagator on mesh i, see Egs. (20) and (21).
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The 2x2 block-diagonal form of the kinetic propagator, Eq. (20), can be handled

hal - 5
(U)(c a ﬂw)i - 20mod(i.2) Wi-1.; + E3Wi.j + €20mod(i ) 1Wi+1.

(full), o + -
(Ux l/))l. P €10mod(i2),1Wi-1,j + E1Wi,j * €10modi2).0¥i+1,j

(22)

(23)

where 6,,04¢2)0 = 1 (if mod(i, 2) = 0) and O (else), erc. The above kinetic propagator is used in gd.c to

update the wave function as follows, where d (= 0 for x; 1 for y) is the direction and t (= O for A#/2—
half; 1 for Ar—full) is the time step:

/* WRK|PSI holds the new|old wave function */
for (sx=1; sx<=NX; sx++) {

for (sy=1l; sy<=NY; sy++) {
wr=al[d][t][0]*psi[sx][sy][0]-al[d][t]1[1]*psi[sx][sy][1l];
wi=al[d][t][0]*psi[sx][sy][1l]1+al[d][t]1[1]*psi[sx][sy][0];
if (d==0) {

}
}

}

wr+=(blx[t][sx][0]*psi[sx-1][sy][0]-blx[t][sx][1l]*psi[sx-1][sy][1l]);
wi+=(blx[t][sx][0]*psi[sx-1][sy][1l]+blx[t][sx][1l]*psi[sx-1][sy][0]);
wr+=(bux[t][sx][0]*psi[sx+1][sy][0]-bux[t][sx][l]*psi[sx+1l][sy][1l]);
wit+=(bux[t][sx][0]*psi[sx+1][sy][l]+bux[t][sx][l]*psi[sx+1][sy][0]);

else if (d==1) {

}

wr+=(bly[t][sy][0]*psi[sx][sy-1][0]-bly[t][sy][1l]*psi[sx][sy-1][1]);
wit=(bly[t][sy][0]*psi[sx][sy-1][1]+bly[t][sy][1l]*psi[sx][sy-1][0]);
wr+=(buy[t][sy][0]*psi[sx][sy+1][0]-buy[t][sy][1l]*psi[sx][sy+1][1]);
wit=(buy[t][sy][0]*psi[sx][sy+1][1]+buy[t][sy][1]*psi[sx][sy+1][0]);

wrk[sx][sy][0]=wr;
wrk[sx][sy][1l]=wi;

/* Copy the new wave function back to PSI */
for (sx=1; sx<=NX; sx++)

for (sy=1l; sy<=NY; sy++)
for (s=0; s<=1; s++)

psi[sx][sy][s]=wrk[sx][sy][s];

INITIAL WAVE FUNCTION

_ 2
Y(x,y,t =0)=Cexp _(x4—xg)) exp(ikox) sin(?)

o y

To understand the meaning of this wave function, consider

Y(x,y) = Cexp(ikyx),

where C =,/L L, is the normalization constant such that

Then

Sordxfy dy Ww(x,y) P=fo dx [y dyC?(cos” (o) + sin® (ko)) = 1.

(24)

(25)

(26)



1> &
HIIJ(x’y) = _5 ax_z + y CCXp(lkox)
.
=—-———explikgx
2 g2 o) , @7
ikyC d .
=- g Eexp(zkox)
kKC . k2
= O—exp(lkox) =0 y(x,y)
2 2
and thus the expectation value of its energy is
Eo = [y dx[q” dyp’" (x.y)Hy(x.y)
" kg
=/ OL dxf OL Y dyy (x,y)TOLU(x,y). (28)
_ko
2

or kg =+2E .

We can show that the following ‘traveling’” wave function is a solution to the time-dependent
Schrodinger equation, if the potential energy function is O:

P(x,y,1) = Cexpliky(x - vot)), (29)
where v, = E/k is the wave speed.

The last factor in Eq. (24) also satisfies the Schrodinger equation and follows the boundary
condition, ¥ (x,0) =9(x,L,) =0, which is required if there is a very high potential barrier at y =0 and L,

(the electron then cannot exist). Finally, the first Gaussian factor in Eq. (24) acts to localize the wave
function around x = x,, and spread o.
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§2 Quantum Dynamics Basics I —One Dimensional System

This lecture note explains the quantum dynamics (QD) simulation program, gd1.c, which simulates
the time evolution of a wave function in one spatial dimension. Here, we only highlight differences
from the two-dimensional QD simulation program, gd.c, explained in the lecture note on Quantum
Dynamics Basics.

