Massive Dataset Visualization

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations Department of Computer Science Department of Physics & Astronomy Department of Quantitative & Computational Biology University of Southern California

Email: anakano@usc.edu

Immersive & Interactive Visualization

Challenge: billion-atom walkthrough

Solution: parallel & distributed Atomsviewer

Locality in Data Compression

Massive data transfer via wide area network: 75 GB/step of data for 1.5 billion-atom MD!

→ Compressed software pipeline

Scalable encoding:

• Store relative positions on spacefilling curve: $O(N \log N) \rightarrow O(N)$

Result:

Data size, 50Bytes/atom → 6 Bytes/atom

Data Compression for Scalable I/O

Challenge: Massive data transfer via OC-12 (622 Mbps) 75 GB/frame of data for a 1.5-billion-atom MD!

- **Scalable encoding:**
- Spacefilling curve based on octree index

x	=	1	1	0
У	=	0	0	0
Z	=	1	0	0
R	=	101	001	000

 $3D \rightarrow list map preserves spatial proximity$

Spacefilling-Curve Data Compression

Algorithm:

- **1.** Sort particles along the spacefilling curve
- 2. Store relative positions: $\hat{O}(N\log N) \rightarrow O(N)$
- Adaptive variable-length encoding to handle outliers
- User-controlled error bound

Result:

 An order-of-magnitude reduction of I/O size: 50 → 6 Bytes/atom

Data Locality in Visualization

- Octree-based fast view-frustum culling
- Probabilistic occlusion culling
- Parallel/distributed processing

• Interactive visualization of a billion-atom dataset in immersive environment

VOLUME 12 / NUMBER 1 / FEBRUARY 2003

MIT PRES

Hierarchical Abstraction

2D example

- Larger clusters for longer distances
- Recursively subdivide the 3D space to form an octree

Visibility Culling

Octree-based View-Frustum Culling

- Use the octree data structure to efficiently select only visible atoms
- Complexity Insertion into octree: O(N) Data extraction: O(logN)

Probabilstic Occlusion Culling

• Remove atoms that are occluded by other atoms closer to the viewer

Results of Probabilstic Occlusion Culling

Original

Probabilistic

Difference

68% fewer objects; 3× frame rate

Multiresolution Culling & Rendering

- Per-octree node operations:
 - **—**Frustum culling
 - -Probabilistic occlusion culling
- Per-atom operations
 - -Multiple levels-of-detail
 - **—Occlusion culling (per-object, per-octree node)**

Without multiresolution

With multiresolution

.94fps - 90,000 particles

3.2fps - 4,500 particles

Outflow pathways of optic nerves from the retina of a rabbit eye (Experimental data by C. Burgoyne & R. Beuerman, *LSU Eye Center*)

Distributed Architecture

Parallel Octree Extraction

Bounding shells of equal volume

- Individual copies of the octree with each node
- Spherical extraction using shells of equal volume
- Load balancing due to the equal use of each processor for extraction

Latency Hiding

- Individual modules are multithreaded to reduce network or module latency
- Minimize latency due to inter-modular dependencies by overlapping the inter-module communication and module computation

 Instantaneously trained neural network (CC4 [Tang & Kak, CSSP'98]) predicts the user's next position [Liu et al., PDPTA'02]

Parallel & Distributed Atomsviewer

Real-time walkthrough for a billion atoms on an SGI Onyx2 (2 × MIPS R10K, 4GB RAM) connected to a PC cluster (4 × 800MHz P3)

IEEE Virtual Reality Best Paper

Parallel In Situ Rendering

International Journal of Computational Science 1992-6669 (Print) 1992-6677 (Online) C Global Information Publisher 2007, Vol. 1, No. 4, 407-421

ParaViz: A Spatially Decomposed Parallel Visualization Algorithm Using Hierarchical Visibility Ordering

Cheng Zhang¹, Scott Callaghan², Thomas Jordan², Rajiv K. Kalia¹,

Aiichiro Nakano^{1*}, Priya Vashishta¹

- **Parallel (software) rendering** of spatially distributed data: hybrid sort-first/sort-last
- Scalable depth buffer by domain-level distributed visibility ordering
- **On-the-fly visualization of** parallel simulation without data migration
- Parallel efficiency 0.98 on 1,024 \bullet processors for 16.8 million-atom molecular-dynamics simulation

Atomsviewer Code

- Programming language
 > C++
- Graphics
 >OpenGL
 >CAVE Library (optional)
- Platforms
 - >Windows
 - >Macintosh OS X
 - >SGI Irix

Atomsviewer System

Atomsviewer Commands

Atomsviewer Code Dissemination

Computer Physics Communications Program Library

Available online at www.sciencedirect.com

Computer Physics Communications

Computer Physics Communications 163 (2004) 53-64

www.elsevier.com/locate/cpc

Scalable and portable visualization of large atomistic datasets *

Ashish Sharma*, Rajiv K. Kalia, Aiichiro Nakano, Priya Vashishta

Collaboratory for Advanced Computing and Simulations, Department of Computer Science, Department of Physics & Astronomy, Department of Material Science & Engineering, University of Southern California, Los Angeles, CA 90089-0242, USA

Received 15 June 2004; accepted 8 July 2004

Available online 16 September 2004

Abstract

A scalable and portable code named Atomsviewer has been developed to interactively visualize a large atomistic dataset consisting of up to a billion atoms. The code uses a hierarchical view frustum-culling algorithm based on the octree data structure to efficiently remove atoms outside of the user's field-of-view. Probabilistic and depth-based occlusion-culling algorithms then select atoms, which have a high probability of being visible. Finally a multiresolution algorithm is used to render the selected subset of visible atoms at varying levels of detail. Atomsviewer is written in C++ and OpenGL, and it has been tested on a number of architectures including Windows, Macintosh, and SGI. Atomsviewer has been used to visualize tens of millions of atoms on a standard desktop computer and, in its parallel version, up to a billion atoms.

Program summary

Title of program: Atomsviewer Catalogue identifier: ADUM Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADUM Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: 2.4 GHz Pentium 4/Xeon processor, professional graphics card; Apple G4 (867 MHz)/G5, professional graphics card Operating systems under which the program has been tested: Windows 2000/XP, Mac OS 10.2/10.3, SGI IRIX 6.5 Programming languages used: C++, C and OpenGL Memory required to execute with typical data: 1 gigabyte of RAM High speed storage required: 60 gigabytes No. of lines in the distributed program including test data, etc.: 550 241 No. of bytes in the distributed program including test data, etc.: 6 258 245 Number of bits in a word: Arbitrary

^o This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect.com/science/journal/00104655).

* Corresponding author.

E-mail address: anakano@usc.edu (A. Sharma).

0010-4655/\$ - see front matter © 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.cpc.2004.07.008

http://www.cpc.cs.qub.ac.uk/cpc

Scientific Visualization Tools

- Atomsviewer: Billion-atom visualizer http://cpc.cs.qub.ac.uk/summaries/ADUM_v1_0.html
- VMD: Molecular-dynamics data http://www.ks.uiuc.edu/Research/vmd
- OVITO: Open visualization tool
 <u>https://ovito.org</u>
- VisIT: General visualization system https://visit.llnl.gov
- ParaView: General visualization system
 http://www.paraview.org