Schrodinger Wave Equation
WAVE EQUATION

The program qd1.c simulates the time evolution of a wave function in one-dimensional space, 0 < x
< L, (L, is the system size). The one-dimensional wave function, y(x,t) = Rey(x,t) + ilmy(x,71) € C

(where i = 4/-1), satisfies the normalization condition:

Il dx|1p(x, 1)

The time evolution of the wave function, subjected to a time-independent, real-valued potential,
V(x), is described (in the dimensionless form as explained in the lecture note) by the time-dependent
Schrédinger equation:

o1 (1)

7,
IEW()C,Z') = Hw(-x’t) (2)
In Eq. (2), the Hamiltonian operator, H, is defined as
1°
H=-————+V(x
2 ox? ( )~ (3)
=T, +V
Boundary condition: We impose the periodic boundary condition on the wave function such that
Y(x+ L) =y(x). 4)

DISCRETIZATION

The wave function is discretized on a regular mesh of size Ax. Here Ax =L /N, and N, is the number
of mesh points. We denote the discretized wave function as 1; = Y(jAx), see the figure below.

<0 1 N N,
| Il | | Il | L l Il -
1 I 1 I | ! = X
0 — L
g Ax=L /N, Ly
LX

Figure: One-dimensional mesh, on which the wave function is discretized.

In the discretized form, the Hamiltonian operator in Eq. (3) acts as
(Hw)j = (wa)j + (VI/J)j, )

where



1Y 29 +9;,

Ta). =——

(), 2 (Ax)? (6)
(VI,U)j=Vj7JJj

and the potential-energy function is discretized as V; = V(jAx).

Numerical Integration of Schrodinger Equation
The time evolution of the wave function is formally written down as
Y(t + Ar) = exp(-iHA (1), 7

where we omit the indices for simplicity. Here the exponential function of an operator is defined as a
series expansion,

M8

exp(~iHAt) = l'(—iHAt)n. (8)
n!

n=0

In the split-operator method, the wave function is propagated for a small time interval, At, as

Yt -+ Ar) = exp(~iVAL12)exp(-T,Ar)exp(~iVar 20 + O [ArT' ). ©)
In Eq. (9), the application of the potential propagator, exp(-iVAt/2), is straightforward.
. B iAt (=iAt12)? (. 5
(exp(-ivAt/2)y) =y, =~ =(V), + T(v "P)j +
iAt —iAt/2)* [ \2
=‘/’j‘7"j¢j+%(vj) Yt (10)

= exp(~iVAr/2)y;
Note that, for real number a,

) =14 ig+ Lea®)+ Lia®) + Lia®y e LiaS) s .-
exp(za)—1+za+2!(—a )+ 3!(—za )+4!(a )+4!(la )+

=(1—la2+la4+~--)+i(a-la3+la5+--~) . (11)
2 4l A s

=cos(a) + isin(a)

Using Eq. (11) in Eq. (10),
(exp(-iVA/2)y) = [cos(V,at/2) - isin(V;ar/2) [Rey + ilmuy
=cos(v At 12)Reyp + sin(VAr2)imy; | (12)
+i[cos(VjAt/2)Im1pj - sin(VjAt /2) Relpj]

To apply the kinetic propagator, exp(-iT,Af), we use the space-splitting method (SSM). To
understand the SSM, we first note that the operation of T, on ; is expressed as

Tj=by; 1 +2ay;+by;,, (13)

where
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a=1/2(Ax)’
b=-1/2(Ax)’

The operation of T, on ), thus amounts to the multiplication of a tridiagonal matrix,

In the SSM, this tridiagonal matrix is expressed as a direct sum of 2 x 2 submatrices,

[2a
b

b
2a b

b 2a b

b

[2a b
b 2a b
b 2a b
T, = T
b 2a b
b 2a b
b 2aj
a 1 [a
b a a
a b a
=% b a +
b a
b al

2a

b
b 2a b
b 2a

N | —

a

b a
ba_

(14)

(15)

(16)

The exponential of a 2x2 matrix on the right-hand side of Eq. (16) is calculated analytically as follows:

exp(—iAlT, ) = UMDy @l half) 0((A;)3) _

& &
& &
& &
& &
where

&
|
€

11

(17)




&, = l[exp(—m—t(a + b)) + exp(—&(a - b))l

2 n n (18)
€, = l[exp(—ﬂ(a + b)) - exp(—ﬂ(a - b))l

2 n n

Data Structures of qdl1.c

Nx: Number of mesh points.
psi[NX+2][2]: psi[i][0]1] is the reallimaginary part of the wave function on mesh point i.

The wave function to be simulated is in the range, 1 <i <Nx. To simplify the operation of the finite-
difference operators considering the periodic boundary condition, the wave function values at the edges
are duplicated as follows:

for (s=0; s<=1; s++) {

psi[0 1[s] = psi[NX][s];
psi[NX+1][s] = psi[l ][s];

}
v[NX+21]: v[i] is the potential energy at mesh point i.
u[NX+2][2]:u[i][0]1] is the reallimaginary part of the potential propagator at mesh point i.

The potential propagator, exp(-iVA#/2), is operated in qd1.c as follows, see Eq. (12).

for (sx=1; sx<=NX; sx++) {
wr = u[sx][0]*psi[sx][0]-u[sx][1l]*psi[sx][1];
wi = u[sx][0]*psi[sx][1l]+tu[sx][1l]*psi[sx][0];
psi[sx][0] = wr;
psi[sx][1] wij;

}

The program gd1.c simulates an electron incident on a potential barrier of height B, and width B,
see the figure below. In addition, an edge potential of height E,, is applied at i = 1 or Nx in v[i]. The
potential v[i] =0 at all the other mesh points.

V(x) A
=
X = Lx/2-BW/2 X = Lx/2+BW/2
\\ //
\ /
\ /
\ /
\ /
\\ //
0 N K .
0 Ly/2 Ly x

Figure: The potential energy function.

al[2][2]: al[OIT][OI1] is the half (A#/2)Ifull (A¢)-step, reallimaginary-part of the diagonal element of the
kinetic propagator, see Eqgs. (17) and (18).
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bu[2][NX+2][2]: bu[0|1]1[i][0]1] is the half (A#/2)lfull (Af)-step, reallimaginary-part of the upper
off-diagonal kinetic propagator on mesh point i, see Egs. (17) and (18).
bl[2][NX+2][2]: bl[o|1][i][0]1] is the half (A#/2)lfull (Af)-step, reallimaginary-part of the lower
off-diagonal kinetic propagator on mesh point i, see Egs. (17) and (18).

The 2x2 block-diagonal form of the kinetic propagator, Eq. (17), can be handled

lr full + + _45 2

where 6y,04(2)0 = 1 (if mod(i, 2) = 0) and O (else), etc. The above kinetic propagator is used in gd1.c
to update the wave function as follows, where ¢ (=0 for A#/2—half; 1 for Ar—full) is the time step:

/* WRK|PSI holds the new|old wave function */
for (sx=1; sx<=NX; sx++) {
wr al[t][0]*psi[sx][0]-al[t][l]*psi[sx][1];
wi al[t][0]*psi[sx][l]+al[t][1l]*psi[sx][0];
wr += (bl[t][sx][0]*psi[sx-1][0]-bl[t][sx][1l]*psi[sx-1]1[1]);
wi (b1[t][sx][0]*psi[sx-1][1]+b1l[t][sx][1l]*psi[sx-1][0]);
wr (bu[t][sx][0]*psi[sx+1][0]-bu[t][sx][1l]*psi[sx+1][1l]);
wi += (bu[t][sx][0]*psi[sx+1][1]+bu[t][sx][1]*psi[sx+1]1[0]);
wrk[sx][0] wWr;
wrk([sx][1l] = wi;

+

+

}
/* Copy the new wave function back to PSI */
for (sx=1; sx<=NX; sx++)
for (s=0; s<=1; s++)
psi[sx][s] = wrk([sx][s];

INITIAL WAVE FUNCTION

We choose the initial wave function at time ¢ =0 to be

(x—xo)2

(x,t=0)=Cex
v P 40?

exp(ikox). 2D

where ky =+/2E (E, is the energy of the wave packet) and C is the normalization constant such that

Jor du o) P=1. (22)
The first Gaussian factor in Eq. (21) acts to localize the wave function around x = x,, and spread o.
NUMERICAL EXAMPLE

The following figure shows the real and imaginary parts of the wave function at four different times,
t=2.0,4.0, 6.0, and 8.0, for the following parameter set:

Ly =50.0
N, =512
At=10""
X, =12.5
oc=3.0
E,=5.0
B;=5.0
By=10
E, =500
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